JPS5999016A - Impulse valve for steam engine - Google Patents

Impulse valve for steam engine

Info

Publication number
JPS5999016A
JPS5999016A JP20763482A JP20763482A JPS5999016A JP S5999016 A JPS5999016 A JP S5999016A JP 20763482 A JP20763482 A JP 20763482A JP 20763482 A JP20763482 A JP 20763482A JP S5999016 A JPS5999016 A JP S5999016A
Authority
JP
Japan
Prior art keywords
valve
cylinder
impulse valve
pressure
impulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20763482A
Other languages
Japanese (ja)
Inventor
Hisato Haraga
久人 原賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP20763482A priority Critical patent/JPS5999016A/en
Publication of JPS5999016A publication Critical patent/JPS5999016A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L19/00Slide valve-gear or valve arrangements with reciprocatory and other movement of same valve, other than provided for in F01L17/00, e.g. longitudinally of working cylinder and in cross direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

PURPOSE:To reduce an irreversible loss and increase effective work of a steam engine by delaying the closing timing of an inpulse valve relative to its opening timing so that its opening and closing timings may be asymetric relative to the top dead center, that is, the time span up to the top dead center is shortened. CONSTITUTION:When a piston 12 moves upward and approaches to the top dead center, its projection 23 pushes an impulse valve 20 upward. Because of this, an intake port 17 is opened to allow the steam having a pressure P1 flows from a space 18 in a cylinder head 10 to a cylinder 11. Also, a vent hole 19 is closed, and a check valve 25 is opened due to a rise in the pressure P2 in a cylinder section 15 to communicate the cylinder section 15 and the space 18. When the impulse valve 20 moves downward and the pressure P2 is lowered, the check valve 22 is closed, and a negative pressure is generated in the cylinder section 15 due to the adiabatic expansion to delay the downward movement of the valve 20. By this arrangement, the impulse valve 20 moves downward separately from the piston 12 so that the closing timing can be delayed compared to the opening timing.

Description

【発明の詳細な説明】 本発明は、蒸気エンジンのレシプロ型エキスパンダにお
ける蒸気人口弁で、ピストン頂部に設けた突気部によっ
て開閉する蒸気エンジンのインパルス弁に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam artificial valve in a reciprocating type expander of a steam engine, and relates to an impulse valve for a steam engine that is opened and closed by a gust provided at the top of a piston.

従来のこの種のインパルス弁を第1図に示す。A conventional impulse valve of this type is shown in FIG.

これの作動原理は、シリンダヘッド部1に充満している
蒸気はピストン2の上昇行程で上死点(T、 D、 C
)に近づいた所でピストン頂部に設けた突起3がインパ
ルス弁4を押し上けて上死点で最大開孔面積となり、蒸
気は通気ポート5を通ってシリンダ6内に入る。その後
ピストン2は下降行程に移り、インパルス弁4は弁部の
はね7の付勢力によってピストン2と共に下降してやが
て弁シー1gに密着し、シリンダ6内の蒸気は高温、高
圧状態で閉じ込められ、そのエネルギでピストン2を押
し下げ、理想的には断熱膨張する。
The operating principle of this is that the steam filling the cylinder head 1 reaches the top dead center (T, D, C) during the upward stroke of the piston 2.
), the protrusion 3 provided on the top of the piston pushes up the impulse valve 4 to reach the maximum opening area at top dead center, and steam enters the cylinder 6 through the ventilation port 5. After that, the piston 2 moves to a downward stroke, and the impulse valve 4 descends together with the piston 2 due to the urging force of the spring 7 of the valve part, and eventually comes into close contact with the valve seat 1g, and the steam in the cylinder 6 is trapped in a high temperature and high pressure state. , the piston 2 is pushed down by that energy, and ideally it expands adiabatically.

この従来の機構においては以下の問題点が顕在化してい
る。
In this conventional mechanism, the following problems have become apparent.

すなわち1.インパルス弁4の開時での非可逆損失及び
、機械損失が増大する。
That is, 1. Irreversible loss and mechanical loss when the impulse valve 4 is opened increases.

ピストン押し上は弁穴のものは、インパルス弁4の開閉
時期が上死点を堺にして、弁開時期と弁閉時期が均等配
分となる(第2図参照)0つまり開弁と同時に高温、高
圧の蒸気が筒内に流入し、筒内の圧力が供給蒸気圧力ま
で上昇し。
If the piston is pushed up and the valve hole is opened, the opening and closing timing of the impulse valve 4 will be at the top dead center, and the valve opening timing and valve closing timing will be evenly distributed (see Figure 2). , high-pressure steam flows into the cylinder, and the pressure inside the cylinder rises to the supply steam pressure.

ピストン2は上死点までの間供給蒸気圧に逆らって仕事
をし、その後閉時期ま°で逆に仕事をでれ、結果的には
インパルス弁開期間内には、筒内での発生仕事はない。
The piston 2 performs work against the supplied steam pressure until the top dead center, and then performs work in the opposite direction until it closes.As a result, the work generated in the cylinder during the impulse valve opening period is There isn't.

第3図ばインパルス弁タイプの膨張機の理想的なP−V
線図を示す。
Figure 3: Ideal P-V of impulse valve type expander
A diagram is shown.

上記のことから、(1)第3図の斜線部で示される非可
逆損失量が生じる。叩第3図の、6−+ C→dの過程
で発生する仕事が無いのに対してこの期間中、常時蒸気
供給圧力がピストン上部にかかり、機械摩擦力のみがか
かることにガリ、結果的に筒内で1サイクル中になはれ
る有効仕事に対して機械損失割合が増大し、膨張機(エ
キスパンダ)の効率を悪くする。
From the above, (1) irreversible loss amount shown by the shaded area in FIG. 3 occurs. As shown in Figure 3, there is no work generated in the process of 6-+C→d, but during this period, steam supply pressure is constantly applied to the top of the piston, and only mechanical friction force is applied. The mechanical loss ratio increases with respect to the effective work done in the cylinder during one cycle, and the efficiency of the expander deteriorates.

本発明は上記のことにかんがみなされたもので、非可逆
損失量を少なくすると共に、この非可逆損失量の減少分
だけ有効仕事を増大させて。
The present invention has been made in consideration of the above-mentioned problems, and is designed to reduce the amount of irreversible loss and increase the effective work by the amount of the reduction in the amount of irreversible loss.

有効仕事に対する機械損失割合を減少させると共に、機
械損失によるエキスパンダの効率以下を少なくできるよ
うにした蒸気エンジンのインパルス弁を提供しようとす
るものである。
It is an object of the present invention to provide an impulse valve for a steam engine that can reduce the ratio of mechanical loss to effective work and reduce the decrease in expander efficiency due to mechanical loss.

上記目的は上死点を堺にしてバルブリフト曲線を非対称
に、つまり、上死点までのバルブリフト期間を短くする
ことにより達成される。
The above object is achieved by making the valve lift curve asymmetrical, that is, by shortening the valve lift period up to the top dead center.

以下本発明の実施例を第4図に基づいて説明する。Embodiments of the present invention will be described below with reference to FIG.

図中10はシリンダヘッド、+1はシリンダ。In the figure, 10 is the cylinder head and +1 is the cylinder.

12はピストンである。シリンダヘッド10内にはイン
パルス弁装置13が設けである。このインパルス弁装置
13のバルブハウジング14にはシリンダ部15が形成
してあり、このシリンダ部15の下部には上側へ向けた
弁シート16が設けである。またシリンダ部15の上記
弁シート16の上側が吸気ボート17にてシリンダヘッ
ド10内ρ空間部18に連通している。またシリンダ部
15の上部は通気孔19にて上記空間部1gに連通しで
ある。そしてシリンダ部15内には上記弁シー)+6に
対向するインパルス弁20がばね21にて付勢式れて嵌
合して6る。シリンダ部15の頂部に、このシリンダ部
15の頂部からシリンダヘッドio内の空間部1gへの
み流れを許す逆止弁22が設けてるる0上記シリンダ部
15に設け°た通気孔19はインパルス弁20が上昇し
ているときにはこのインパルス弁20にて閉じられる位
置に開口しである。ピストン12の頂部には上記インパ
ルス弁20の下端面に当接する突起23が設けである。
12 is a piston. An impulse valve device 13 is provided within the cylinder head 10 . A cylinder portion 15 is formed in a valve housing 14 of this impulse valve device 13, and a valve seat 16 facing upward is provided at a lower portion of this cylinder portion 15. Further, the upper side of the valve seat 16 of the cylinder portion 15 communicates with the ρ space 18 in the cylinder head 10 through an intake boat 17. Further, the upper part of the cylinder part 15 communicates with the space part 1g through a ventilation hole 19. In the cylinder portion 15, an impulse valve 20 facing the valve seat 6) is fitted and biased by a spring 21. A check valve 22 is provided at the top of the cylinder part 15 to allow flow only from the top of the cylinder part 15 to the space 1g in the cylinder head IO.The vent hole 19 provided in the cylinder part 15 is an impulse valve. When the impulse valve 20 is raised, the impulse valve 20 is opened at the closed position. A projection 23 is provided at the top of the piston 12 and comes into contact with the lower end surface of the impulse valve 20.

上記構成における作用を以下に説明する。The operation of the above configuration will be explained below.

ピストン12が上昇して上死点に近ずくと、これの突起
23がインパルス弁2oに当接してインパルス弁20は
突き上けられ上昇し、シリンダヘッド10の空間部18
から圧力P1の蒸気が吸気ボート17を通ってシリンダ
11内に流入する。このとき、インパルス弁2oが上昇
すると通恒孔19が閉じられてシリンダ部15内の圧力
P、が上昇して逆止弁22が開き、シリンダ部15とシ
リンダヘッド10の空間部18とが連通し、シリンダ部
の圧力P、とシリンダヘッド10の圧力P、とが平衡し
、p、=ptとなる。
When the piston 12 rises and approaches the top dead center, its protrusion 23 comes into contact with the impulse valve 2o, and the impulse valve 20 is pushed up and raised, thereby filling the space 18 of the cylinder head 10.
Steam at pressure P1 flows into the cylinder 11 through the intake boat 17. At this time, when the impulse valve 2o rises, the communication hole 19 is closed, the pressure P inside the cylinder section 15 increases, the check valve 22 opens, and the cylinder section 15 and the space 18 of the cylinder head 10 communicate with each other. However, the pressure P of the cylinder portion and the pressure P of the cylinder head 10 are in equilibrium, and p,=pt.

その後ピストン12が上死点を過ぎ、下降行程に入ると
、インパルス弁20はばね21による付勢力F1によっ
て下降し吸気ボート17は絞られる。かくすると、この
絞り効果によりインパルス弁20の下側(シリン名゛1
(内)の圧力Psバインパルス弁装置13のシリンダ1
5内の圧力P2より低くなってp、>p、となる。従っ
てインパルス弁20はその差圧Cp2−ps)とばね2
1の付勢力F、で下降す不。
After that, when the piston 12 passes the top dead center and enters the downward stroke, the impulse valve 20 is lowered by the biasing force F1 of the spring 21, and the intake boat 17 is throttled. In this way, due to this throttling effect, the lower side of the impulse valve 20 (cylinder name 1
(inside) pressure Ps of cylinder 1 of vine pulse valve device 13
5 becomes lower than the pressure P2, and becomes p,>p. Therefore, the impulse valve 20 has its differential pressure Cp2-ps) and the spring 2
It descends with a biasing force F of 1.

このとき、インパルス弁20が下降してシリンダ部15
内の圧力P2が低くなると逆止弁22が閉じられ、この
状態でインパルス弁20がさらに下降するとインパルス
弁装置13のシリンダ部15内には断熱膨張による負圧
が発生し、これがインパルス弁20に上向きに作用し、
上記インパルス弁20の下降を遅らせようとする〇イン
パルス弁20の下降行程でのインパルス弁20の釣り合
い式は m a = (II Pm>/(l+ ji’ + ”
V4 t・12・・・・・・・・・(1)但し、l、コ
インパルス弁20の受圧面積l、ニジリンダ部15の断
面積 m:インパルス弁20の質量 α:インパルス弁20の加°速度 なお″p2/cLt−イ!は負の値である。
At this time, the impulse valve 20 descends and the cylinder portion 15
When the internal pressure P2 decreases, the check valve 22 is closed, and when the impulse valve 20 further descends in this state, negative pressure is generated in the cylinder part 15 of the impulse valve device 13 due to adiabatic expansion, and this causes the impulse valve 20 to acts upward,
The balance equation of the impulse valve 20 in the downward stroke of the impulse valve 20 that attempts to delay the downward movement of the impulse valve 20 is m a = (II Pm>/(l+ ji' + ”
V4 t・12・・・・・・(1) However, l, pressure receiving area l of coin pulse valve 20, cross-sectional area m of Niji cylinder part 15: mass α of impulse valve 20: acceleration of impulse valve 20 Note that the speed "p2/cLt-i!" is a negative value.

上記釣合式よりインパルス弁20の加m Kαは。From the above balance equation, the addition m Kα of the impulse valve 20 is:

α”’ m ((7’「Ps ) 7t + pm+p
2/d、、・Δ、)・・・(2)従って上記(2)式で
求まるインパルス弁20の加速度αがピストン12の加
速度βより小さくなるように、シリンダ部+5内の断熱
膨張による上向き(負)の力が作用するように設ければ
α”'m ((7'Ps) 7t + pm+p
2/d,,・Δ,)...(2) Therefore, the upward movement due to adiabatic expansion within the cylinder portion +5 is made so that the acceleration α of the impulse valve 20 determined by the above equation (2) is smaller than the acceleration β of the piston 12. If it is set up so that (negative) force acts on it.

インパルス弁20はピストン12から離れて下降し、イ
ンパルス弁20の閉時期を開時期より遅らせることがで
き、インパルス弁20の開閉時期がピストン12の上死
点を堺にして非対称となる。
The impulse valve 20 moves downward away from the piston 12, so that the closing timing of the impulse valve 20 can be delayed from the opening timing, and the opening and closing timing of the impulse valve 20 becomes asymmetrical with respect to the top dead center of the piston 12.

第5図は上記状態を示す線図でるり、インパルス弁20
のリフト曲線はピストン12の上死点(T、 D、 C
)より後側へずれ、その結果P−V線図で示されるよう
に斜線で示される非可逆損失が第3図に示す場合に比較
して減少され、その分有効仕事が増大する。
FIG. 5 is a diagram showing the above state, and the impulse valve 20
The lift curve is the top dead center of the piston 12 (T, D, C
), and as a result, as shown in the PV diagram, the irreversible loss shown by diagonal lines is reduced compared to the case shown in FIG. 3, and the effective work increases accordingly.

本発明は上記したようになるから、蒸気吸入時における
インパルス弁20のリフト曲線をピストン12の上死点
を越えた側へずらすことができ、従って蒸気エンジンの
非可逆損失を少なくすることができる0そして有効仕事
が増大するために有効仕事に対する機械損失割合が減少
し、通常のインパルス弁タイプのエキスパンダに比べて
効率が向上し、しかも1回転あたりの出力が増大する。
Since the present invention is as described above, the lift curve of the impulse valve 20 during steam intake can be shifted to the side beyond the top dead center of the piston 12, and therefore irreversible loss in the steam engine can be reduced. 0, and since the effective work increases, the mechanical loss ratio to the effective work decreases, and the efficiency is improved compared to a normal impulse valve type expander, and moreover, the output per revolution is increased.

また本発明によれば、インパルス弁装置内で断熱膨張力
を働かせるための手段としてシリンダ部15の上側に逆
止弁22を設けたから、1サイクル毎の上記作動が確実
に行なわれ、蒸なエンジン運転時において安定した性能
を得ることができる。
Further, according to the present invention, since the check valve 22 is provided above the cylinder portion 15 as a means for exerting an adiabatic expansion force within the impulse valve device, the above-mentioned operation for each cycle is reliably performed, and the steamy engine is Stable performance can be obtained during operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の蒸気エンジンのインパルス弁装置の断面
図、第2図は従来例におけるインパルス弁のリフト曲線
と筒内圧との関係を示す線図、第3図は従来例における
P−V線図、第4図は本発明の実施例を示す断面図、第
5図は本発明例におけるP−V線図でメ逮。 10はシリンダヘッド、11はシリンダ、12はピスト
ン、14はハウジング、15はシリンダ部、Ilj:弁
シート% 17は吸気ボート、 20はインパルス弁、
22は逆止弁、23は頂部突起0 出願人 株式会社 小松製作所 代理人弁理士米原正章 弁理士浜本 忠 91 第 1 図 巣 2 口     第 3 図 第 4 図 −92=
Fig. 1 is a sectional view of a conventional impulse valve device of a steam engine, Fig. 2 is a diagram showing the relationship between the lift curve of the impulse valve and cylinder pressure in the conventional example, and Fig. 3 is a PV line in the conventional example. 4 is a sectional view showing an embodiment of the present invention, and FIG. 5 is a PV diagram of the embodiment of the present invention. 10 is a cylinder head, 11 is a cylinder, 12 is a piston, 14 is a housing, 15 is a cylinder part, Ilj: valve seat % 17 is an intake boat, 20 is an impulse valve,
22 is a check valve, 23 is a top protrusion 0 Applicant: Komatsu Ltd. Representative Patent Attorney Masaaki Yonehara Patent Attorney Tadashi Hamamoto 91 No. 1 Fig. 2 Mouth No. 3 Fig. 4 Fig.-92=

Claims (1)

【特許請求の範囲】[Claims] シリンダ11の上部で、かつシリンダヘッド10内に設
けたバルブハウジング14に、シリンダ11に開口し、
かつ開口部°に弁シート16を有するシリンダ部I5を
設け、このシリンダ部15に蒸気供給側に連通ずる吸気
ポート17を設け、またシリンダ部15内に、ピストン
12の上昇時にピストン12の頂部の突起部23にて押
し上げられて上記吸気ポート17とシリンダ11とを連
通ずるインパルス弁20を上記弁シート16にばね付勢
して嵌合し、さらに上記シリンダ部I5の頂部と蒸気供
給側とをシリンダ部15側方向へのみ流れを許す逆止弁
22を介して連通したことを特徴とする蒸気エンジンの
インパルス弁。
A valve housing 14 provided in the upper part of the cylinder 11 and inside the cylinder head 10 has an opening in the cylinder 11;
In addition, a cylinder part I5 having a valve seat 16 at the opening part is provided, and an intake port 17 communicating with the steam supply side is provided in this cylinder part 15. The impulse valve 20, which is pushed up by the protrusion 23 and communicates the intake port 17 and the cylinder 11, is fitted into the valve seat 16 with a spring bias, and the top of the cylinder part I5 and the steam supply side are connected. An impulse valve for a steam engine, characterized in that it communicates through a check valve 22 that allows flow only in the side direction of a cylinder portion 15.
JP20763482A 1982-11-29 1982-11-29 Impulse valve for steam engine Pending JPS5999016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20763482A JPS5999016A (en) 1982-11-29 1982-11-29 Impulse valve for steam engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20763482A JPS5999016A (en) 1982-11-29 1982-11-29 Impulse valve for steam engine

Publications (1)

Publication Number Publication Date
JPS5999016A true JPS5999016A (en) 1984-06-07

Family

ID=16543038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20763482A Pending JPS5999016A (en) 1982-11-29 1982-11-29 Impulse valve for steam engine

Country Status (1)

Country Link
JP (1) JPS5999016A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146159A1 (en) * 2015-03-16 2016-09-22 Aross 3D Gmbh Steam engine
US9828886B1 (en) * 2007-03-07 2017-11-28 Thermal Power Recovery, Llc High efficiency steam engine and steam expander
US10273840B1 (en) 2017-10-26 2019-04-30 Thermal Power Recovery Llc High efficiency steam engine and impact-free piston operated valves therefor
US10550737B2 (en) 2010-12-02 2020-02-04 Thermal Power Recovery Llc High efficiency steam engine having improved steam cutoff control
US10774645B1 (en) 2010-12-02 2020-09-15 Thermal Power Recovery Llc High efficiency steam engine
EP3798413A1 (en) * 2019-09-30 2021-03-31 RD Estate GmbH & Co. KG Control valve for a steam engine, steam engine comprising said control valve, and combined heat and power plant comprising the steam engine
EP4001586A1 (en) * 2020-11-18 2022-05-25 RD Estate GmbH & Co. KG Control valve with optimized thermal stress, a piston steam engine comprising said control valve, a force heat coupling system comprising the piston steam engine and a method for operating the piston steam engine
EP4001587A1 (en) * 2020-11-18 2022-05-25 RD Estate GmbH & Co. KG Control valve with optimized flow for a piston steam engine comprising said control valve, a force heat coupling system comprising the piston steam engine and a method for operating the piston steam engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828886B1 (en) * 2007-03-07 2017-11-28 Thermal Power Recovery, Llc High efficiency steam engine and steam expander
US10550737B2 (en) 2010-12-02 2020-02-04 Thermal Power Recovery Llc High efficiency steam engine having improved steam cutoff control
US10774645B1 (en) 2010-12-02 2020-09-15 Thermal Power Recovery Llc High efficiency steam engine
WO2016146159A1 (en) * 2015-03-16 2016-09-22 Aross 3D Gmbh Steam engine
US10273840B1 (en) 2017-10-26 2019-04-30 Thermal Power Recovery Llc High efficiency steam engine and impact-free piston operated valves therefor
EP3798413A1 (en) * 2019-09-30 2021-03-31 RD Estate GmbH & Co. KG Control valve for a steam engine, steam engine comprising said control valve, and combined heat and power plant comprising the steam engine
EP4001586A1 (en) * 2020-11-18 2022-05-25 RD Estate GmbH & Co. KG Control valve with optimized thermal stress, a piston steam engine comprising said control valve, a force heat coupling system comprising the piston steam engine and a method for operating the piston steam engine
EP4001587A1 (en) * 2020-11-18 2022-05-25 RD Estate GmbH & Co. KG Control valve with optimized flow for a piston steam engine comprising said control valve, a force heat coupling system comprising the piston steam engine and a method for operating the piston steam engine

Similar Documents

Publication Publication Date Title
US8448440B2 (en) Method and apparatus for achieving higher thermal efficiency in a steam engine or steam expander
KR100820694B1 (en) Variable valve lift apparatus
US20110067661A1 (en) Lost motion variable valve actuation system with valve catch piston
US4870872A (en) Cam mechanisms
JPS5999016A (en) Impulse valve for steam engine
WO2002029216A1 (en) Valve actuating device, and method for controlling same
WO2007096826A2 (en) Device for controlling the movement of a valve, in particular of an intake valve, of an internal engine
US20090308340A1 (en) Cam-Driven Hydraulic Lost-Motion Mechanisms for Overhead Cam and Overhead Valve Valvetrains
KR910003261B1 (en) Engine valve timing control system
CN113202966A (en) Multifunctional pneumatic control pilot valve
US2830435A (en) Steam engine
US7249580B2 (en) Valve return device, and an engine equipped with such a device
US4256139A (en) Valve assembly for high-pressure piston pump
CN110043339A (en) The hydraulic rocker of non-overhead type valve actuating mechanism engine
US6341585B1 (en) Variable inlet valve damper for an internal combustion engine
CN209671027U (en) The hydraulic rocker of non-overhead type valve actuating mechanism engine
US10774645B1 (en) High efficiency steam engine
US4395979A (en) Pressure limiting hydraulic tappet
JPS6120690B2 (en)
WO2020124554A1 (en) Valve train and engine
US2827887A (en) Hydraulic valve lifter
CN214838778U (en) Multifunctional pneumatic control pilot valve
US20190128152A1 (en) High efficiency steam engine and impact-free piston operated valves therefor
JPS61258911A (en) Hydraulic tappet for internal-combustion engine
JPH063124B2 (en) Hydraulic tapes for internal combustion engines