JPS5998479A - Air cell - Google Patents
Air cellInfo
- Publication number
- JPS5998479A JPS5998479A JP20770982A JP20770982A JPS5998479A JP S5998479 A JPS5998479 A JP S5998479A JP 20770982 A JP20770982 A JP 20770982A JP 20770982 A JP20770982 A JP 20770982A JP S5998479 A JPS5998479 A JP S5998479A
- Authority
- JP
- Japan
- Prior art keywords
- air
- oxygen gas
- battery
- membrane
- air electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Hybrid Cells (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
不発明に、酸素ガスを透過し水蒸気透過を抑制する酸素
ガス選択透過膜を具備した空気電池に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an air cell equipped with an oxygen gas selectively permeable membrane that permeates oxygen gas and suppresses water vapor permeation.
金属を負極活物質として用い、酸素を正極活物質として
使用する空気電池は、酸素を空気中からとができる。こ
のため、空気電池では、九の電池の2倍前後のエネルギ
ー密度含期待することができる。しかし、酸素を空佐中
から得るためLIcは、電池容器に空気流入孔を設ける
必要があり、電池内に水蒸気や炭酸ガスが流入したり、
電池内の水分が流出する原因となる。電池内に水蒸気が
流入すると、電解−の濃度を低下させfcり、局部的な
短絡を引き起こし玉出力に変動tもたらしたり、内部圧
を上昇させて漏液や破裂を起こすことになる。また、電
解液がアルカリ性の場合には、炭酸ガスの流入によって
も電解液組成に変化が生ずる。Air batteries that use metal as a negative electrode active material and oxygen as a positive electrode active material can extract oxygen from the air. Therefore, an air battery can be expected to contain an energy density that is approximately twice as high as that of the 9th battery. However, in order to obtain oxygen from the air, LIc requires an air inflow hole in the battery container, which may prevent water vapor or carbon dioxide from flowing into the battery.
This may cause the moisture inside the battery to leak out. When water vapor flows into the battery, it reduces the concentration of electrolyte, causes local short circuits, causes fluctuations in ball output, and increases internal pressure, causing leakage and rupture. Furthermore, when the electrolyte is alkaline, the composition of the electrolyte changes due to the inflow of carbon dioxide gas.
また、逆に電池内からの水分の流出は、前述の漏液のよ
うな形で起これば電池だけでなく周辺機器の破損にまで
結びつき、水蒸気飛散の形でおこれば電解液濃度がしだ
いに上が9ついKは電解液乾固によって出力が全く得ら
れなくなってしまう。On the other hand, if moisture leaks from inside the battery in the form of the leakage described above, it can lead to damage not only to the battery but also to peripheral equipment, and if it occurs in the form of water vapor scattering, the electrolyte concentration gradually decreases. If the upper limit is 9, no output will be obtained due to the electrolyte drying out.
このような問題に対処するために、現在までに発表され
ている電池は空気孔全可能な限り小さくシーておす、ま
た使用時までは孔をテープなどで塞いだり、電池全体を
耐水材中に密封するなどの処置をとっている。しかし、
電池の使用時には有害ガス等の出入りは酸素ガス流入と
同時に行なわれ本質的解決には至っていない。これより
一歩進んだ方法としては、電池の空気流入孔と空気電極
との間に多孔性フッ素樹脂膜などの撥水剤や不織布など
の吸湿剤の層を設けたものがあり、漏液に対してはある
程度の効果全示しているが、この場合にも有害ガスの透
過は阻止できていない。In order to deal with this problem, the batteries released to date have all air holes sealed as small as possible, and the holes are covered with tape until use, or the entire battery is placed inside a waterproof material. We are taking measures such as sealing it up. but,
When a battery is used, harmful gases enter and exit at the same time as oxygen gas flows in, and no fundamental solution has been reached. A more advanced method is to install a layer of water repellent such as a porous fluororesin membrane or moisture absorbent such as non-woven fabric between the air inlet hole of the battery and the air electrode to prevent leakage. Although this method has shown some degree of effectiveness, the permeation of harmful gases has not been prevented in this case as well.
液体2よび有害ガスの透過全阻止し、かつ必要量の酸素
ガス透過を妨げない空気電池の機構として最適であると
考えられるのは、空気中の気体成分中、酸素のみ、もし
くは酸素と窒累のみを選択的に透過させる機能すなわち
、いわゆる酸素ガス選択透過膜の使用である。現在、こ
のような酸素ガス選択透過R’を使用した空気電池の例
としては前記膜を9気電極に密着させ一体化したのち電
池円に組み込む方法や、前記膜を用いて空気孔tふさぐ
方法が試られている。しかし、前記膜を空気電極と一体
化する場合には作業が煩雑になるばかりでなく、前記膜
の破損が起こりやすく、さらに前記膜が完全に均一でな
い場合には空気電極が局部的に劣化するという事態も生
じ得る。また膜を用いて空気孔をふさぐ場合には、酸素
ガスが透過する膜面積が小さくなるために、空気電極に
接触する酸素量が少くなり、大電流放電が困難になると
共に、空気流入孔以外のすき間、すなわち、外装缶の閉
じ合わせ部分や底板との接触部分から気密が破られた場
合、全く無防備の状態となってしまうという欠点があっ
た。The optimal mechanism for an air battery that completely blocks the permeation of liquid 2 and harmful gases and does not impede the permeation of the necessary amount of oxygen gas is considered to be the most suitable mechanism for an air cell that completely blocks the permeation of liquid 2 and harmful gases, but does not impede the permeation of the required amount of oxygen gas. This is the function of selectively permeating only oxygen gas, that is, the use of a so-called oxygen gas selective permeation membrane. Currently, examples of air batteries using such oxygen gas selective permeation R' include a method in which the membrane is brought into close contact with the 9-electrode and then incorporated into the battery circle, and a method in which the membrane is used to close the air hole T. is being tested. However, when the membrane is integrated with the air electrode, not only is the work complicated, but the membrane is likely to be damaged, and furthermore, if the membrane is not completely uniform, the air electrode may deteriorate locally. Such a situation may also occur. In addition, when using a membrane to block the air holes, the membrane area through which oxygen gas permeates becomes smaller, which reduces the amount of oxygen that comes into contact with the air electrode, making large current discharge difficult, and If the airtightness is broken through the gap between the outer can and the part where the outer can is closed or where it contacts the bottom plate, there is a drawback that the can will be completely defenseless.
不発F!Aは、上述の点に鑑み空気電池の構造上必要度
が極めて高いと考えられる酸素ガス選択透過膜を、外装
缶と空気電極との間に空気拡散層を介して設ける事によ
り、外部から供給された酸素ガスが高効率で利用され大
出力化が可能になると共に長期間の使用及び保存安定性
をも兼ね備えた空気電池を提供する挙上目的とする。Misfire F! In view of the above points, oxygen gas selective permeation membrane, which is considered to be extremely necessary in terms of the structure of an air battery, is provided between the outer can and the air electrode via an air diffusion layer, so that the oxygen gas is supplied from the outside. The purpose of the present invention is to provide an air battery that utilizes the oxygen gas efficiently, enables high output, and has long-term use and storage stability.
本発明は外装缶に設けた空気流入口から供給される酸素
ガスを活物質とし、空気電極上で戒気化学反応を起こさ
せる空気電池において、前記外装缶と空気電極との間に
空気拡散層を介して酸素ガス選択透過膜を設けた空気電
池である。The present invention provides an air battery in which oxygen gas supplied from an air inlet provided in an outer can is used as an active material to cause a chemical reaction on an air electrode, and an air diffusion layer is provided between the outer can and the air electrode. This is an air battery equipped with an oxygen gas selectively permeable membrane.
つまり本発明においては゛外装缶の空気流入口によりま
ず外部から外装缶と酸素ガス選択透過膜との間の空気拡
散層に高効率で酸素ガスが供給され、さらにこの酸素は
酸素ガス選択透過膜全透過した後、酸素ガス選択透過膜
と空気電極との間の空気拡散層を介して空気電極に達す
る。この結果外部からの酸素ガスは空気電極の表面全体
に均一に、かつ高効率で接し、大出力化が可能になると
共に長期間の使用及び保存性も良好な空気′ta池が得
ら、れる。In other words, in the present invention, oxygen gas is first supplied from the outside to the air diffusion layer between the outer can and the oxygen gas selectively permeable membrane through the air inlet of the outer can, and then this oxygen is supplied throughout the oxygen gas selectively permeable membrane. After permeating, the oxygen gas reaches the air electrode via the air diffusion layer between the oxygen gas selectively permeable membrane and the air electrode. As a result, oxygen gas from the outside comes into contact with the entire surface of the air electrode uniformly and with high efficiency, making it possible to increase output and obtain an air pond that can be used for a long time and has good storage stability. .
なお本発明において、外装缶と空気電極との間に空気拡
散層を介して酸素ガス選択透過膜を設ける手段としては
、支持体を取り付けてこの支持体に酸素ガス選択透過膜
を接着剤等により固着する手段、外装缶、電池封止用バ
ッキングを加工し、酸素ガス選択透過膜を固着する手段
等適宜選択する事ができる。In the present invention, the means for providing the oxygen gas selective permeation membrane between the outer can and the air electrode via the air diffusion layer is to attach a support and attach the oxygen gas selective permeation membrane to the support using an adhesive or the like. The means for fixing, the means for processing the outer can, the backing for sealing the battery, and the means for fixing the oxygen gas selectively permeable membrane can be selected as appropriate.
なお本発明に用いる酸素ガス選択透過膜に要求される性
能は、電池に対して最も有害と考えられる水蒸気と酸素
ガスとの膜透過速度の比較に1って次のようなものが好
ましい。酸素ガス透過速度10−”/+b、cd、cs
kIt以上もしくは水蒸気透過速度1g−”d/am−
・−〜以下で6うて、かつ酸素透過速度の水蒸気透過速
度に対する比が1.5以上でめること。さらに好ましく
は、上記の比が3.0以上であること。ただし、これら
の条件は電池の構造および大きさ、空気電極の面積、電
解質の種類および量、電池の使用目的(大電流放電用、
長時間放電用、連続放電用、断続放電用など)によって
変える必要がある。The performance required of the oxygen gas selectively permeable membrane used in the present invention is preferably as follows, based on a comparison of the membrane permeation rates of water vapor and oxygen gas, which are considered to be the most harmful to the battery. Oxygen gas permeation rate 10-”/+b, cd, cs
kIt or more or water vapor transmission rate 1g-"d/am-
・--The following must be 6, and the ratio of oxygen permeation rate to water vapor permeation rate must be 1.5 or more. More preferably, the above ratio is 3.0 or more. However, these conditions depend on the structure and size of the battery, the area of the air electrode, the type and amount of electrolyte, and the intended use of the battery (for large current discharge,
It is necessary to change it depending on the type of discharge (long-term discharge, continuous discharge, intermittent discharge, etc.).
なお具体的には従来から知られたフッ素系樹脂を用いる
事もできるが、実用上、スバ、り法、蒸着法により得た
、8n02、ZnO,Allas%MgO,Cab。Specifically, conventionally known fluororesins can be used, but for practical purposes, 8n02, ZnO, Allas% MgO, Cab obtained by a sputtering method or a vapor deposition method is used.
Bad、 5rO1Tie2.5i01 等の含水性
もしくに水利性を有する金属酸化物薄膜もしくはこの薄
膜と、FBPとの複合膜等を用いる事が好ましい。It is preferable to use a metal oxide thin film having water-containing or water-utilizing properties such as Bad, 5rO1Tie2.5i01, or a composite film of this thin film and FBP.
本発明の、酸素ガス選択透過膜を固定する空気電池では
、必要量の酸素ガスがこの膜を通って空気電極まで達し
、かつ水蒸気の透過流入量を極めて低く押さえることが
できる。さらに膜の両側にガス拡散に寄与する適当な空
隙を設けることができるので、膜や空気電極表面の不均
一さや、空気流入孔からの距離的差異などに起因する空
気!極上の反応点の局所化を小さくすることができ、こ
のことによって空気電極上での酸素の反応効率を高め、
大出力放電を可能にすることができる。また、従来法と
比較すると、たとえば酸素ガス選択透過膜を空気電極と
一体化したのち電池内に組み入れる方法より作業が容易
で、電池出力が腹や空気電極表面の不均一さに影響され
ることが少くな゛る。さらに、酸素ガス選択透過膜を外
装缶の内側に直接固定する方法と比較した場合には膜上
の、酸素が透過する部分の実効面積が太きくなるため、
大電流放電が可能となる。In the air battery of the present invention in which an oxygen gas selectively permeable membrane is fixed, a necessary amount of oxygen gas can pass through the membrane and reach the air electrode, and the amount of permeation and inflow of water vapor can be kept extremely low. Furthermore, it is possible to provide appropriate voids on both sides of the membrane that contribute to gas diffusion, allowing air to be removed due to unevenness on the surface of the membrane or air electrode, or differences in distance from the air inflow hole. The localization of the ultimate reaction point can be reduced, thereby increasing the reaction efficiency of oxygen on the air electrode,
It can enable large output discharge. In addition, compared to conventional methods, the work is easier than, for example, a method in which an oxygen gas permselective membrane is integrated with an air electrode and then incorporated into the battery, and the battery output is not affected by the unevenness of the anode or the surface of the air electrode. is decreasing. Furthermore, compared to the method of directly fixing the oxygen gas selective permeation membrane to the inside of the outer can, the effective area of the part of the membrane through which oxygen permeates becomes larger.
Large current discharge becomes possible.
以下、〒発明を円筒波(LR44型)空気亜鉛電池を例
とした実施例に基づいて説明する。Hereinafter, the invention will be explained based on an example using a cylindrical wave (LR44 type) zinc-air battery as an example.
〈実施例1〜3〉
第1図の如く、空気電極゛1およびセパレータ5を設置
した≠ガスケット6.4に該空気電極およびセパレータ
を固定するための5形の溝と同心円をなす円形の溝を設
け、この部分に酸素ガス選択透過膜14t−円筒状にし
て差し込み接着する。空気電極としては、平堕孔径1o
μmの均一に分布した微細孔を有する厚さ100μmの
ポリテトラフロロエチレン(PTFB)膜からなるガス
透過性撥水膜層;白金4重量%、平均粒径100μmの
活性炭粉末80重量%、PTFE粉禾16重量%を混合
したのち、常法により圧延ロールして作成した厚さ0.
5鱈で一体化した構造の空気電極を用いた。また、電解
液としては水酸化カリヮム水溶液全用い、これに、負極
活物質として作用する亜鉛粉末をゲル化−剤と共に分散
させて負極合剤6とし、・”電池内に充填した。この合
剤中に直径21111の真鋳針からなる負極集電体7を
設置した。ガス選択透過膜をガスケットに貼付するため
の接着剤としては、ポリス、 チレン(実施例1)、常
温硬化性2液混合型エポキシ樹脂(実施例2)、ポリア
ミド(実施例3)を用いた。<Examples 1 to 3> As shown in Fig. 1, the air electrode 1 and the separator 5 were installed in the gasket 6.4, which had a circular groove concentric with the 5-shaped groove for fixing the air electrode and the separator. A cylindrical oxygen gas selectively permeable membrane 14t is inserted into this portion and bonded. As an air electrode, a flat hole diameter of 1o
Gas-permeable water-repellent membrane layer consisting of a 100 μm thick polytetrafluoroethylene (PTFB) membrane with uniformly distributed micropores; 4% by weight platinum, 80% by weight activated carbon powder with an average particle size of 100 μm, PTFE powder After mixing 16 wt.
An air electrode with an integrated structure of five cods was used. In addition, a potassium hydroxide aqueous solution was used as the electrolyte, and zinc powder, which acts as a negative electrode active material, was dispersed together with a gelling agent to form negative electrode mixture 6, which was filled into the battery. A negative electrode current collector 7 made of a brass needle with a diameter of 21,111 mm was installed inside.The adhesive for attaching the gas selectively permeable membrane to the gasket was polysilicon, tyrene (Example 1), and a two-component mixture that hardens at room temperature. Type epoxy resin (Example 2) and polyamide (Example 3) were used.
以上の構造の空気亜鉛型aを作成したのち、外装缶の上
下端をそれぞれ締め付けることKよって、ガスケットと
膜の密着性を高めた。After creating the zinc-air type a with the above structure, the upper and lower ends of the outer can were tightened to improve the adhesion between the gasket and the membrane.
〈実施例4〜6〉
第2図の如く、酸素ガス選択透過膜をガスケットと外装
缶との間に差し込み、ポリスチレン(実施例4)、常温
硬化性2液混合型エポキシ樹脂(実施例5)、まfcは
ポリアミド(実施例6)を周込て接着昧のち外装缶の、
ガスケットのふplc羨触する部分を内側へへこませて
膜と外装缶の空気流入孔を有する部分との間に隙間をあ
けた他は、実施例1〜3と同様の方法で空気亜鉛電池を
作成した。<Examples 4 to 6> As shown in Figure 2, an oxygen gas selective permeation membrane was inserted between the gasket and the outer can, and polystyrene (Example 4) and room temperature curable two-component epoxy resin (Example 5) were used. , fc is wrapped around polyamide (Example 6) and glued, and then the outer can is made of
Zinc-air batteries were manufactured in the same manner as in Examples 1 to 3, except that the part of the gasket that was in contact with the PLC was recessed inward to create a gap between the membrane and the part of the outer can that had air inflow holes. It was created.
以上の実施例の他に、酸素ガス選択透過M’fr周込な
い方法、および従来の酸素ガス選択透過膜の組み込み方
法を用いて、空気亜鉛電池゛讐′屁″、歌例として作成
した。In addition to the above-mentioned examples, a zinc-air battery was fabricated as an example using the oxygen gas selective permeation M'fr method and the conventional method of incorporating an oxygen gas selective permeation membrane.
く比較例1〉
酸素ガス選択透過膜を使用しない他は実施例i〜3と同
様の方法で空気亜鉛電池を作成した。Comparative Example 1> A zinc-air battery was produced in the same manner as in Examples i to 3 except that the oxygen gas selectively permeable membrane was not used.
〈比較例2〉
表面に撥水性膜と共に酸素ガス選択透過Mを圧着した空
気電極を用いた他は、比較例1と同様の方法で空気亜鉛
電池を作成した。<Comparative Example 2> A zinc-air battery was produced in the same manner as in Comparative Example 1, except that an air electrode having a water-repellent film and an oxygen gas selectively permeable M pressure-bonded on the surface was used.
く比較例3゛〉
外装缶の内壁に、酸素ガス選択透過膜を常温硬接
化性2g混合型エポキシ樹脂を用いて直接接着した他は
、比較例1と同様の方法で空気亜鉛電池全作成した。Comparative Example 3゛〉 A zinc-air battery was manufactured in the same manner as in Comparative Example 1, except that an oxygen gas selectively permeable membrane was directly adhered to the inner wall of the outer can using a 2g mixed epoxy resin that hardens at room temperature. did.
以上9種類の方法で作成した空気亜鉛電池各々20〜3
0本を、45℃、90%相対湿度の雰囲気中に保存し、
各構造の電池の50%が漏液するまでの時間を測定した
。連た、25℃、70%相対湿度。Zinc-air batteries made using the above nine methods each have 20 to 3
0 bottles were stored in an atmosphere of 45°C and 90% relative humidity,
The time until 50% of the battery of each structure leaked was measured. 25°C, 70% relative humidity.
中での2.50放電に2ける各電池毎の平均出力電流を
測定しfc0以上の結果t、その値から算出し比出力エ
ネルギー量と共に第1表に示す。The average output current of each battery during 2.50 discharges was measured, and the result t of fc0 or more was calculated from that value and shown in Table 1 along with the specific output energy amount.
第1表
X1徹り
〔発明の実施例〕
以下、本発明を、円筒贋(LR44型)空気亜鉛電池を
例とした実施例に基づいて説明する。Table 1 X1 (Example of the Invention) The present invention will be described below based on an example of a counterfeit cylindrical (LR44 type) zinc-air battery.
〈実施例7〜9〉
第3図の如く、窒気流人孔10′を設けた外装缶10に
、ブチルゴム製角リング型の支持体16ヲ設置し、これ
に酸素ガス選択透過膜14を接着剤を用いて貼付した。<Examples 7 to 9> As shown in FIG. 3, a square ring-shaped support 16 made of butyl rubber was installed in the outer can 10 provided with a nitrogen gas flow hole 10', and an oxygen gas selective permeation membrane 14 was bonded to this. It was attached using an adhesive.
酸素ガス選択透過膜の内側には、平均孔径10μmの均
一に分布した微細孔を有する厚さ100μmのポリテト
ラフロロエチレン(PTFE)膜からなるガス透過性撥
−水性層;白金4重童チ、平均粒径100μmの活性炭
粉末80重量%、PTFB粉末1粉末1御
により圧延ロールして作成した厚さ0. 5 rimの
多孔夜目
質触媒層;0.1mφ40メ,シ.のニッケル全科から
なる集電体層;の3層f l tOn/cdLの圧力で
一体化した構造の空気電極1を設けた。1!解液として
水酸化。Inside the oxygen gas selective permeation membrane, a gas-permeable water-repellent layer consisting of a polytetrafluoroethylene (PTFE) membrane with a thickness of 100 μm having uniformly distributed micropores with an average pore diameter of 10 μm; 80% by weight of activated carbon powder with an average particle size of 100 μm and 1 part of PTFB powder were rolled to a thickness of 0. 5 rim porous nocturnal catalyst layer; 0.1 mφ40 mm, cylindrical. An air electrode 1 was provided having a structure in which a three-layer current collector layer consisting of all nickel materials was integrated under a pressure of fl tOn/cdL. 1! Hydroxylated as a solution.
カリウム水溶液を、負極活物質として亜鉛粉末を用い、
両者は、ゲル化剤を加えた電解液中に亜鉛粉末を分散さ
せることによって負極合剤6として電池内に充填した。Using a potassium aqueous solution and zinc powder as a negative electrode active material,
Both were filled into the battery as a negative electrode mixture 6 by dispersing zinc powder in an electrolytic solution containing a gelling agent.
この合剤中に直径27′のシンチュウ針からなる負極集
電体7″f.設置した。酸素ガス選択透過膜を支持体1
3に貼付するための接着剤としては、ポリスチレン(実
施例7)、常温硬化性2液混合型エポキシ樹脂(実施例
8)、ポリアミド(実施例9)を用いた。In this mixture, a negative electrode current collector 7"f. consisting of a needle with a diameter of 27' was installed. An oxygen gas selectively permeable membrane was placed on the support 1.
Polystyrene (Example 7), room-temperature curable two-component epoxy resin (Example 8), and polyamide (Example 9) were used as adhesives for attaching to No. 3.
〈実施例10〉
第4図の如く、外装缶側面の上下端付近を帯状にプレス
し、このくほみ部分の内側を支持体として用いた他は実
施例7と同様にして空気亜鉛電池を作成した。<Example 10> As shown in Fig. 4, a zinc-air battery was produced in the same manner as in Example 7, except that the upper and lower ends of the side surface of the outer can were pressed into a band shape, and the inside of this hollow part was used as a support. Created.
〈実施例11 、 12 >
第5図の如く、外装缶側面の上下端付近を各々2本の帯
状にプレスし、2本のくほみ部分の間と、この部分に缶
の内側から挿入できる大きさの角リングとによって、酸
素ガス選択透過膜をはさみ、接着剤を用いずに(実施例
11)、またはポリスチレン接着剤を併用して(実施例
12)、該膜を固定した他は実施例7と同様にして空気
亜鉛電池を作成した。<Examples 11 and 12> As shown in Fig. 5, the upper and lower ends of the sides of the outer can are each pressed into two strips, which can be inserted between the two hollow parts and into these parts from the inside of the can. The oxygen gas selectively permeable membrane was sandwiched between square rings of the same size, and the membrane was fixed without using an adhesive (Example 11) or with a polystyrene adhesive (Example 12). A zinc-air battery was produced in the same manner as in Example 7.
〈実施例13〉
第6図の如く、ガスケツトロおよび4に円形に凸部を設
け、支持体と一体化した他は実施例7と同様にして空気
亜鉛電池を作成した。<Example 13> As shown in FIG. 6, a zinc-air battery was produced in the same manner as in Example 7, except that circular convex portions were provided on the gasket tube and 4 and integrated with the support body.
〈実施例14〉
第7図の如く、実施例13と同様の空気亜鉛電池におい
て、膜接着部分を0−リング15を用いて外側から押え
た構造の空気亜鉛電池を作成した。<Example 14> As shown in FIG. 7, a zinc-air battery similar to that of Example 13 was constructed in which the membrane adhesion portion was pressed from the outside using an O-ring 15.
〈実施例15〉
第8図の如く、空気電極の外側の上、中、下部C角リン
グ屋の支持体を設置し、その外側に酸素ガス選択透過膜
ヲ、ポリスチレンで貼付し、さらに、膜の上下端をポリ
スチレンで密封した他は、実施例7と同様にして空気亜
鉛電池を作成した。<Example 15> As shown in Fig. 8, upper, middle, and lower C-square ring supports were installed outside the air electrode, and an oxygen gas selectively permeable membrane was pasted with polystyrene on the outside. A zinc-air battery was produced in the same manner as in Example 7, except that the upper and lower ends of the battery were sealed with polystyrene.
〈実施例16.17>
第9図の如く、空気電極の外側の上、下部に角リング屋
の支持体lt2重に設置し、その間に酸素−ガス選択透
過膜を接着剤を用いずに(実施例16)、またはポリス
チレン接着剤を用いて(実施例17)、固定したほかは
実施例7と同様にして空気亜鉛電池を作成した。〈Example 16.17〉 As shown in Fig. 9, square ring-shaped supports were installed in double layers above and below the outside of the air electrode, and an oxygen-gas selective permeation membrane was placed between them without using an adhesive ( A zinc-air battery was produced in the same manner as in Example 7, except that it was fixed using Example 16) or polystyrene adhesive (Example 17).
〈実施例18〉
第′10図の如く一酸素ガス選択透過膜を、空気′It
極の外側に設けた金網状支持体に、その上下端部分で貼
付した他は、実施例7と同様にして空気亜鉛電池を作成
した。<Example 18> As shown in Figure '10, a monooxygen gas selectively permeable membrane was
A zinc-air battery was produced in the same manner as in Example 7, except that the upper and lower end portions were attached to a wire mesh support provided on the outside of the pole.
〈実施例19〉
金網状支持体をポリスチレンの稀薄トルエン溶液中に浸
漬したのち引き上げ、余分な溶液金除去したのち、酸素
ガス透過膜を重ねて接着し、これを空気電極の外側に設
置して実施例18と同様の構造とした他は、実施例7と
同様にして空気亜鉛電池を作成した。<Example 19> A wire mesh support was immersed in a dilute toluene solution of polystyrene, then pulled up, excess solution gold was removed, an oxygen gas permeable membrane was layered and adhered, and this was placed outside the air electrode. A zinc-air battery was produced in the same manner as in Example 7, except that the structure was the same as in Example 18.
以上13種類の空気亜鉛電池各々20〜30本を45℃
90%相対湿度の雰囲気中に保存し、各構造の電池の5
0%が漏液するまでの時間を測定した。20 to 30 of each of the above 13 types of zinc-air batteries were heated at 45°C.
Five cells of each structure were stored in an atmosphere of 90% relative humidity.
The time until 0% leakage was measured.
また、25℃70チ相対湿度中での2.50放電におけ
る各′1池毎の平均゛出力電流を測定した。以上のこの
表に示したように、本発明の構造を有する空気亜鉛電池
では、耐漏液性を考慮しない従来型の空気亜鉛電池と同
程度のエネルギーを取り出すことができ、しかも、耐漏
液性が大きく改善された。さらに、従来の耐漏液型壁気
亜鉛電池と同等の耐漏液性を有しながら、より大きな電
流を取り出すことができた。In addition, the average output current for each cell was measured during 2.50 discharges at 25° C. and 70° relative humidity. As shown in this table above, the zinc-air battery having the structure of the present invention can extract the same amount of energy as the conventional zinc-air battery that does not take leakage resistance into consideration, and it also has leakage resistance. Much improved. Furthermore, it was able to extract a larger current while having leakage resistance equivalent to that of conventional leakage-resistant zinc-wall batteries.
以上の結果から、本発明は工業上極めて有用であると考
えられる。From the above results, the present invention is considered to be extremely useful industrially.
なお、本実施例と原理的に同等の構造?持った角型ない
しボタン屋を気亜鉛電池においても同様の効果が認めら
れた。また壁気鉄鑞池などの、負極活物質に亜鉛以外の
金属を用いfc全気気電池おいても同様の効果を得るこ
とができた。In addition, is the structure basically equivalent to this example? A similar effect was observed when using square or button-shaped batteries with zinc-air batteries. Furthermore, similar effects could be obtained in an FC all-air battery using a metal other than zinc as the negative electrode active material, such as a FC battery made of iron ore.
第1図〜第10図は本発明に係る空気電池の断面図。
i 、、、、空気電極 2 、、、、リード3.4.
、、、ガスヶ、’) 5 、、、、セパレーター6
、、、、負極合剤 7 e+++負極集電体8 、
、、、正極端子 9 、、、、負極端子10 、、、
、外装缶 1o′:、、、突気流入口11 、12
、、、、グロノ、 ) 13 、、、、支持体14
、、、、酸素ガス選択透過膜 15 、、、、0−・
リング代理人弁理士 則近憲佑(ほか1名)
第 l゛図
第2図
47
第3図
γ4
第4図
甫5図
第6図
q 4 7
第7図
第8図
q4.1
第 9 、図
第10図1 to 10 are cross-sectional views of the air battery according to the present invention. i,,,,air electrode 2,,,,lead 3.4.
,,,gas,') 5 ,,,,separator 6
,,,, negative electrode mixture 7 e+++ negative electrode current collector 8 ,
,,,Positive terminal 9 ,,,Negative terminal 10 ,,,
, Exterior can 1o': ,,, Sudden air inlet 11 , 12
,,,,Grono,) 13,,,,Support 14
,,,,Oxygen gas selective permeation membrane 15,,,,0-・
Ring Representative Patent Attorney Kensuke Norichika (and 1 other person) Fig. 1 Fig. 2 Fig. 47 Fig. 3 γ4 Fig. 4 Fig. 5 Fig. 6 q 4 7 Fig. 7 Fig. 8 q4.1 No. 9 Figure 10
Claims (1)
スを活物質とし空気電極上で電気化学反応を起こさせる
空気電池におい1て、前記外装缶と前記空気電極との間
に空気拡散層を介して酸素ガス選択透過膜を設けたこと
を特徴とする全気電池。α) Supplied from the air inlet provided in the outer can. An air battery that uses oxygen gas as an active material and causes an electrochemical reaction on an air electrode, characterized in that: 1. An oxygen gas selective permeation membrane is provided between the outer can and the air electrode via an air diffusion layer. A full charge battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20770982A JPS5998479A (en) | 1982-11-29 | 1982-11-29 | Air cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20770982A JPS5998479A (en) | 1982-11-29 | 1982-11-29 | Air cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5998479A true JPS5998479A (en) | 1984-06-06 |
Family
ID=16544261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20770982A Pending JPS5998479A (en) | 1982-11-29 | 1982-11-29 | Air cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5998479A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001013455A2 (en) * | 1999-08-13 | 2001-02-22 | The Gillette Company | Metal-air battery |
US6479188B1 (en) | 1999-10-13 | 2002-11-12 | The Gillette Company | Cathode tube and method of making the same |
CN104094467A (en) * | 2012-01-27 | 2014-10-08 | 日产自动车株式会社 | Battery pack |
JP2022513871A (en) * | 2018-12-14 | 2022-02-09 | エナジャイザー ブランズ リミテッド ライアビリティ カンパニー | Zinc air electrochemical cell with carbon dioxide scavenger |
-
1982
- 1982-11-29 JP JP20770982A patent/JPS5998479A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001013455A2 (en) * | 1999-08-13 | 2001-02-22 | The Gillette Company | Metal-air battery |
WO2001013455A3 (en) * | 1999-08-13 | 2001-07-12 | Gillette Co | Metal-air battery |
US6479188B1 (en) | 1999-10-13 | 2002-11-12 | The Gillette Company | Cathode tube and method of making the same |
CN104094467A (en) * | 2012-01-27 | 2014-10-08 | 日产自动车株式会社 | Battery pack |
US9728827B2 (en) | 2012-01-27 | 2017-08-08 | Nissan Motor Co., Ltd. | Battery pack |
JP2022513871A (en) * | 2018-12-14 | 2022-02-09 | エナジャイザー ブランズ リミテッド ライアビリティ カンパニー | Zinc air electrochemical cell with carbon dioxide scavenger |
US12107280B2 (en) | 2018-12-14 | 2024-10-01 | Energizer Brands, Llc | Zinc-air electrochemical cells with carbon dioxide scavengers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5432022A (en) | Coated cathode for rechargeable metal battery | |
JP2005502158A (en) | Battery vent | |
US3733221A (en) | Gas diffusion electrode | |
JPS5998479A (en) | Air cell | |
JPH11339865A (en) | Air electrode and air cell | |
JPH09274936A (en) | Air cell | |
WO2000030204A1 (en) | A cylindrical metal-air cell | |
JPH0950828A (en) | Rectangular air cell | |
JPS59214171A (en) | Button-type air cell | |
JPS63138668A (en) | Thin type air cell | |
JP3232936B2 (en) | Cylindrical air battery | |
JP3888590B2 (en) | Hydride secondary battery assembled battery | |
JPH09306509A (en) | Manufacture of oxygen-reduced electrode, and battery therewith | |
JPS58161273A (en) | Button type zinc air cell | |
JPS609071A (en) | Air cell | |
JPH10302808A (en) | Oxygen reduction electrode and zinc air cell | |
JPS6261279A (en) | Button type air cell | |
JPS5999657A (en) | Cylindrical air cell | |
JPS6269472A (en) | Air battery | |
JPS58220369A (en) | Button-type air cell | |
JP4395899B2 (en) | Air battery | |
JPS63224161A (en) | Sealant for air cell | |
JPS60257069A (en) | Thin type cell | |
JPS58218774A (en) | Air cell | |
JPH1083841A (en) | Oxygen reducing electrode and its manufacture and battery using the electrode |