JPS5998447A - Electrostatic lens - Google Patents

Electrostatic lens

Info

Publication number
JPS5998447A
JPS5998447A JP20828582A JP20828582A JPS5998447A JP S5998447 A JPS5998447 A JP S5998447A JP 20828582 A JP20828582 A JP 20828582A JP 20828582 A JP20828582 A JP 20828582A JP S5998447 A JPS5998447 A JP S5998447A
Authority
JP
Japan
Prior art keywords
phase difference
lens
signal
detector
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20828582A
Other languages
Japanese (ja)
Inventor
Etsuo Ban
伴 悦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP20828582A priority Critical patent/JPS5998447A/en
Publication of JPS5998447A publication Critical patent/JPS5998447A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To enable the captioned lens to be actuated always in the state of small aberration, by modulating the electric potential of the intermediate electrode with AC signal, detecting the focus position of charged particle beam which is fluctuated by modulation, and further detecting and displaying the phase difference between the detected signal and the modulated signal. CONSTITUTION:The focal distance of a lens L is periodically changed due to repetitive application of the voltage of AC power supply 5 and fluctuation of the focus position is detected by means of a detector 6. AC signal having the frequency which corresponds to the modulation by the power supply 5 of the electrostatic lens L is sent out from the detector 6. This output is sent to a phase difference discriminator 10 through an amplifier 9, and its phase difference from that of a reference signal sent from the AC power supply 5 through a phase adjustor 11 is discriminated. The output of this phase difference detector 11 is displayed on a display device 12. Any display device will do, so long as it can display whether the phases of two signals entering the phase difference discriminator are equiphase or antiphase. Consequently, the operating point of the lens can be securely set by observating the display condition of the display device 12.

Description

【発明の詳細な説明】 本発明は荷電粒子線の集束手段として使用される静電レ
ンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrostatic lens used as a focusing means for a charged particle beam.

例えば、イオン顕微鏡やイオンマイクロアナライザ等に
おいてはイオンの集束に静電型イマージョンレンズが使
用されている。第1図は該静電型イマージョンレンズの
電極部分を示す図であり、1.2.及び3は夫々電極を
示し、1には■0の、2には■2の、3には■1の電圧
が印加されている。該電極1,2.及び3による電界に
より光軸Zに平行な荷電粒子線4は図示の如く湾曲され
、点Fに焦点を結ぶ。該焦点Fの位置(第1電極1の端
面からの距離Zo )は一般にV2/V1=Vに応じて
第2図の様に変化する。図から解るように2つの異なる
Vにおいて等しい焦点距離Zoを小する。即ち、Vl、
V2において同一の焦点距離Zo+を生じている。而し
て、焦点距離が等しいので何れを使用しても差支えない
ようであるが、前記■が大きい場合、つまり第2図でv
2の場合、vlに比し一桁以上大きな球面収差及び色収
差を生じ、小さい方のVにより所望の焦点距離を与える
ことが好ましいわけである。
For example, in ion microscopes, ion microanalyzers, and the like, electrostatic immersion lenses are used to focus ions. FIG. 1 is a diagram showing the electrode portion of the electrostatic immersion lens, and 1.2. Reference numerals 3 and 3 indicate electrodes, and voltages ①0, ②2, and ①1 are applied to 1, 2 and 3, respectively. The electrodes 1, 2. The charged particle beam 4 parallel to the optical axis Z is curved as shown in the figure by the electric field caused by the beams 3 and 3, and is focused at a point F. The position of the focal point F (distance Zo from the end surface of the first electrode 1) generally changes as shown in FIG. 2 according to V2/V1=V. As can be seen from the figure, the same focal length Zo is made smaller at two different Vs. That is, Vl,
The same focal length Zo+ is produced at V2. Since the focal lengths are the same, it seems that there is no problem in using either one, but if the above ■ is large, that is, in Fig. 2, v
In the case of 2, spherical aberration and chromatic aberration that are more than one order of magnitude larger than vl occur, and it is preferable to provide the desired focal length with the smaller V.

所が、前記Vに対する焦点距1!It Z oの曲線は
第1電極1の電位や物点の位置等により変化するため、
前記Vを特定の値に固定して使用することはできない。
However, the focal length for the above V is 1! Since the It Zo curve changes depending on the potential of the first electrode 1, the position of the object point, etc.,
The V cannot be fixed to a specific value and used.

そのため、従来の装置においては■が大きな領域でレン
ズを動作させることがしばしば生じ、分解能を低下させ
る原因にもなっている。
For this reason, in conventional devices, the lens often operates in a region where ■ is large, which also causes a reduction in resolution.

本発明は上記従来の欠点を解消し、常に小さい収差の状
態でレンズを動作できる新規な静電レンズを提供するも
のである。
The present invention eliminates the above-mentioned conventional drawbacks and provides a new electrostatic lens that can operate with small aberrations at all times.

本発明の構成は上記目的のために通常の静電型イマージ
ョンレンズにおいて、中間電極の電位を任意な交流信号
で変調する手段、該変調により変動する荷電粒子線の焦
点位置を実質的に検出する手段、該検出手段からの出力
信号と前記変調手段からの変調信号との位相差を検、出
する回路及び該位相差検出回路の出力信号を表示する手
段を備えた静電レンズに特徴を有する。
For the above purpose, the present invention provides means for modulating the potential of the intermediate electrode with an arbitrary alternating current signal in an ordinary electrostatic immersion lens, and substantially detecting the focal position of the charged particle beam that changes due to the modulation. The present invention is characterized by an electrostatic lens comprising means, a circuit for detecting and outputting a phase difference between the output signal from the detection means and the modulation signal from the modulation means, and means for displaying the output signal of the phase difference detection circuit. .

以下本発明の一実施例を添付図面に基づき詳述する。An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明の一例を示すブロック図であり、静電レ
ンズLの各電極1.2.3には夫々所定の直流電圧が印
加されており、荷電粒子線4を図の如く集束しているも
のとする。5は交流電源であり、所定周波数及び振幅の
交流電圧を前記レンズの中間電極2に与える。実際の装
置では該交流電源と直流電源とが用意され該交流電源は
必要時のみスイッチにより前記レンズに接続され、直流
電圧に重畳されるように構成される。この交流電圧の重
畳印加により、レンズLの焦点距離は周期的に変化し、
その焦点位置の変動は検出器6により検出される。該検
出器としては荷電粒子線の焦点位置の変化を検出できれ
ばどのようなものでも使用できるが、ここではファラデ
ーカップを使用した場合を説明する。第4図がその例を
示すもので、(a >図は荷電粒子線4が丁度ファラデ
ーカップ7のスリット8上に焦点を結んでいる場合(正
焦点)、(b)図は該荷電粒子線が該スリット8より前
方に焦点を結んでいる場合(過焦点)である。
FIG. 1 is a block diagram showing an example of the present invention, in which a predetermined DC voltage is applied to each electrode 1, 2, 3 of the electrostatic lens L, and the charged particle beam 4 is focused as shown in the figure. It is assumed that Reference numeral 5 denotes an AC power supply, which applies an AC voltage of a predetermined frequency and amplitude to the intermediate electrode 2 of the lens. In an actual device, an AC power source and a DC power source are prepared, and the AC power source is connected to the lens by a switch only when necessary, and is configured to be superimposed on the DC voltage. Due to the superimposed application of this AC voltage, the focal length of the lens L changes periodically,
The fluctuation of the focal position is detected by the detector 6. Although any detector can be used as long as it can detect changes in the focal position of the charged particle beam, a Faraday cup will be described here. Fig. 4 shows an example of this. is focused ahead of the slit 8 (hyperfocal).

図から解るように(a)図の場合には荷電粒子線が殆ん
どスリット8に遮断されないので、ファラデ−カップ7
の出力は最大であり、(b)図ではスリット8に荷電粒
子線が一部カットされるためファラデーカップ7の出力
は(a )図の場合より小さくなる。従って、検出器6
からは前記静電レンズLの電源5による変調に対応した
周期をもつンズLの電源5による変調に対応した周期を
もつ交流信号が出力されることになる。該出力は増幅器
9を介して位相差弁別器10に送られ、前記交流電源5
からの位相調整器11を通して送られる参照信号との位
相差が弁別される。該位相差検出器の出力は表示装置1
2に表示される。この表示装置としては前記位相差検出
器に入る2つの信号の位相が同位相であるか逆位相であ
るかを表示できれば良く、従って簡単な+、−を表示す
るメータや異なった2色を表示するランプ等で充分であ
る。
As can be seen from the figure, in the case of (a), almost no charged particle beam is blocked by the slit 8, so the Faraday cup 7
The output of the Faraday cup 7 is the maximum, and since a portion of the charged particle beam is cut by the slit 8 in the figure (b), the output of the Faraday cup 7 is smaller than that of the figure (a). Therefore, detector 6
An alternating current signal having a period corresponding to the modulation of the electrostatic lens L by the power source 5 and a period corresponding to the modulation of the lens L by the power source 5 is outputted from. The output is sent to a phase difference discriminator 10 via an amplifier 9, and the AC power source 5
The phase difference between the reference signal and the reference signal sent through the phase adjuster 11 is discriminated. The output of the phase difference detector is displayed on the display device 1.
2. This display device only needs to be able to display whether the phases of the two signals entering the phase difference detector are in the same phase or in opposite phases, and therefore can display a simple meter that displays + and - or two different colors. A lamp etc. that can be used is sufficient.

以下第3図の装置の動作を第5図を参照しながら説明す
る。
The operation of the apparatus shown in FIG. 3 will be explained below with reference to FIG.

第5図はレンズ強度、つまり焦点距離の変調の状況を示
すもので、横軸は前記第2.第3電極の電圧比Vを、又
縦軸は検出器6からの出力信号Sを示しである。図中、
曲線Aは第2図の曲線に相当し、交流信号S+++はレ
ンズLの変調電圧である。
FIG. 5 shows the state of modulation of lens strength, that is, focal length, and the horizontal axis is the second. The voltage ratio V of the third electrode is shown, and the vertical axis shows the output signal S from the detector 6. In the figure,
Curve A corresponds to the curve in FIG. 2, and AC signal S+++ is the modulation voltage of lens L.

該変調により検出器6からはSl又はS2の信号が得ら
れ、位相差弁別器10に送られることになが小さいとき
(■1)と大きいとき(v2)とでは検出器6の出力信
号の位相が逆になるため、弁別器10からはslのとき
正の出力が得られるとすればS2のときは負の出力が得
られることになる。従って、表示装置12の表示状態を
観察しておけば、■が小さいときのレンズ動作点を確実
に設定することができる。
Due to this modulation, the signal Sl or S2 is obtained from the detector 6, and is sent to the phase difference discriminator 10. Since the phases are reversed, if a positive output is obtained from the discriminator 10 during sl, a negative output is obtained during S2. Therefore, by observing the display state of the display device 12, it is possible to reliably set the lens operating point when ■ is small.

尚、上記は本発明の一実施例であり、実際には種々の変
更が可能である。例えば、上記は荷電粒子線の発射され
た後の集束に使用した場合であるが、電界放出型電子銃
や電界放射型イオン源に適用し、第1電極1を電子又は
イオンの引き出し電極として使用するようになしても良
い。又、第4図のファラデーカップによる焦点位置の検
出に際し、焦点状態が正焦点と過焦点((b)図)のみ
でなく、不足焦点も存在する場合には検出信号の周波数
が変調周波数の2倍になるので、前記位相調整回路11
の中に周波数逓倍器を備えると良い。
Incidentally, the above is one embodiment of the present invention, and various modifications are possible in reality. For example, the above is a case where the charged particle beam is used for focusing after being emitted, but it can also be applied to a field emission type electron gun or a field emission type ion source, and the first electrode 1 is used as an electron or ion extraction electrode. You may do as you like. In addition, when detecting the focal position using the Faraday cup in Fig. 4, if the focal state is not only positive focus and hyperfocal state (Fig. 4(b)) but also insufficient focus, the frequency of the detection signal will be twice the modulation frequency. Therefore, the phase adjustment circuit 11
It is good to have a frequency multiplier inside.

以上説明したような構成となせば、中間電極電位による
焦点位置の変化のスロープの極性を判別することができ
るので、常に球面収差や色収差の少ない領域でレンズの
焦点合せが可能となり、分解能の低下を防ぐことができ
る。
With the configuration described above, it is possible to determine the polarity of the slope of the change in focus position due to the intermediate electrode potential, so the lens can always be focused in an area with little spherical aberration and chromatic aberration, which reduces the reduction in resolution. can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は静電イマージョンレンズの電極部の栴成を示す
図、第2図は該レンズにおける焦点特性を示す図、第3
図は本発明の一実施例を示すブロック図、M4図は第3
図の実施例で使用される焦点位置検出器の一例を示す図
、第5図は第3図の実施例の動作を説明するための図で
ある。 1:第1電極 2:第2電極 3:第3電極 5:交流電源 6:焦点位置検出器 7:ファラデーカップ 8ニスリツト 10:位相差弁別器 12:表示装置 特許出願人 日本電子株式会社 代表者 伊藤 −夫
Fig. 1 is a diagram showing the formation of the electrode part of an electrostatic immersion lens, Fig. 2 is a diagram showing the focal characteristics of the lens, and Fig. 3 is a diagram showing the formation of the electrode part of the electrostatic immersion lens.
The figure is a block diagram showing one embodiment of the present invention, and the M4 figure is the third block diagram.
FIG. 5 is a diagram showing an example of the focal position detector used in the embodiment shown in the figure, and is a diagram for explaining the operation of the embodiment shown in FIG. 3. 1: First electrode 2: Second electrode 3: Third electrode 5: AC power supply 6: Focus position detector 7: Faraday cup 8 Nislit 10: Phase difference discriminator 12: Display device Patent applicant Representative of JEOL Ltd. Ito - Husband

Claims (1)

【特許請求の範囲】[Claims] 少くとも3個の電極を有し、該電極の中間電極への印加
電圧を可変して焦点距離を可変するレンズにおいて、前
記中間電極の電位を任意な交流信号で変調する手段、該
変調により変動する荷電粒子線の焦点位置を実質的に検
出する手段、該検出手段からの出力信号と前記変調手段
からの変調信号との位相差を検出する回路及び該位相差
検出回路の出力信号を表示する手段を備えていることを
特徴とする静電レンズ。
In a lens having at least three electrodes and whose focal length is varied by varying the voltage applied to the intermediate electrode, means for modulating the potential of the intermediate electrode with an arbitrary alternating current signal; a circuit for detecting a phase difference between an output signal from the detection means and a modulation signal from the modulation means, and an output signal of the phase difference detection circuit; An electrostatic lens characterized by comprising means.
JP20828582A 1982-11-27 1982-11-27 Electrostatic lens Pending JPS5998447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20828582A JPS5998447A (en) 1982-11-27 1982-11-27 Electrostatic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20828582A JPS5998447A (en) 1982-11-27 1982-11-27 Electrostatic lens

Publications (1)

Publication Number Publication Date
JPS5998447A true JPS5998447A (en) 1984-06-06

Family

ID=16553710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20828582A Pending JPS5998447A (en) 1982-11-27 1982-11-27 Electrostatic lens

Country Status (1)

Country Link
JP (1) JPS5998447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186938A1 (en) * 2018-03-29 2019-10-03 株式会社日立ハイテクノロジーズ Charged-particle beam device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186938A1 (en) * 2018-03-29 2019-10-03 株式会社日立ハイテクノロジーズ Charged-particle beam device
JPWO2019186938A1 (en) * 2018-03-29 2021-02-25 株式会社日立ハイテク Charged particle beam device
US11183359B2 (en) 2018-03-29 2021-11-23 Hitachi High-Tech Corporation Charged particle beam apparatus

Similar Documents

Publication Publication Date Title
KR950019807A (en) Scanning electron microscope
JPH1196957A (en) Particle beam device
JPS5851710B2 (en) television receiver
US5773822A (en) Ion detector and high-voltage power supply
KR100383528B1 (en) Vertical Dynamic Focus Generation Circuit
JPS60243960A (en) Ion microbeam device
GB1567021A (en) Scanning transmission microscopes
JPS5998447A (en) Electrostatic lens
JPH0845452A (en) Ion balance measuring device and measuring method for the balance
JPH08195181A (en) Scanning electron microscope
EP0480796A1 (en) Device for obtaining and changeover switching of high voltages on x-ray tube electrodes
EP1442471B1 (en) System and method for fast focal length alterations
JP3097218B2 (en) Quadrupole mass spectrometer
JP2000173519A (en) Electron beam device
JPH0255899B2 (en)
RU2010388C1 (en) Modulator of intensity of electron beam
JPS63198246A (en) Electron beam focusing device
SU1004773A1 (en) Device for measuring optical radiation angular fluctuations
JPS6245286A (en) Image pickup tube device and its driving method
SU1073899A1 (en) Device for dynamic focusing of crt
JPH0228601Y2 (en)
JPS5941271B2 (en) mass spectrometer
KR830002441B1 (en) Automatic Shaft Alignment of Electron Beam Device
JPH03129656A (en) Secondary ion mass spectrometer
SU646468A1 (en) Device for stabilization of image vertical dimension