JPS5998371A - Resonance type coil driving circuit - Google Patents

Resonance type coil driving circuit

Info

Publication number
JPS5998371A
JPS5998371A JP57206185A JP20618582A JPS5998371A JP S5998371 A JPS5998371 A JP S5998371A JP 57206185 A JP57206185 A JP 57206185A JP 20618582 A JP20618582 A JP 20618582A JP S5998371 A JPS5998371 A JP S5998371A
Authority
JP
Japan
Prior art keywords
coil
voltage
current
capacitor
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57206185A
Other languages
Japanese (ja)
Inventor
Koji Takahashi
孝次 高橋
Tadashi Yamada
正 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57206185A priority Critical patent/JPS5998371A/en
Publication of JPS5998371A publication Critical patent/JPS5998371A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To supply a sinusoidal current having a prescribed amplitude to a resonance coil at all times with simple constitution by controlling the Q of the resonance circuit via a control transistor (TR) in response to a current flowing to the resonance coil. CONSTITUTION:A series resonance circuit formed by a capacitor 2 and a coil 1 of a resonance type coil driving circuit for rotating magnetic field generation of a magnetic bubble memory element is driven by a DC power supply 5, and P and N type switching TRs 3, 4. The current flowing to the coil 1 is smoothed by a diode 6 and a capacitor 7, a voltage corresponding to the current flowing to the coil 1 via voltage dividing resistors 8, 9 is generated and impressed to a gate of the control TR11. Then, if the coil current is decreased because of voltage fluctuation of the power supply 5 and variation in the characteristics of the TRs 3, 4, a gate-source voltage of the TR11 is reduced and the drain current is decreased, the Q of the resonance circuit is large, and then the coil current is corrected into a prescribed value. This is the same as the case with the increased coil current, the sinusoidal current having a prescribed amplitude is applied always to the resonance coil with simple constitution.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は磁気バブルメモリ装置の回転磁界発生用コイル
の駆動回路に係わシ、特に高安定性督励に好適ガ共振型
コイル駆動回路に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a drive circuit for a rotating magnetic field generating coil of a magnetic bubble memory device, and particularly relates to a resonant coil drive circuit suitable for high stability excitation. be.

〔従来技術〕[Prior art]

従来よシ磁気バブルメモリ素子の回転磁界発生に用いら
れる共振型コイル駆動回路、特に直列共振型駆動回路に
おいて、回転磁界発生用コイルの発熱によるコイル抵抗
の変化、スイッチング素子の発熱によるON抵抗の変化
および電源電圧の変動等は、直接的にコイル電流の変動
をもたらし、安定な回転磁界を磁気バブルメモリ素子に
供給することは困難であった。また、コイル抵抗やスイ
ッチング素子のON抵抗には部品相互間の偏差(バラツ
キ)があるため、コイル電流値を所定の規定値に設定す
る調整作業を必要となるなどの欠点てなされたものであ
夛、その目的とするところは、回転磁界発生コイルやス
イッチング素子の発熱によシ、コイル抵抗やスイッチン
グ素子のON抵抗が変化したシ、電源電圧が変動しても
、常に一定振幅の正弦波電流をコイルに供給することを
可能にした回転磁界発生用共振型コイル駆動回路を提供
することにある。
Conventionally, in resonant coil drive circuits, particularly series resonant drive circuits, used to generate rotating magnetic fields in magnetic bubble memory devices, changes in coil resistance due to heat generation in the rotating magnetic field generation coils and changes in ON resistance due to heat generation in switching elements have been observed. Also, fluctuations in the power supply voltage directly cause fluctuations in the coil current, making it difficult to supply a stable rotating magnetic field to the magnetic bubble memory element. In addition, since there are deviations (variations) between components in the coil resistance and ON resistance of switching elements, this method was developed to address the drawbacks such as the need for adjustment work to set the coil current value to a predetermined specified value. The purpose of this is to generate a sine wave current with a constant amplitude even if the rotating magnetic field generating coil or switching element generates heat, the coil resistance or ON resistance of the switching element changes, or the power supply voltage fluctuates. It is an object of the present invention to provide a resonant coil drive circuit for generating a rotating magnetic field, which makes it possible to supply a coil with a rotating magnetic field.

転磁外発生コイルと並列に、共振回路のQを制御する共
振電圧制御回路を設けたものである。
A resonant voltage control circuit for controlling the Q of the resonant circuit is provided in parallel with the magnetized external generation coil.

すなわち、本発明は、共振型コイル駆動回路において、
コイル電流の振幅はコイルと接続される回路の抵抗を含
めた共振回路のQによって決まシ、このQを制御するこ
とによシ、コイル電流を一定に保持し得ることおよびQ
は1サイクル間に保存されるエネルギーと消費されるエ
ネルギーの比であり、共振回路からエネルギーを引き出
すことによってQを制御し得ることを着目して簡単なエ
ネルギー引き出し手段としての共振電圧制御回路をする
That is, the present invention provides a resonant coil drive circuit that includes:
The amplitude of the coil current is determined by the Q of the resonant circuit including the resistance of the circuit connected to the coil, and by controlling this Q, the coil current can be held constant and the Q
is the ratio of energy stored to energy consumed during one cycle, and focusing on the fact that Q can be controlled by extracting energy from the resonant circuit, we designed a resonant voltage control circuit as a simple means of extracting energy. .

図は本発明による回転磁界発生用共振型コイルの駆動回
路の一例を示す図である。同図において、1は磁気バブ
ルメモリ素子に巻設されて回転磁界を発生させるコイル
、2はこのコイル1に直列接続されたコンデンサであシ
、このコイル1とコンデンサ2とで直列共振回路を構成
している。そして、コンデンサ2の他端側は駆動回路側
に接続され、コイル1の他端側は接地されている。この
場合、コイル1とコンデンサ2の共振周波数は磁気バブ
ルを駆動する回転磁界の周波数と等しくなるように設定
されている。3および4はコイル1とコンデンサ2から
直列共振回路を駆動する駆動回路を構成するPチャンネ
ルMO8)ランジスタおよびNチャンネルMO8)ラン
ジスタでアシ、このトランジスタ3,4は前記回転磁界
の1/2の周期でオン・オフするように構成されている
。すなわち、トランジスタ3がオンとなったとき、正方
向(実線で示す矢印方向)の正弦波電流が流れ、−万ト
ランジスタ4がオンとなったときには負方向(破線で示
す矢印方向)の正弦波電流が流れるように構成されてい
る。このように駆動用トランジスタ3.4を交互にオン
してゆくことによシ正弦波電流を流すことができる。こ
こで回転磁界は磁気バブルを使用しないときは停止して
おシ、回転磁界は停止管動作を繰シ返している。したが
つて正弦波電流も動作・停止している。5はトランジス
タ3p4tW−動するためすなわち正弦波電流k ji
uすための直流電源、6はコイル1に並列接続されてコ
イル1の両端に生じる共振電圧km流するダイオード1
.7は整流電圧を平常化させる平滑コンデンサでアシ、
このダイオード6と平滑コンデンサとで整流回路を構成
している。8および9は整流電圧を検出し予め設定した
基準電圧と比較する分圧用抵抗でアシ、この抵抗8と9
は整流電圧の分圧回路を構成している。1oは負荷抵抗
、  ・11は分圧電圧値に対応して整流電圧全制御す
るNチャンネルMO8)ランジスタであplこのトラン
ジスタ11はゲート1ソース間電圧VSCがスレシュホ
ールド電圧VTHよシも大きくなると、ドレイン電流が
流れ出すエンハンスメント形が用いられている。
The figure shows an example of a drive circuit for a resonant coil for generating a rotating magnetic field according to the present invention. In the figure, 1 is a coil wound around a magnetic bubble memory element to generate a rotating magnetic field, and 2 is a capacitor connected in series to this coil 1. Coil 1 and capacitor 2 form a series resonant circuit. are doing. The other end of the capacitor 2 is connected to the drive circuit, and the other end of the coil 1 is grounded. In this case, the resonance frequency of the coil 1 and the capacitor 2 is set to be equal to the frequency of the rotating magnetic field that drives the magnetic bubble. 3 and 4 are a P-channel MO8) transistor and an N-channel MO8) transistor that constitute a drive circuit that drives a series resonant circuit from the coil 1 and capacitor 2, and these transistors 3 and 4 have a period of 1/2 of the rotating magnetic field. It is configured to turn on and off. That is, when transistor 3 is turned on, a sinusoidal current flows in the positive direction (in the direction of the arrow shown by the solid line), and when transistor 4 is turned on, a sinusoidal current flows in the negative direction (in the direction of the arrow shown by the broken line). It is structured so that it flows. By alternately turning on the driving transistors 3.4 in this manner, a sinusoidal current can be caused to flow. Here, the rotating magnetic field stops when the magnetic bubble is not used, and the rotating magnetic field repeats the stop pipe operation. Therefore, the sine wave current also operates and stops. 5 is a transistor 3p4tW-to operate, that is, a sinusoidal current k ji
6 is a diode 1 which is connected in parallel to the coil 1 and causes a resonant voltage km generated across the coil 1 to flow.
.. 7 is a smoothing capacitor that normalizes the rectified voltage.
This diode 6 and the smoothing capacitor constitute a rectifier circuit. 8 and 9 are voltage dividing resistors that detect the rectified voltage and compare it with a preset reference voltage.
constitutes a voltage divider circuit for rectified voltage. 1o is a load resistance, and 11 is an N-channel MO8) transistor that fully controls the rectified voltage in accordance with the divided voltage value. An enhancement type is used in which drain current flows.

このように楢成さnた直列共振型j駆動回路に3いて、
コイル1に流れる電流に比例するコイル両端間の共振電
圧がダイオード6で整流され、分圧抵抗8,9で分圧さ
れて制御トランジスタ11のゲートに加えられている。
In the series resonant drive circuit constructed in this way,
A resonant voltage across the coil that is proportional to the current flowing through the coil 1 is rectified by a diode 6, divided by voltage dividing resistors 8 and 9, and applied to the gate of a control transistor 11.

したがって、コイル゛電流がコイル1やスイッチングト
ランジスタ3,40発熱および直流電源5の電源電圧の
減少によって減少した場合には制御トランジスタ11の
ゲート・ソース間電圧VCSが低下し、該トランジスタ
11のドレイン電流が減少する。この場合、ドレイン電
流の減少は共振回路のQを大きくするため、コイル電流
は増加し、発熱によるコイル抵抗およびスイッチングト
ランジスタ3,4のON抵抗の増加によるコイル電流の
涯少全補正する。また、直流電源5の電圧が増加し、コ
イル電流が増加した場合には制御トランジスタ11のゲ
ート電圧が増加してドレイン電流が増加するため、共振
回路のQが低下する。したがって、Qの減少はコイル1
の電流を減少させるため、電源5の電圧の増加によるコ
イル1に流れる電流の増加分を補正する。
Therefore, when the coil current decreases due to heat generation in the coil 1 and switching transistors 3 and 4 and a decrease in the power supply voltage of the DC power supply 5, the gate-source voltage VCS of the control transistor 11 decreases, and the drain current of the transistor 11 decreases. decreases. In this case, since the decrease in drain current increases the Q of the resonant circuit, the coil current increases, and the decrease in coil current due to the increase in coil resistance due to heat generation and the ON resistance of switching transistors 3 and 4 is completely compensated for. Further, when the voltage of the DC power supply 5 increases and the coil current increases, the gate voltage of the control transistor 11 increases and the drain current increases, so that the Q of the resonant circuit decreases. Therefore, the decrease in Q is due to coil 1
In order to reduce the current, the increase in the current flowing through the coil 1 due to the increase in the voltage of the power supply 5 is corrected.

この場合、制御トランジスタ11にコンダクタンスgm
の大きなものを用いれば、該トランジスタ11のケート
拳ソース間電圧VGSがスレシュボールド電圧VTRよ
シも大きくなったと3に大きなドレイン電流が流れ、共
振回路のQを下げ、コイル1の電流全減少させる。この
結果、該トランジスタ11のゲート・ソース間電圧VC
Sは下がシ、常にドレイン電流はゲート串ンース間電圧
VCSがスレシュホールド定圧VTRに近づく様に制御
される。
In this case, the control transistor 11 has a conductance gm
If a large one is used, when the gate-source voltage VGS of the transistor 11 becomes larger than the threshold voltage VTR, a large drain current flows through the transistor 3, lowering the Q of the resonant circuit and reducing the total current of the coil 1. . As a result, the gate-source voltage VC of the transistor 11
S is lowered, and the drain current is always controlled so that the gate-to-earth voltage VCS approaches the threshold constant voltage VTR.

また、ゲート・ソース間電圧VGSがスレシュホールド
電圧VTRよりも小さくなった場合には、ドレイン電流
が流れなくなるため、コイル1に流れる電流が増加して
ゲートψソース間電圧VCSが大きくなシ、はぼスレシ
ュホールド電圧vTHと等しくなるようにドレイン電流
が流れる。したがって、コイル10両端間の共振電圧は
常にスレシュホールド電圧VTRに分圧抵抗8,9の分
圧比の逆数を乗じた値に保持されるため、−コイル1に
流れる電流の振幅も電源5の電圧が変動したシ、コイル
1の抵抗やスイッチングトランジスタ3,4のON抵抗
が変化しても常に一定に保持することができる。なお、
制御トランジスタ11の負荷抵抗10は該トランジスタ
11の損失を軽減するために用いたものであり、原理的
には省略しても良い。
Furthermore, when the gate-source voltage VGS becomes smaller than the threshold voltage VTR, the drain current stops flowing, so the current flowing through the coil 1 increases and the gate-source voltage VCS increases. The drain current flows so as to be equal to the threshold voltage vTH. Therefore, the resonant voltage across the coil 10 is always maintained at a value obtained by multiplying the threshold voltage VTR by the reciprocal of the voltage division ratio of the voltage dividing resistors 8 and 9. Even if the resistance of the coil 1 or the ON resistance of the switching transistors 3 and 4 changes, it can always be kept constant. In addition,
The load resistor 10 of the control transistor 11 is used to reduce the loss of the transistor 11, and may be omitted in principle.

このような構成によれば、電源5の電圧変動。According to such a configuration, the voltage fluctuation of the power supply 5.

コイル1の抵抗およびスイッチング用トランジスタ3,
4のON抵抗の発熱による変動が生じた場合にも常に一
定振幅の正弦波電流をコイル1に流すことができるので
、常に安定した回転磁界を磁気バブルメモリ素子に供給
することができる。
Resistance of coil 1 and switching transistor 3,
Even when fluctuations occur due to heat generation in the ON resistance 4, a sine wave current of constant amplitude can always be passed through the coil 1, so a stable rotating magnetic field can always be supplied to the magnetic bubble memory element.

なお、前記実施例において、スイッチングトランジスタ
3,4にはMOS  )ランジスタを用いたが、バイポ
ーラトランジスタを用いた場合においても同様の効果が
得られることは明らかである。
In the above embodiment, MOS transistors were used as the switching transistors 3 and 4, but it is clear that similar effects can be obtained even when bipolar transistors are used.

また、制御トランジスタ11にもバイポーラトランジス
タとツェナーダイオードを組合せたものを用いても同様
の効果が得られることも勿論である。
It goes without saying that similar effects can also be obtained by using a combination of a bipolar transistor and a Zener diode for the control transistor 11.

さらには増幅器を用いて分圧抵抗8,9の分圧電圧を増
幅して制御トランジスタ11に入力した場合にはコンダ
クタンスの低いMOS  )ランジスタを制御トランジ
スタとして用いても同様の効果が用直列共振型駆動回路
によれば、電源電圧の変動。
Furthermore, if the divided voltage of the voltage dividing resistors 8 and 9 is amplified using an amplifier and inputted to the control transistor 11, the same effect can be obtained even if a low conductance MOS transistor is used as the control transistor. According to the drive circuit, fluctuations in the power supply voltage.

回転磁界発生用コイルの発熱による抵抗変化およびスイ
ッチング素子のON抵抗の変化によるコイル電流の変動
をなくすことができるので、コイル電流値の設定調整作
業が不要となシ、生産性を向上させることができるとと
もに、信頼性の高い磁気バブルメモリ装置が得られると
いう極めて優れた効果を有する。
It is possible to eliminate fluctuations in the coil current due to changes in resistance due to heat generation in the rotating magnetic field generating coil and changes in ON resistance of the switching element, eliminating the need for setting and adjusting the coil current value and improving productivity. This has an extremely excellent effect in that a highly reliable magnetic bubble memory device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による回転磁界発生用コイルの駆動回路の一
例を示す図である。 1・@拳・回転磁界発生用コイル、2勢・・・コンデン
サ、30@・・PチャンネルMO8)ランジスタ、4・
・・・NチャンネルMO8)ランジスタ、6・・Φ・ダ
イオード、7・拳−・平滑コンデンサ、8,9−・・・
分圧抵抗、10・・・・負荷抵抗、11@・・・Nチャ
ンネルMOSトランジスタ。 T>−T) 蛸
The figure is a diagram showing an example of a drive circuit for a rotating magnetic field generating coil according to the present invention. 1.@Fist/Rotating magnetic field generation coil, 2...Capacitor, 30@...P channel MO8) transistor, 4.
...N-channel MO8) transistor, 6...Φ diode, 7 fist- smoothing capacitor, 8,9-...
Voltage dividing resistor, 10...Load resistance, 11@...N-channel MOS transistor. T>-T) Octopus

Claims (1)

【特許請求の範囲】[Claims] コイルとコンデンサとからなる直列共振回路の前記コン
デンサの一端を駆動電源に接続し、前記コイルの一端を
接地して前記コイルと前記コンデンサとの直列共振によ
シ正弦波電流を発生させて磁気バブルを転送させる回転
磁界発生用共振型コイル駆動回路において、前記共振回
路の前記コンデンサと前記コイルとの接続点に、前記共
振電圧を整流する整流回路と、前記整流電圧を検出して
予め設定した基準電圧と比較する分圧回路と、前記分圧
差電圧に対応して前記整流電圧を制御、するトランジス
タとを設けたことを特徴とする共振型−コイル駆動回路
One end of the capacitor of a series resonant circuit consisting of a coil and a capacitor is connected to a driving power source, one end of the coil is grounded, and a sinusoidal current is generated by series resonance between the coil and the capacitor, thereby creating a magnetic bubble. In a resonant coil drive circuit for generating a rotating magnetic field that transfers a voltage, a rectifier circuit that rectifies the resonant voltage is provided at a connection point between the capacitor and the coil of the resonant circuit, and a standard that is set in advance by detecting the rectified voltage. 1. A resonant coil drive circuit comprising: a voltage dividing circuit for comparing a voltage; and a transistor for controlling the rectified voltage in accordance with the divided voltage difference.
JP57206185A 1982-11-26 1982-11-26 Resonance type coil driving circuit Pending JPS5998371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57206185A JPS5998371A (en) 1982-11-26 1982-11-26 Resonance type coil driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57206185A JPS5998371A (en) 1982-11-26 1982-11-26 Resonance type coil driving circuit

Publications (1)

Publication Number Publication Date
JPS5998371A true JPS5998371A (en) 1984-06-06

Family

ID=16519216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57206185A Pending JPS5998371A (en) 1982-11-26 1982-11-26 Resonance type coil driving circuit

Country Status (1)

Country Link
JP (1) JPS5998371A (en)

Similar Documents

Publication Publication Date Title
US6125046A (en) Switching power supply having a high efficiency starting circuit
US4878147A (en) Electromagnetic coil drive device
US20020005712A1 (en) Drive signal supply circuit
JPS5998371A (en) Resonance type coil driving circuit
JPH02220Y2 (en)
JPH0974671A (en) Power source circuit
JP3253412B2 (en) Stepping motor drive circuit
JPH0750874Y2 (en) Switching power supply
KR970002433Y1 (en) Analyzing out circuit of output voltage level for inverter device
KR0135705B1 (en) Ozone generator
JPH087637B2 (en) Electronic equipment power supply
JP2838819B2 (en) DC power supply with multiple switching power supplies connected in parallel
JP3323712B2 (en) Power supply
KR920007135Y1 (en) Voltage regulator
JP2550810Y2 (en) Integrated circuit
JP2685873B2 (en) Electromagnet coil drive
JP2685874B2 (en) Electromagnet coil drive
JPS62178171A (en) High-voltage power unit
JP3365251B2 (en) Coil drive
JP3103348B2 (en) Rectifier and power supply
CN116338509A (en) Test method and test circuit for rapidly-changing power supply signal
JP2591464Y2 (en) Constant amplitude control circuit for electromagnetic vibration equipment
JPH0121700B2 (en)
JPS5884321A (en) Power supply circuit for both positive and negative uses
JP2001300419A (en) Ultrasonic oscillation circuit