JPS5997485A - Controller for exhaust of building with dust generating source - Google Patents

Controller for exhaust of building with dust generating source

Info

Publication number
JPS5997485A
JPS5997485A JP20907682A JP20907682A JPS5997485A JP S5997485 A JPS5997485 A JP S5997485A JP 20907682 A JP20907682 A JP 20907682A JP 20907682 A JP20907682 A JP 20907682A JP S5997485 A JPS5997485 A JP S5997485A
Authority
JP
Japan
Prior art keywords
exhaust
dust
air volume
exhaust fan
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20907682A
Other languages
Japanese (ja)
Inventor
惇 高橋
清二 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP20907682A priority Critical patent/JPS5997485A/en
Publication of JPS5997485A publication Critical patent/JPS5997485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prevention Of Fouling (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明に、粉塵発生源?tつ建物、例えば金属製錬炉や
溶解炉、鋳造設備など?有する工場建屋等、の作業環境
を省動力的に良好に維持できるようにした排気制御装置
に関する。
[Detailed Description of the Invention] Does the present invention include dust sources? Buildings such as metal smelting furnaces, melting furnaces, foundry facilities, etc.? The present invention relates to an exhaust gas control device that can maintain a good working environment in a factory building, etc., while saving power.

多量のヒユームやダスト等の粉塵を発生する設備?有す
る工場では作業員の健康管理並びに製品管理の面から除
塵のための大型の蝉ト気(換気)設備金儲える必要があ
る。従来、この↓うな工場排気設置側ハ、粉塵発生源く
とにフードを取付け、各フードから取入れられる含塵空
気金排気集合ダクトを経て集塵装置に送り込むようにし
ているのが通常であり、この場合、排風機は各フードで
必要とする風量1に満たすことができる容量のものが設
置されている。つまり、いくつかの粉塵発生装置が稼動
中であっても必要な排気がアきるように、各フードの総
和風量である最大の風量に合わせて排風機の容量が設計
されている。しかし、粉塵の発生する装置に常時稼動さ
れているとげ限らないので、この最大風量にあわせて設
計された排風機を常時稼動している場合には、たとえ、
各フードへの吸引排気の量を個別に調整する処決が採ら
れていたとしても、排風機属動に要する動力に極めて甚
大なものとなる。
Equipment that generates large amounts of fume, dust, etc.? Factories that own large-sized cicada air (ventilation) equipment for dust removal are necessary for the health management of workers and product management. Conventionally, on the factory exhaust installation side, a hood was attached to the dust source, and the dust-containing air taken in from each hood was sent to the dust collector through the exhaust collection duct. In this case, the exhaust fan is installed with a capacity that can satisfy the air volume 1 required by each hood. In other words, the capacity of the exhaust fan is designed to match the maximum air volume, which is the total air volume of each hood, so that the necessary exhaust air can be generated even when several dust generating devices are in operation. However, since there are not always thorns in equipment that generate dust, if a blower designed for this maximum air volume is in constant operation,
Even if a measure was taken to individually adjust the amount of suction and exhaust to each hood, the power required to operate the exhaust fan would be extremely large.

本発明の目的はこのような粉塵発生工場の排風機動力を
低減すること、しかも、これ?既存設備を大きく改変す
ることなく所望の作業環境を維持達成すること、にある
。この目的において本発明は、集塵装置に通ずる排気集
合ダクトと、この排気集合ダクトに接続された複数個の
排気フードと、各排気フードに吸込む排気風量を粉塵発
生状況に応じて調整する手段と、排気集合ダクト内に負
圧を形成せしめるための排風機と、この排風機の排風能
力制御装置と、粉塵発生状況並びに集塵装置の圧損を監
視し7これに基づき所要風量を演算するマイクロコンピ
ュータ装置と、からlす、該コノピユータでの演算結果
ケミ流値に変換して前記排風能力制御装置を自動制御す
るようにした粉塵発生源′にもつ建物の排気制御装置を
42供するものである。
The purpose of the present invention is to reduce the power of the exhaust fan in such a dust-generating factory. The objective is to maintain and achieve the desired working environment without making major changes to existing equipment. For this purpose, the present invention includes an exhaust collection duct leading to a dust collector, a plurality of exhaust hoods connected to the exhaust collection duct, and means for adjusting the amount of exhaust air sucked into each exhaust hood according to the dust generation situation. , an exhaust fan for creating negative pressure in the exhaust collection duct, an exhaust capacity control device for this exhaust fan, and a microcontroller that monitors the dust generation status and the pressure drop of the dust collector and calculates the required air volume based on this. A computer device and an exhaust control device for a building having a dust generation source, which converts the calculation results of the computer into a chemical flow value and automatically controls the ventilation capacity control device. be.

以下に本発明の詳細ケ、金属溶解用の電気炉4基と鋳型
注入用保温炉4基?もつ鋳物工場の実施例について、従
来方式と対比して具1本的に説明する。
The details of the present invention are as follows: 4 electric furnaces for metal melting and 4 heat retention furnaces for mold injection. An embodiment of a foundry will be explained one by one in comparison with a conventional method.

第1図に従来方式の系統図であり、1は排気フード金示
しており、これらは、電気炉EF1〜KF4、保温炉H
Fi〜HF4のそれぞれの発生粉塵全個別に吸引できる
ように局所的に設置されている。各排気フード1げそれ
ぞれに電動ダンパ2を介して排気集合ダクト3に接続さ
れ、この排気集合ダクト3に集票装置4に通じており、
系統全体の排気げ大型の排風機5によって収出をれ、サ
イランサー6ケ経て系外に排出される。この排艇機5に
、先にも述べたように、各電気炉や保温炉が同時運転て
れる場合においても所要の排気風量が満たせるような容
量をもつものである。この鋳物工場における従来の排気
運転態様の1例ケ述べると次の如くであった。
Fig. 1 is a system diagram of the conventional method, and 1 indicates the exhaust hood metal, and these are the electric furnaces EF1 to KF4 and the heat retention furnace H.
They are installed locally so that all of the generated dust from Fi to HF4 can be individually sucked. Each exhaust hood 1 is connected to an exhaust collection duct 3 via an electric damper 2, and this exhaust collection duct 3 is connected to a ticket collection device 4.
The air is exhausted from the entire system by a large exhaust fan 5, and is discharged outside the system through six silancers. As mentioned above, this boat ejection machine 5 has a capacity that can satisfy the required exhaust air volume even when the electric furnaces and heat-retaining furnaces are operated simultaneously. An example of the conventional exhaust operation mode in this foundry is as follows.

まず4基の電気炉の操業は、それぞれ原材料投入工程、
溶解工程および停止工程の6エ程に分割される(ただし
、七の内の1基に予備炉であるので通常は操業を停止し
ている)。そして各電気炉の谷排気フード1から排出す
る風量に、原材料投入工程= 9000MM 、溶解工
程=ろ[JOCMM、停止工程−400MMFリークケ
考慮)と定められ、これに見合うように各工程ごとに電
動ダン/ゝ2ケ中央制御盤で集中監理するか手元盤で制
御する。実−電気炉の操業は原材料投入工程に2基同時
に行なわれ、溶解下8は1基づつ時間ヲ繰す延べして同
時稼動にならないように運転スケジュールが組1れる。
First, the operation of the four electric furnaces involves the raw material input process,
It is divided into six stages: a melting process and a stopping process (however, one of the seven is a preliminary furnace, so the operation is normally stopped). Then, the air volume to be discharged from the valley exhaust hood 1 of each electric furnace is determined as raw material input process = 9000MM, melting process = RO [JOCMM, stop process - 400MMF leakage consideration), and electric dampers are installed in each process to match this. /ゝ2 Centralized control is performed using a central control panel, or control is performed using a local control panel. Two actual electric furnaces are operated at the same time during the raw material input process, and an operation schedule is set so that the time for each melting furnace 8 is postponed so that they do not operate at the same time.

同様[4基の保婦炉のそれぞれの操業に、受湯工程、出
湯工程および停止工程に分割され、それぞれの排気フー
ド1から排出する風量に各工程ごとに10000MM、
500 CMMお裏ひ40 CMMと定められ、この風
量側#け中央制御盤または手元盤で各電動ダンパ2の開
度を調節することによって行なわれる。
Similarly [the operation of each of the four Hofu furnaces is divided into a receiving process, a tapping process, and a stopping process, and the air volume discharged from each exhaust hood 1 is 10,000 MM for each process.
500 CMM and 40 CMM, and the opening degree of each electric damper 2 is adjusted using the central control panel or hand panel on the air volume side.

この設計風量を総括して表示すると第1表のクロぐであ
る(丸で囲んだ部分が稼動甲ケ示す)第 1 表 (単
位CMM ) すなわち、この鋳物工場でに、既述の如く操業サイクル
と操業条件を採用すること全前提にして、υ1.風機5
の設計風量に514.00MMであるところから、これ
を満たす例えば52000へIMの容量のものが設置さ
れる。
This design air volume can be summarized as shown in Table 1 (the circled area indicates the operating volume). Assuming that the following operating conditions are adopted, υ1. wind machine 5
The design air volume is 514.00 MM, and an IM capacity of, for example, 52,000 MM is installed to meet this requirement.

しかし、この従来設備によると、第1表で丸で囲んだよ
うな設計風量51400MM ’5必要とする工うな状
況が常に出現しているとげ限らないにもがかわらず、5
1400MMの一定風量運転が続行されているから、凍
た集塵装置4での目詰りによる圧損の経時変化に考慮さ
れないで定風量運転が続行これるから、排風機5の運転
動力の大半に無駄に消費されているのが実状であっ1ζ
。第2図咀前記鋳物工劣、における操業時間中の実所要
風量の時間変化ケ調べたものであるが、排風機は520
00MMの運転を継続シ1.ている反面、実際の時間平
均所要風量に20000MM程度であり、いかに実所要
風量と設置排風機の能力との間には大きな差が存在して
いるかがわかる。しかし、従来の設備でニ@2図に見ら
れるようにこの最大設計風量近くの風量全必要とする時
間帯(20分、90分、165分などのところ)もわず
かに出現するから、この52000MMの要求金満たす
容量の排風機の設置がどうしても必要であった、 第3図は、前述の鋳造工場に本発明を適用した場合の系
統図である。驚くべきことに不発明によると、第1図の
従来設備に比べ、後に詳しくその算出結果を述べるが、
76.9 %もの動力費が節減され、従来設備の駆動に
要した動力の10〜30%の動力だけで同様の粉塵除去
ができ、極めて大きな省エネルギー効果が達成される。
However, according to this conventional equipment, there are always situations that require a design air volume of 51,400 MM '5 as circled in Table 1.
Since the constant air flow operation of 1400 MM continues, the constant air flow operation continues without taking into account the change in pressure loss due to clogging in the frozen dust collector 4, so most of the operating power of the exhaust fan 5 is wasted. The reality is that 1ζ
. Figure 2 shows the change in the actual required air volume over time during the operation time in the above-mentioned foundry process.
Continue operating at 00MM.1. On the other hand, the actual hourly average required air volume is about 20,000 MM, which shows how large a difference exists between the actual required air volume and the capacity of the installed exhaust fan. However, with conventional equipment, as shown in Figure 2, there are times when the entire air volume near the maximum design air volume is required (at 20 minutes, 90 minutes, 165 minutes, etc.), so this 52,000 MM Fig. 3 is a system diagram when the present invention is applied to the above-mentioned foundry. Surprisingly, according to the invention, compared to the conventional equipment shown in Figure 1, the calculation results will be described in detail later,
Power costs are reduced by 76.9%, and similar dust removal can be achieved with only 10 to 30% of the power required to drive conventional equipment, achieving an extremely large energy-saving effect.

俳6図において、第1図と同じ引用数字および記号は第
1図と同じものであり、7は風速検出器、8は集塵装置
の差圧検出器、9に粉塵濃度検出器、10H制N用マイ
クロコンピユータ、11i11fflJlz −盤、1
2は排風機の排風能力制御盤(本実施例でにサイリスタ
インバータ盤)、13け排風機の電動モータを表わして
いる、最も簡便にa、電動モータ16の回転数制御とし
て電流型サイリスタインバータ盤12による周波数制御
方式ケ採用し、これによって既存の排風機全風量可変フ
ァンに改造するのが実際的である。電動ダンパ2に既に
設置きれている場合ににそれ全その1筐利用することが
でき、またその工場内の操業が中央制御室で情報管理さ
れるシスアムが既に設置されている場合はこれを有効に
利用して本発明の制御システムの情@源に取入れること
ができる。
In Figure 6, the same reference numbers and symbols as in Figure 1 are the same as in Figure 1, 7 is the wind speed detector, 8 is the differential pressure detector of the dust collector, 9 is the dust concentration detector, and 10H control. Microcomputer for N, 11i11fflJlz - board, 1
2 represents the exhaust capacity control panel (thyristor inverter panel in this embodiment) of the exhaust fan, and the 13 electric motors of the exhaust fan; most simply, a, the current type thyristor inverter for controlling the rotation speed of the electric motor 16; It is practical to adopt a frequency control method using the panel 12 and thereby modify the existing exhaust fan to a variable air volume fan. If the electric damper 2 has already been installed, it can be used in its entirety, and if a system has already been installed in which information is managed in the central control room for operations within the factory, this can be used. It can be used to incorporate into the source of the control system of the present invention.

例えば、本祷物工場での各局所排気フード1にそれぞれ
取付けられた風量調節用の電動ダンパ2が、電気炉系統
並びに保温炉系統において、次の第2表に示すような工
程に合わせて作動されているものとすると、両系統の各
工程ケ識別することに、各機器の作動スイッチのON 
= OFFFF状態量検出合計すればよく、各排気フー
ド1に必要とする排気I!を量の識別に容易に行ない得
る。
For example, electric dampers 2 for adjusting the air volume installed in each local exhaust hood 1 at this prayer factory operate in accordance with the processes shown in Table 2 below in the electric furnace system and the heat retention furnace system. Assuming that each process in both systems is identified, the operation switch of each device must be turned on.
= OFFFF state quantity detection can be summed up, and the exhaust I required for each exhaust hood 1! can be easily identified.

各々の検出蛸果はリレー盤11に送られ、無電圧接点信
号14に直され、制御用マイクロコンピュータ10にか
いて検出ON−〇FF社合計し識別する。同時に、リレ
ー盤11から各々の風量調節用電動ダンパ2の開度を決
定する。
Each detected octopus is sent to a relay board 11, converted into a non-voltage contact signal 14, and then written to a control microcomputer 10 to sum up the detected ON-FF signals and identify them. At the same time, the opening degree of each electric damper 2 for adjusting air volume is determined from the relay board 11.

本発明で使用する制御用マイクロコンピュータには次に
述べるような機能をもつものである。
The control microcomputer used in the present invention has the following functions.

(11各系統の各々の工程を無電圧接点信号人力14で
常時監視し識別する(スキャンニング機能)。
(11) Each process of each system is constantly monitored and identified using a non-voltage contact signal 14 (scanning function).

電気炉系統 原材料投入工程 Σ(a+ + a2+a3 ]、=3
’  q =9000MM溶解工程   Σ(a+ +
 a2+as )、=1  q=3000MM  。
Electric furnace system raw material input process Σ(a+ + a2+a3 ], =3
' q =9000MM melting process Σ(a+ +
a2+as), =1 q=3000MM.

停止工程   Σ(al+a2+a3)i=o  q”
 400MM保温炉系統 受湯工程   Σ(b、−)−b21.=2  r=1
0000MM出湯工程   Σ(bl+b2)1=1 
 r= soo 0MM停止工程   Σ(b、+b2
)、 =Or=  400MMここで、iに炉の番号ケ
示し、炉の番号別に所要風量に予め制御用マイクロコン
ピュータに記憶させておく。
Stop process Σ(al+a2+a3)i=o q”
400MM heating furnace system receiving process Σ(b,-)-b21. =2 r=1
0000MM tapping process Σ(bl+b2)1=1
r= soo 0MM stop process Σ(b, +b2
), =Or=400MMHere, i indicates the furnace number, and the required air volume is stored in advance in the control microcomputer for each furnace number.

(2)排風機の所要排風量を演算する。(2) Calculate the required exhaust air volume of the exhaust fan.

排風機の所要排風iQ=Σ(q+r・)1    1 (3)排風機の定風量時の静圧。Required air exhaust from the exhaust fan iQ=Σ(q+r・)1 1 (3) Static pressure when the exhaust fan has a constant air volume.

第3図に示すように、集塵機4の上流側でかつ最終フー
ドの下流側での排気集合ダクト乙のA点全定圧点として
排気フード1人口からこのA点1での静圧金△P1とす
る。
As shown in Figure 3, from the exhaust hood 1 population to the static pressure △P1 at point A 1 of the exhaust collection duct B on the upstream side of the dust collector 4 and on the downstream side of the final hood. do.

1だ、集塵装置t4の前後の圧力損失ケ△P2とする。1, the pressure loss before and after the dust collector t4 is assumed to be ΔP2.

また、残りの静圧勿へP3とする。In addition, the remaining static pressure is set to P3.

この△P、、△P2、△P3ホ、定風量Q。で運転した
ときの所要圧損を示すから、これらケ合計すると排風機
の静圧になる。
This △P, △P2, △P3 E, constant air volume Q. Since this shows the required pressure loss when operating at

排風機5の定風量時靜圧△Po−△P1+△P2+△P
3(4)所要排に量Qのときの風路系の所要静圧(△P
)全次式によって演算する。
Quiet pressure △Po−△P1+△P2+△P at constant air volume of exhaust fan 5
3 (4) Required static pressure in the air passage system when the required amount of exhaust is Q (△P
) is calculated using the total order equation.

ΔP−ΔP、+△”2 ’(Q/Q、 )+△P3(Q
/Qo)2(5)排風機用の電動モーター3の所要回転
数Nを演算する。このNに、一定風量運転の回転drN
ΔP - ΔP, + △"2 '(Q/Q, ) + △P3(Q
/Qo)2(5) Calculate the required rotation speed N of the electric motor 3 for the exhaust fan. In addition to this N, the rotation drN of constant air volume operation is
.

とすると次式で演算する。Then, it is calculated using the following formula.

N=kXNo X(△P/〈ン\p、)2この演算結果
ケ、制御用マイクロッ/ピユータ10に4〜20 mA
の′電流イ直として出力し、この出力信号15?サイリ
スタインバータ盤12に送信する。
N=kXNo
This output signal is 15? It is transmitted to the thyristor inverter board 12.

(6)−万、排気集合ダクト3のB点に設置した風速検
出器7の信号?、コントロール時間中、10回サンプリ
ングし、このうちから最高値と最低1直ケ除去した残り
8回のデータから平均風速?検出し、これにダクト6の
流体力学的相当径(DJ ’に掛けて風量に換算する。
(6) - 10,000, the signal from the wind speed detector 7 installed at point B of the exhaust collection duct 3? , During the control period, we sampled 10 times, removed the highest value and the lowest value, and calculated the average wind speed from the remaining 8 data. This is detected and multiplied by the hydrodynamic equivalent diameter (DJ') of the duct 6 to convert it into an air volume.

コントロール時間中に測定された風ffi CLM“ 
 2〜 =−xpxv (7)この測定された風量QMと所要風量Qとの偏差を
演算する。
Wind ffi CLM” measured during control time
2~=-xpxv (7) Calculate the deviation between the measured air volume QM and the required air volume Q.

偏差e=Q−Q′′ (8)所要風量Qのまわりに不感帯?設定する。Deviation e=Q-Q'' (8) Is there a dead zone around the required air volume Q? Set.

上限帯kLH,下限帯?LLとして、測定した。Mが鴨
とLLとの間に入ったときけ、Q=QMJ見なす。
Upper limit band kLH, lower limit band? Measured as LL. When M gets between the duck and LL, consider Q=QMJ.

蝿<Q(LH<e)のとき、積分、比例制1卸で修正を
加える。比例定数k K+ 、積分定?:y、wK2、
収束計算回数ケnとして、 N    : N  −K、 e、 −K2Σetn魁
= l Q −Q l/10 QL>Q(Lt<e)のとき、噴分、比例制御で修正ケ
加える。
When Flies < Q (LH < e), make corrections using integral and proportional system 1 wholesale. Constant of proportionality k K+, integral constant? :y, wK2,
As the number of convergence calculations n, N: N -K, e, -K2Σetn=l Q -Q l/10 When QL>Q (Lt<e), correction is added by injection and proportional control.

N    =N  −に、et+に2Σet、。N=N-, et+2Σet,.

et= l Q  Q l/10 この修正演算の結果ケ、側副用マイクロコンピュータ1
01″t4〜20 mAの電流値として出力し、この出
力信号紮すイリスタイノバータ盤12に送信し、電動モ
ータ16の回転−数ケ制御する。
et= l Q Q l/10 As a result of this correction operation, the secondary microcomputer 1
The output signal is outputted as a current value of 01''t4 to 20 mA, and this output signal is sent to the iris inverter board 12 to control the number of rotations of the electric motor 16.

(9)矢に、風量、検出器7のアナログデータ?入力し
、前述の(6)にもどり、測定きt″した風Fff Q
が所定風敏Q壕わりの不感帯にお烙する1でくりかえす
(9) Arrow, air volume, analog data of detector 7? Enter, return to (6) above, and measure the wind Fff Q
is repeated at 1, which hits the dead zone around the predetermined wind sensitivity Q trench.

以上の機能?制御用マイクロコンピュータ10が果たす
ことにより、電気炉系統と保温炉系統での稼動状態に応
じて必要とする所要風量を集塵装置の目詰りによる風量
低下を加味しながら、排風機5の可変速運転により自動
的に確保され、必要以上の風量ケ流すような排風機の駆
動が効果的に回避される。
More functions? The control microcomputer 10 controls the variable speed of the exhaust fan 5 to adjust the required air volume according to the operating conditions of the electric furnace system and the heat retention furnace system, taking into account the reduction in air volume due to clogging of the dust collector. This is automatically ensured by operation, and it is effectively avoided that the exhaust fan is driven to flow more air than necessary.

そして、この制御を環境保全上において一層有効ならし
めるために、粉塵濃度検出器9(これげ、例えば、投光
器と受光器とからなる180°後方散乱計を使用するこ
とができる)ケ作業場内に設置し、操業パターンとは無
関係に排風機50回転数を急増加させる制御全付加する
こともできる。すなわち、 00)前述の例えば(8)の修正演算の途中で、粉塵濃
度検出器9から送られる空気中の粉塵濃度検出器号から
、濁度C8を、 で演算しく工に光学的濁度フ、許容値タリえばC6−u
、i y超えたときに、排風機5の全能力(設計風量)
または設定風量で運転させるようにカスケード制御を行
なう。
In order to make this control even more effective in terms of environmental protection, a dust concentration detector 9 (for example, a 180° backscatterometer consisting of a light emitter and a light receiver can be used) is installed in the workplace. It is also possible to install a full control system that suddenly increases the number of rotations of the exhaust fan by 50 degrees regardless of the operating pattern. That is, 00) For example, during the correction calculation in (8) above, the turbidity C8 is calculated from the air dust concentration detector number sent from the dust concentration detector 9 using the optical turbidity filter. , if the allowable value is C6-u
, i y exceeds the full capacity of the exhaust fan 5 (design air volume)
Or perform cascade control to operate at the set air volume.

また、集塵装置4の目詰りが危険域に達した場合に、前
述の差圧検出器8からの測定値全利用して警報奮発する
ようにすることもできる。これは、制御用マイクロコン
ピュータ10内に警報レベルケ設定しておき、差圧検出
器8からの測定値と比較して警報を出すようにすればよ
い。差圧検出器8に警報レベルヶ直接設定すると可変風
量制御でげ定値レベルが無効果となるので、これに避け
ねばならない。
Furthermore, when the clogging of the dust collector 4 reaches a dangerous level, it is also possible to issue an alarm using all the measured values from the differential pressure detector 8 mentioned above. This can be done by setting an alarm level in the control microcomputer 10, comparing it with the measured value from the differential pressure detector 8, and issuing an alarm. If the alarm level is directly set on the differential pressure detector 8, the fixed value level will be ineffective during variable air flow control, so this must be avoided.

以上の構成による本発明の粉塵発生源?もつ建物の排気
制御装置によると既述の目的が効果的に達成されると共
に、例えば前記実施例工場の場合ケ例にとると、その省
動力率に76.9%にも達する。以下にその算定基準を
述べると、 排風機5の容量 5140 CMM X 500朋Aq
 X 400 KW2台並列並列 設置機4の最大圧力損失 150m1! Aq at 
20000MM定圧点(A)静圧    200 +g
x Aq at 4000 CMM−である場合に、 従来の定風量運転(第1図の設備)でに、5140 X
 500 6120 X O,65X O,9 ただし、モータ効率=0.9 の軸動力を必要としたのであるが、 本発明設備による可変風量運(第3図)でに、△Po=
△P1+△P2+ΔP3=200+150+150=5
00mmAq △P=△P、十△P2(Q/QO)+△Ps (Q/Q
、o)2−= 200 + 1 so (200015
140) −4−1so (2000/514o)2=
 281.1 mm Aq ただし、同時使用率から時間平均風量=20000MM
インバータ効率= 0.95 モータ効率  =0.9 と′fxる。つまり、軸動力1d 717.8 KWか
ら165.8 KWに低減する。これを電気料=20¥
/KWHで1年に4000時間の操業を行なったとする
と、従来設備 20 ’V/KWHX 717.8KW
 X 4000 Hr/If:= 57,424.00
0¥/年 本発明設備 20 ¥/KWHX 165.8.KW 
X 4000 Hr/年= 13,264,000¥/
年 となり、省動力費用に年間44,160,000¥/年
となり、省動力率に76.9チとなり、極めて多大の省
費用省1ネルギーが達成埒れることがわかる。
The dust generation source of the present invention with the above configuration? According to the exhaust gas control system for a building, the above-mentioned objectives are effectively achieved, and, for example, in the case of the factory of the above embodiment, the power saving rate reaches 76.9%. The calculation criteria is described below: Capacity of exhaust fan 5: 5140 CMM x 500 Aq
Maximum pressure loss of 2 x 400 KW machines installed in parallel 4: 150m1! Aq at
20000MM constant pressure point (A) static pressure 200 +g
x Aq at 4000 CMM-, in conventional constant air flow operation (equipment shown in Figure 1), 5140
500 6120
△P1+△P2+ΔP3=200+150+150=5
00mmAq △P=△P, 10△P2 (Q/QO) + △Ps (Q/Q
, o) 2-= 200 + 1 so (200015
140) -4-1so (2000/514o)2=
281.1 mm Aq However, based on the simultaneous usage rate, hourly average air volume = 20000 MM
Inverter efficiency = 0.95 Motor efficiency = 0.9'fx. In other words, the shaft power 1d is reduced from 717.8 KW to 165.8 KW. Electricity fee = 20 yen
/KWH is operated for 4000 hours a year, conventional equipment 20'V/KWHX 717.8KW
X 4000 Hr/If:= 57,424.00
0 yen/year Equipment of the present invention 20 yen/KWHX 165.8. K.W.
X 4000 Hr/year = 13,264,000 yen/
In 2015, the power saving cost was 44,160,000 yen/year, and the power saving rate was 76.9 cm, which shows that an extremely large amount of cost and energy savings can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の鋳物工場での排気設備の例を示す機器配
置系統図、@2図に第1図の設備における所要風格の経
時変化図、第3図に本発明の設備′?f:@1図の鋳物
工場に適用した場合の例勿示す・:・戊器配直系統図で
ある。 1・・・排気フード、2・・・電動グアバ、6・・・排
気集合夕゛クト、4・・・集塵装置、5・・・排風機、
6・・・ザイレンサー、7・・・風量検出器、8・・・
集塵装置の差圧検出器、9・・・粉塵濃度検出器、10
・・・制@1用マイクロコンピュータ、11・・・リレ
ー盤、12・・・排風能力制御装置(サイリスクインバ
ータ盤)、16・・・電動モータ 手続補正書(自発) 昭和58年5月 4日 特許庁長官 若杉和夫 殿 1、事件の表示 昭和57年特許 願第209076 号2、発明の名称
 粉塵発生源をもつ建物の排気飼御装置3、 補正をす
る者 事件との関係  特許出願人 氏名(名称)   高砂熱学工業株式会社代表者 臼 
景 −部 4、 代  理  人   〒162 (2)明細書の図面の簡単な説明の欄 (3)図面 6、補正の内容 (1)  発明の詳細な説明を下記のとおり補正する。 記 (イ)明細書第15頁4行の式 %式% 「e=1Q−Q1/Qo、jに補正する。 ←ン 明細J門13頁7行の式 %式%() (ハ)明細書第15頁8行の式 [et=IQ−Q 1/10Jを F et= IQ  Q  1/QoJlに補正する。 (ロ)明細書第15頁8行と9行の行間に次の語句を挿
入する。 「マイクロコンピュータ−で行う演算例の70−f:第
4〜6図に示した。」 (2)図面の簡単な説明を次のとおり補正する。 (イ)明細書第17頁11行の「系統図である。」を「
系統図、第4〜6図は本発明設備の制御を行ウ場合のマ
イクロコンピュータ−での演算例を示す一連のフローチ
ャートである。」 (3)図面第6図を削除し、添付の第6〜6図を補充す
る。
Figure 1 is an equipment layout system diagram showing an example of exhaust equipment in a conventional foundry, Figure 2 is a diagram of the required air quality over time for the equipment in Figure 1, and Figure 3 is the equipment of the present invention. f: An example of the case where it is applied to the foundry shown in Figure 1 is of course shown. 1... Exhaust hood, 2... Electric guava, 6... Exhaust collection device, 4... Dust collector, 5... Exhaust fan,
6... Xilencer, 7... Air volume detector, 8...
Differential pressure detector of dust collector, 9... Dust concentration detector, 10
... Microcomputer for control@1, 11... Relay board, 12... Exhaust capacity control device (Sirisk inverter board), 16... Electric motor procedure amendment (voluntary) May 1981 4th Patent Office Commissioner Kazuo Wakasugi 1. Indication of the case 1989 Patent Application No. 209076 2. Title of the invention Exhaust control device for a building with a dust generation source 3. Relationship with the amended person's case Patent applicant Name: Representative of Takasago Thermal Engineering Co., Ltd.
Landscape Section 4, Agent 〒162 (2) Column for brief explanation of drawings in the specification (3) Drawing 6, contents of amendment (1) The detailed description of the invention is amended as follows. (A) Formula % Formula % on page 15, line 4 of the specification "Correct to e=1Q-Q1/Qo, j. ← N Formula % Formula % () on page 13, line 7 of the specification Correct the formula [et=IQ-Q 1/10J to F et=IQ Q 1/QoJl on page 15, line 8 of the specification. (b) Insert the following phrase between lines 8 and 9 on page 15 of the specification. Insert: "Example of calculation performed by microcomputer 70-f: Shown in Figures 4 to 6." (2) The brief description of the drawing is corrected as follows. (b) On page 17, line 11 of the specification, replace “This is a system diagram.” with “
The system diagram and FIGS. 4 to 6 are a series of flowcharts showing examples of operations performed by a microcomputer when controlling the equipment of the present invention. (3) Figure 6 of the drawing is deleted and attached Figures 6-6 are added.

Claims (1)

【特許請求の範囲】[Claims] 集塵装置に通ずる排気集合ダクトと、この排気集合ダク
トに接続場れた複数個の排気フードと、各排気フードに
吸込む排気風量ケ粉塵発生状況に応じて調整する手段と
、排気集合ダクト内に負圧を形成せしめるための排風機
と、この排風機の排風能力制御装置と、粉塵発生工場並
ひに集塵装置の圧損全監視しこれに基づき所要風量を演
算するマイクロコンピュータ装置と、からなり、該コン
ピュータでの演算結果を電流値に変換して前記排風能力
制御装置を自動制御するようにした粉塵発生源に%つ建
物の排気制御装置。
An exhaust collection duct leading to the dust collector, a plurality of exhaust hoods connected to this exhaust collection duct, a means for adjusting the amount of exhaust air sucked into each exhaust hood according to the dust generation situation, and An exhaust fan for creating negative pressure, an air exhaust capacity control device for the exhaust fan, and a microcomputer device that monitors all pressure losses in dust generating factories and dust collectors and calculates the required air volume based on this. An exhaust gas control device for a building that is connected to a dust generation source, wherein the calculation result of the computer is converted into a current value to automatically control the ventilation capacity control device.
JP20907682A 1982-11-29 1982-11-29 Controller for exhaust of building with dust generating source Pending JPS5997485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20907682A JPS5997485A (en) 1982-11-29 1982-11-29 Controller for exhaust of building with dust generating source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20907682A JPS5997485A (en) 1982-11-29 1982-11-29 Controller for exhaust of building with dust generating source

Publications (1)

Publication Number Publication Date
JPS5997485A true JPS5997485A (en) 1984-06-05

Family

ID=16566854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20907682A Pending JPS5997485A (en) 1982-11-29 1982-11-29 Controller for exhaust of building with dust generating source

Country Status (1)

Country Link
JP (1) JPS5997485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031218A (en) * 2014-07-30 2016-03-07 株式会社流機エンジニアリング Building dust collection and ventilation facility and building dust collection and ventilation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103305A (en) * 1976-02-27 1977-08-30 Kawasaki Steel Co Central controlling system for dust collectors of construction having plurality of dusttcontaining gas flow sources such as electric furnace
JPS55132678A (en) * 1979-04-02 1980-10-15 Kawasaki Steel Co Method of concentrating and collecting dust in exhaust gas containing dust generated at plural position
JPS56117091A (en) * 1980-02-18 1981-09-14 Takigawa Kogyo Kk Method of adjusting pressure of melting furnace system
JPS5720195A (en) * 1980-07-08 1982-02-02 Shinko Electric Co Ltd Operating method of exhauster for collecting dust

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103305A (en) * 1976-02-27 1977-08-30 Kawasaki Steel Co Central controlling system for dust collectors of construction having plurality of dusttcontaining gas flow sources such as electric furnace
JPS55132678A (en) * 1979-04-02 1980-10-15 Kawasaki Steel Co Method of concentrating and collecting dust in exhaust gas containing dust generated at plural position
JPS56117091A (en) * 1980-02-18 1981-09-14 Takigawa Kogyo Kk Method of adjusting pressure of melting furnace system
JPS5720195A (en) * 1980-07-08 1982-02-02 Shinko Electric Co Ltd Operating method of exhauster for collecting dust

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031218A (en) * 2014-07-30 2016-03-07 株式会社流機エンジニアリング Building dust collection and ventilation facility and building dust collection and ventilation method

Similar Documents

Publication Publication Date Title
CA2712478C (en) Control system for exhaust gas fan system
JP2003065577A (en) Control system for fan-filter unit and clean room provided with the system
US7001263B2 (en) Air flow monitoring and control system with reduced false alarms
CN212619103U (en) Smoke exhaust prevention device for fire engineering
JP2007263548A (en) Ventilation system
JPS5997485A (en) Controller for exhaust of building with dust generating source
CN212132753U (en) Fresh air conditioning system for battery workshop
JP2012137316A (en) Ventilation air-conditioning facility of nuclear power plant, and conditioning air amount control method of the same
CN109702160B (en) Cutting smoke exhaust system of side suction type continuous casting machine and control method thereof
JP2005207674A (en) Ventilation air conditioning equipment of building
CN112066505B (en) Constant flow control method
JP2010121893A (en) Device and method of automatically controlling boiler and boiler system
CN210801515U (en) Variable air volume air treatment system for laboratory
RU2116328C1 (en) Method of low-temperature carbonization-burning and plant for low-temperature carbonization-burning
JP4003637B2 (en) Supply and exhaust equipment for turbine building of nuclear power plant
JPH0755311A (en) Air volume control method of work cooling device
CN205606793U (en) Energy -conserving air purifier
CN218296235U (en) Pipeline type air heating device
JP2006317236A (en) Ventilation air-conditioning facility for nuclear power station, and air-conditioning airflow control method therefor
CN218011763U (en) Filter element type air supply device
CN211792677U (en) Cooling system of big data cluster server rack
CN214742271U (en) Environment-friendly exhaust apparatus for building
CN212899040U (en) Special deodorization frequency conversion fan with anti-static effect
JPS62294797A (en) Air quantity control method for air blowing/exhausting equipment
CN215832153U (en) Dust blocking device for preventing dust from entering air conditioner air port