JPS5997455A - Heat exchanger for water heater - Google Patents

Heat exchanger for water heater

Info

Publication number
JPS5997455A
JPS5997455A JP57207111A JP20711182A JPS5997455A JP S5997455 A JPS5997455 A JP S5997455A JP 57207111 A JP57207111 A JP 57207111A JP 20711182 A JP20711182 A JP 20711182A JP S5997455 A JPS5997455 A JP S5997455A
Authority
JP
Japan
Prior art keywords
combustion gas
heat
water
heat exchanger
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57207111A
Other languages
Japanese (ja)
Inventor
Masahiro Indo
引頭 正博
Yukiro Komai
古米 幸郎
Eiichi Tanaka
栄一 田中
Fumitaka Kikutani
文孝 菊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57207111A priority Critical patent/JPS5997455A/en
Publication of JPS5997455A publication Critical patent/JPS5997455A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Details Of Fluid Heaters (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PURPOSE:To accelerate dewing and enhance efficiency in recovering latent heat, by a construction wherein the ratio of a heat-transmitting area on a combustion gas side and that on the circulating water side is gradually reduced from the upstream side to the downstream side of a combustion gas, and a passing area of the combustion gas is also gradually reduced. CONSTITUTION:The combustion gas is sequentially passed through a heat exchanger as indicated by arrows, while circulating water flows sequentially in the order of heat exchangers 12C, 12B and 12A. In the heat exchanger 12A comprising water-passing pipes 15 fitted with fins 14, the heat-transmitting area on the gas side is set to be about 10 times of that on the circulating water side, and the heat exchanger 12B is provided with annular finned water-passing pipes 16 having a gas-side heat-transmitting area of smaller than that of the fins 14, and the height and the pitch span of the fins are set to be so large that drops do not fill up the spaces between the fins. The heat exchanger 13C constituted of a bare pipes 17 has a reduced pitch and a restricted gas passage so that the area for contact of the gas becomes large and dewing occurs easily. Dewing is accelerated by removing sensitive heat of the combustion gas on the upstream side and removing latent heat of the gas on the downstream side.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、瞬間湯沸器で燃焼ガスの熱を利用し水をお湯
にする熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat exchanger that heats water using the heat of combustion gas in an instantaneous water heater.

従来例の構成とその問題点 従来この種の高効率熱交換器で燃焼ガス中のH2O潜熱
を回収する熱交換器は第1図に示すように、燃焼ガス側
はフィン1付のノくイブ2で構成され、通水側はパイプ
2の内表面が伝熱面積となっており、バーナー3によシ
燃焼した燃焼ガスは、燃焼ガス通路の上流側に当る燃焼
室4から熱交換器のフィン1およびパイプ2る通過し、
燃焼ガス通路の下流側に当る排気ボックス6に至り、通
水パイプ2内の水が燃焼ガスからフィン1.ノくイブ2
に熱を与えパイプ2の内表面から熱を受けお湯になる構
成である。この場合燃焼ガス中のH20潜熱をフィン1
およびパイプ2で熱回収し、H2Q蒸気が凝縮しドレン
水となって下方に滴下する。
Conventional structure and its problems Conventionally, this type of high-efficiency heat exchanger for recovering H2O latent heat in combustion gas has a knob with one fin on the combustion gas side, as shown in Figure 1. 2, the inner surface of the pipe 2 is the heat transfer area on the water flow side, and the combustion gas combusted by the burner 3 is transferred from the combustion chamber 4 on the upstream side of the combustion gas passage to the heat exchanger. Pass through fin 1 and pipe 2,
The water in the water pipe 2 reaches the exhaust box 6 on the downstream side of the combustion gas passage, and the water in the water pipe 2 flows from the combustion gas to the fin 1. Noku Eve 2
The structure is such that the pipe 2 receives heat from the inner surface of the pipe 2 and becomes hot water. In this case, the H20 latent heat in the combustion gas is
Then, heat is recovered by pipe 2, and the H2Q steam condenses to become drain water and drips downward.

燃焼室4の燃焼ガス温度が800℃〜1oOo℃の高い
燃焼ガスが接触するフィン1と、50℃前後の燃焼ガス
となる排気ボックス50フイン1が共通であシ、燃焼ガ
ス側の伝熱面積と通水側伝熱面積の比が一定である。従
って温度の低い燃焼ガスの下流側のフィンは不必要に大
きく、燃焼ガス上流側の高温フィンの熱伝導を受けH2
O蒸気の結露量も少なく、燃焼ガス通過面積も燃焼ガス
上流側、下流側同一のため、高温ガスが下流側で低温に
なり体積減少で燃焼ガス流速も3位に低下するため、結
露水がフィン1間で表面張力で橋ゎたし即ちブリッジを
構成し結露促進を妨げている欠点があった。まだ燃焼ガ
ス下流側のフィンが多いため、フィンから機体外への放
熱も大きく、また′潜熱回収用熱交換器としては大きな
容積となっている欠点をも有していた。
The fin 1 with which the combustion gas in the combustion chamber 4 comes into contact with high combustion gas whose temperature is 800°C to 1oOo°C and the exhaust box 50 fin 1 with which the combustion gas reaches around 50°C are common, and the heat transfer area on the combustion gas side The ratio of the heat transfer area on the water flow side and the heat transfer area on the water flow side is constant. Therefore, the fins on the downstream side of the combustion gas, where the temperature is low, are unnecessarily large, and the heat transfer from the high temperature fins on the upstream side of the combustion gas causes the H2
The amount of condensation of O vapor is small, and the combustion gas passage area is the same on the upstream and downstream sides of the combustion gas, so the high-temperature gas becomes colder on the downstream side, the volume decreases, and the flow rate of the combustion gas decreases to 3rd place, so the condensation water There is a drawback that a bridge is formed between the fins 1 due to surface tension, which prevents dew condensation from accelerating. Since there are still many fins on the downstream side of the combustion gas, a large amount of heat is radiated from the fins to the outside of the aircraft, and it also has the disadvantage of having a large volume as a heat exchanger for latent heat recovery.

発明の目的 本発明はこのような従来の欠点を除去するもので、結露
を促進し潜熱回収効率を上昇させ、結露水の滴下もし易
く、放熱ロスも少なく、コンパクトな熱交換器を目的と
するものである。
Purpose of the Invention The present invention aims to eliminate these conventional drawbacks, and provides a compact heat exchanger that promotes dew condensation, increases latent heat recovery efficiency, allows easy dripping of condensed water, and reduces heat radiation loss. It is something.

発明の構成 この目的を達成するために本発明は、燃焼ガスを下向き
に強制的に排気する構成とし、燃焼ガス通路の上流側か
ら下流側に向って、燃焼ガス側伝熱面積と通水側伝熱面
積の比を順次低下させる構成とし、かつ燃焼ガスの通過
面積も順次低下させる構成としている。
Structure of the Invention In order to achieve this object, the present invention has a structure in which combustion gas is forcibly exhausted downward, and from the upstream side to the downstream side of the combustion gas passage, the heat transfer area on the combustion gas side and the water flow side are The structure is such that the heat transfer area ratio is sequentially reduced, and the combustion gas passage area is also sequentially reduced.

この構成によって、燃焼ガスの上流側の高温燃焼ガスか
ら顕熱を奪う場合、熱伝達率の低い燃焼ガス側の伝熱面
積を多くとりコンパクトなフィン付の顕熱回収の熱交換
器構成となり、燃焼ガス温か低下し、燃焼ガス中のH2
O分の潜熱割合が多くなるに従い、燃焼ガス側伝熱面積
を少なくとシ、通水側伝熱面積との比率を小さく構成す
ることにより、低温の通水源に近い燃焼ガス側伝熱面の
温度となり、燃焼ガスが触れて結露し、潜熱を回収する
率を増大する。しかも燃焼ガス側のフィン面積も減少す
るため、燃焼ガス上流側に比べ通水管を多くとれると共
に燃焼ガスの通過面積も狭くなシ、結露水を流速にょシ
滴下し易く、面積減少しているため放熱ロスも少なく、
コンパクトな潜熱回収用の熱交換器となる。また、燃焼
ガス側上流側から順次燃焼ガス側伝熱面積と通水側伝熱
面積の比を低下させる熱交換ユニットを積層させること
により、上流側フィンの熱伝導を防止し下流側フィンを
低温に保ち潜熱を回収し易い構成となっている。同時に
高温側と結露潜熱回収側の耐食表面処理を自由に選択で
きる。−1:た燃焼ガス温度120℃以下の通路にはフ
ィンなしの通水用裸管を千鳥状に配することによシ、結
露水は円筒上で通水管をなめながら滴下し結露処理がや
り易いと共に燃焼ガス流れが必ず通水管に当る構成とな
るため結露潜熱を奪い易い、また裸管の耐食表面処理も
やり易い。
With this configuration, when sensible heat is taken from the high-temperature combustion gas on the upstream side of the combustion gas, the heat transfer area on the combustion gas side with a low heat transfer coefficient is large, resulting in a compact fin-equipped heat exchanger configuration for sensible heat recovery. Combustion gas temperature decreases, H2 in combustion gas
As the latent heat ratio of O component increases, the heat transfer area on the combustion gas side is reduced, and by configuring the ratio to the heat transfer area on the water flow side to be small, the heat transfer surface on the combustion gas side near the low temperature water flow source is temperature, condensation occurs on contact with the combustion gases, increasing the rate of latent heat recovery. Moreover, since the fin area on the combustion gas side is also reduced, it is possible to have more water pipes than on the upstream side of the combustion gas, and the passage area for the combustion gas is also narrower, making it easier for condensed water to drip at a faster flow rate, and the area is reduced. There is little heat loss,
It becomes a compact heat exchanger for latent heat recovery. In addition, by stacking heat exchange units that sequentially reduce the ratio of the combustion gas side heat transfer area to the water flow side heat transfer area from the upstream side of the combustion gas side, heat transfer to the upstream fins is prevented and the downstream fins are kept at a low temperature. The structure makes it easy to maintain and recover latent heat. At the same time, corrosion-resistant surface treatments on the high temperature side and the latent heat recovery side of condensation can be freely selected. -1: By arranging bare water pipes without fins in a staggered manner in the passages where the combustion gas temperature is below 120°C, condensation water drips down the water pipes on the cylinder and dew condensation treatment is carried out. In addition, since the flow of combustion gas always hits the water pipe, it is easy to remove the latent heat of condensation, and it is also easy to perform corrosion-resistant surface treatment on the bare pipe.

実施例の説明 以下本発明の一実施例を第2図の図面を用いて説明する
。給水口10と通水により差圧を発生させスイッチを入
れる水圧応動部11に連通し熱交換器12と出湯口13
で湯沸器の水回路を構成し熱交換器12は、多数のフィ
ン14付きの通水管15を有するフィン付熱交換器12
〜Aと環状フィン付通水管16で構成される熱交換器1
2−Bと裸管17で構成される熱交換器12−Cを積層
し熱交換器12を構成している。一方バーナ18は燃料
供給口19と水圧応動部11に連動する燃料弁20と連
らなシ燃焼室21と熱交換器12および排気ボックス2
2とで燃焼部を構成している。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 2. A heat exchanger 12 and a hot water outlet 13 communicate with a water supply port 10 and a water pressure response unit 11 that generates a pressure difference by water flow and turns on a switch.
The heat exchanger 12 that constitutes the water circuit of the water heater is a finned heat exchanger 12 that has a water pipe 15 with a large number of fins 14.
Heat exchanger 1 composed of ~A and annular finned water pipe 16
The heat exchanger 12 is constructed by stacking a heat exchanger 12-B and a heat exchanger 12-C composed of bare tubes 17. On the other hand, the burner 18 is connected to a fuel supply port 19 and a fuel valve 20 that is linked to the hydraulic response part 11, a combustion chamber 21, a heat exchanger 12, and an exhaust box 2.
2 constitutes a combustion section.

23は強制的に燃焼ガスを排出するモーターファン、2
4は排気口、26はH2O結露水排出口を示す。
23 is a motor fan that forcibly exhausts combustion gas, 2
4 is an exhaust port, and 26 is a H2O condensed water discharge port.

この構成において、バーナ18で下向きに燃焼した燃焼
ガスは矢印のように順次熱交換器を通過し通水と熱交換
しお湯となる。通水は熱交換器12−C→12−B→1
2〜Aの順に流れる。この場合燃焼ガス上流側のフィン
14は高温(800℃〜1000℃)の燃焼ガスに触れ
るため燃伝導率の高い銅製フィンとし、熱吸収するが、
燃焼ガス側の熱伝達率が、通水側熱伝達率より相当像い
ため、燃焼ガス側の通水管15およびフィン14を含め
た伝熱面積を通水側の伝熱面積の10倍近くにとってお
シ、高温燃焼ガスからの熱交換器としてコンパクトに設
計する要素であり熱交換器12−Aは通常の湯沸器用熱
交換器に用いられている。次に12−Bの熱交換器は、
12−Aのフイン14より燃焼ガス側伝熱面積の少ない
環状フィン付通水管16を燃焼ガスが通過するがこの場
合通水管表面は50℃以下の場合が多く、燃焼ガスの露
点温度50〜60℃のため環状フィン付通水管16の管
表面は、燃焼ガス中のH2O分が結露し潜熱を発生し水
滴が付着する。この水滴が付着してフィン間を埋めない
ように、フィン高さが広く、かつフィンピッチの広い構
成とし結露、水が滴下し易い構成になっている。更に熱
を与え低温(120℃以下)になった燃焼ガスは、裸管
17で構成される熱交換器12−Cに入り、燃焼ガスは
直接裸管表面に触れるため、通水源(5〜26℃)の管
壁で凝縮し潜熱を発生し水滴となる。燃焼ガス中のH2
O分の潜熱量は燃料発熱量の1゜チ前後であり、燃焼ガ
ス中の伝熱面積を増大するより冷たい伝熱壁面を多くす
ることが大切であり、裸管のピッチを狭くし、燃焼ガス
通路も狭くして燃焼ガスの触れる面積を多くし結露し易
くすると同時に流れにそって結露水が滴下し易い裸管状
となっている。第3図は前記12−Cの熱交換器の裸管
17を千鳥状に2段に配列し、水滴の滴下は管中央下端
より起こるため滴下水が下方の裸管に触れず、未結露成
分の燃焼ガスが下方の裸管に触れ潜熱回収率も向上する
例を示したものである。
In this configuration, the combustion gas combusted downward in the burner 18 sequentially passes through the heat exchanger as shown by the arrows, exchanges heat with the flowing water, and becomes hot water. Water passes through heat exchanger 12-C → 12-B → 1
Flows in the order of 2 to A. In this case, the fins 14 on the upstream side of the combustion gas are made of copper fins with high fuel conductivity because they come into contact with the high temperature (800°C to 1000°C) combustion gas, and absorb heat.
Since the heat transfer coefficient on the combustion gas side is considerably higher than that on the water flow side, it is recommended that the heat transfer area on the combustion gas side, including the water flow pipes 15 and fins 14, be approximately 10 times the heat transfer area on the water flow side. The heat exchanger 12-A is an element designed to be compact as a heat exchanger for high-temperature combustion gas, and is used in a normal water heater heat exchanger. Next, the heat exchanger of 12-B is
The combustion gas passes through the annular finned water pipe 16, which has a smaller heat transfer area on the combustion gas side than the fins 14 of 12-A, but in this case, the water pipe surface is often below 50°C, and the dew point temperature of the combustion gas is 50 to 60. ℃, the H2O content in the combustion gas condenses on the surface of the annular finned water pipe 16, generating latent heat and causing water droplets to adhere. In order to prevent these water droplets from adhering and filling the spaces between the fins, the fins are configured to have a wide height and a wide fin pitch, so that dew condensation and water easily drip. The combustion gas, which is further heated and has a low temperature (below 120 degrees Celsius), enters the heat exchanger 12-C made up of bare tubes 17, and since the combustion gas directly touches the surface of the bare tubes, a water supply source (5 to 26 ℃) condenses on the tube wall, generates latent heat, and becomes water droplets. H2 in combustion gas
The amount of latent heat of O component is around 1° of the calorific value of fuel, so it is important to increase the number of cold heat transfer wall surfaces rather than increasing the heat transfer area in the combustion gas, and by narrowing the pitch of bare tubes, the combustion The gas passage is also narrow to increase the area in contact with the combustion gas, making it easier for dew to form, and at the same time, it has a bare tube shape that allows condensed water to easily drip along the flow. Figure 3 shows that the bare tubes 17 of the 12-C heat exchanger are arranged in two stages in a staggered manner, and since water drops occur from the lower end of the center of the tubes, the dripping water does not touch the bare tubes below, and the uncondensed components This shows an example where the combustion gas touches the bare tube below and improves the latent heat recovery rate.

このようにフィン14付通水管16を持つ熱交換器12
−Aから12−B−,12−Cの裸管17の構成まで順
次燃焼ガス側伝熱面積を減少させ、通水側伝熱面積との
比を低下させると共に、通水管の本数を第2図に示すよ
うに燃焼ガス流れ方向に順次増し燃焼ガス通路面積を減
少させることにより、通水温度に近い徒温表面が増大し
第4図に示す様に20℃近傍では顕熱量は数チにすぎず
90係以上が潜熱であり、H2Oの結露が大切であシ、
低温の燃焼ガスが20℃近くの裸管に接触し凝縮し潜熱
を裸管に与える効果が大となると共に通路面積の減少に
よシ燃焼ガスの流速もあり結露水の滴下を促進すると共
に円形の裸管のためフィンプレートのように水滴として
保持されることなく滴下を続け、次々と潜熱が奪える効
果がある。また熱交換器を燃焼ガスの高温側から低温側
に順次3段に積層しているため、高温側の12−A、1
2−Bはpbの浸種表面処理で行ない、低温側の12−
Cはシリコンコーテングで充分対応出来、結露水中の硫
酸あるいは硝酸等の酸に強い表面処理を温度に応じ1実
用的に対応できる効−もある・またフィン14、環状フ
ィン付通水管1:6、裸管17がそれぞれ分離されてい
るため、従来のように高温側フィンの熱伝導による低温
側フィンの温度上昇もなく、12−B 、 12−Cは
潜熱回収に適した低温表面を保てるた込潜熱回収が有効
に働き第6図Aに示す如〈従来のフィン付熱交換器の特
性Bのように燃焼ガス側伝熱面積を増大しても徐々にし
か熱効率をかせげないのに比ベフィン面積を減少させ通
水管を増加させ逆に燃焼ガス側伝熱面積を減少させて熱
効率を曲線Aのように増大させることができる効果があ
る。本実施例は通水管径を同じにして実施しているが、
逆にフィンは共通で通水パイプ径を増大して燃焼ガス側
伝熱面積と通水側伝熱面積の比を順次減少させても同様
の効果が得られるのは勿論のことである。このように燃
焼ガス側の伝熱面積を減少し熱効率を増加させることが
できる泥めコンパクトに設計できる効果も得られる。
In this way, a heat exchanger 12 having a water pipe 16 with fins 14 is installed.
-A to 12-B- and 12-C, the heat transfer area on the combustion gas side is successively reduced, and the ratio with the heat transfer area on the water flow side is decreased, and the number of water flow pipes is increased to the second level. As shown in the figure, by gradually increasing the combustion gas passage area in the direction of flow of the combustion gas and decreasing the combustion gas passage area, the warm surface close to the water passing temperature increases, and as shown in Figure 4, the amount of sensible heat decreases to several inches at around 20℃. The temperature above 90% is latent heat, and the condensation of H2O is important.
The low-temperature combustion gas comes into contact with the bare tube at around 20°C and condenses, giving a greater effect of imparting latent heat to the bare tube, reducing the passage area, increasing the flow rate of the combustion gas, promoting the dripping of condensed water, and creating a circular shape. Because it is a bare tube, the water continues to drip without being held as water droplets like in the case of fin plates, and has the effect of removing latent heat one after another. In addition, the heat exchangers are stacked in three stages from the high temperature side of the combustion gas to the low temperature side, so 12-A and 1
2-B was performed by pb seeding surface treatment, and 12-B on the low temperature side
C can be adequately covered with silicone coating, and has the effect of being able to practically handle surface treatments that are resistant to acids such as sulfuric acid or nitric acid in dew condensation water depending on the temperature. Also, fin 14, annular finned water pipe 1:6, Since the bare tubes 17 are separated from each other, there is no temperature increase in the low temperature side fins due to heat conduction from the high temperature side fins, unlike in the conventional case, and 12-B and 12-C are folded to maintain a low temperature surface suitable for latent heat recovery. As shown in Figure 6A, latent heat recovery works effectively. Even if the heat transfer area on the combustion gas side is increased as shown in characteristic B of the conventional finned heat exchanger, the thermal efficiency can only be gradually increased; This has the effect of increasing the thermal efficiency as shown by curve A by decreasing the number of water pipes and decreasing the heat transfer area on the combustion gas side. In this example, the diameter of the water pipes was kept the same, but
On the other hand, it goes without saying that the same effect can be obtained even if the fins are common and the diameter of the water pipe is increased and the ratio of the heat transfer area on the combustion gas side to the heat transfer area on the water side is sequentially decreased. In this way, it is possible to reduce the heat transfer area on the combustion gas side, increase thermal efficiency, and achieve a more compact design.

発明の効果 以上のように□本発明の湯沸器用熱交換器によれば、燃
焼ガスの上流側から下流側に向って燃焼ガス側伝熱面積
と通水側伝熱面積の比を順次低下させ燃焼ガス通路も順
次低下させる構成となっているため、上流側で燃焼ガス
の顕熱、下流側で潜熱を奪い、結露を促進させ潜熱回収
効率を上昇させ、結露水も滴下し易く、下流側の低温部
での燃焼ガス側伝熱面積少ないため放熱ロスも少なく、
燃焼ガス側伝熱面積を少なく出来るためコンノくクトな
設計ができる効果がある。裸管を千鳥状に配することに
より結露水の滴下し易く燃焼ガスが管壁に当り管周にそ
って流れるため潜熱を奪いやすい効果がある。また熱交
換器を順次積層することにより、熱的分割が行なわれ、
上流側熱交換器からの熱伝導がなく下流側での潜熱回収
が促進されると共に、燃焼ガス温度により耐食性表面処
理を高温用、低温結露用と自由に選択できる効果もある
Effects of the Invention As described above, according to the water heater heat exchanger of the present invention, the ratio of the heat transfer area on the combustion gas side to the heat transfer area on the water flow side is gradually decreased from the upstream side of the combustion gas toward the downstream side. Since the structure is such that the combustion gas passage is gradually lowered, the sensible heat of the combustion gas is taken away on the upstream side and the latent heat is taken away on the downstream side, promoting dew condensation and increasing the latent heat recovery efficiency. Because there is less heat transfer area on the combustion gas side in the low temperature part on the side, there is less heat radiation loss.
Since the heat transfer area on the combustion gas side can be reduced, it has the effect of allowing for a more compact design. By arranging the bare tubes in a staggered manner, it is easy for dew condensation water to drip, and the combustion gas hits the tube wall and flows along the circumference of the tube, making it easier to remove latent heat. In addition, thermal division is achieved by sequentially stacking heat exchangers.
There is no heat conduction from the upstream heat exchanger, so recovery of latent heat on the downstream side is promoted, and there is also the effect that corrosion-resistant surface treatment can be freely selected for high-temperature or low-temperature condensation depending on the combustion gas temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の湯沸器の構成図、第2図は本発明の一実
施構成図、第3図は別の潜熱回収熱交換係を示す特性図
である。 12・・・・・・熱交換器、13・・・・・・出湯口、
14・・・・・・フィン、15・・・・・・通水管、1
6・・・・・環状フィン付通水管、17・・・・・・裸
管、18・・・・・・バーナ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 船 2.5 第3図 第4図 第5図 撚、夾11“スイ刻イ云大へ遣楕
FIG. 1 is a block diagram of a conventional water heater, FIG. 2 is a block diagram of one implementation of the present invention, and FIG. 3 is a characteristic diagram showing another latent heat recovery heat exchange system. 12... Heat exchanger, 13... Tap water outlet,
14...Fin, 15...Water pipe, 1
6... Water pipe with annular fin, 17... Bare pipe, 18... Burner. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 2.5 Figure 3 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)燃焼ガス中のH2O潜熱を回収する湯沸器用熱交
換器において、燃焼ガスを下向きに強制的に排気する構
成とし、燃焼ガス通路の上流側から下流側に向って、燃
焼ガス側伝熱面積と通水側伝熱面積の比を順次低下させ
る構成とし、燃焼ガス通過面積も順次低下させる構成と
した湯沸器用熱交換器。
(1) In a water heater heat exchanger that recovers H2O latent heat in combustion gas, the combustion gas is forcibly exhausted downward, and the combustion gas side is transferred from the upstream side to the downstream side of the combustion gas passage. A heat exchanger for a water heater, which has a structure in which the ratio of the heat area to the heat transfer area on the water flow side is sequentially reduced, and the combustion gas passage area is also sequentially reduced.
(2)燃焼ガス温度が120℃以下の通路にはフィンな
しの通水用裸管を千鳥状に配してなる特許請求の範囲1
記載の湯沸器用熱交換器。
(2) Claim 1 in which bare pipes for water passage without fins are arranged in a staggered manner in the passage where the combustion gas temperature is 120°C or less.
Heat exchanger for the water heater described.
(3)燃焼ガス側伝熱面積と通水側伝熱面積の比を順次
低下させる熱交換ユニットを積層して構成する特許請求
の範囲1記載の湯沸器用熱交換器。
(3) The heat exchanger for a water heater according to claim 1, which is constructed by stacking heat exchange units that sequentially reduce the ratio of the heat transfer area on the combustion gas side to the heat transfer area on the water flow side.
JP57207111A 1982-11-25 1982-11-25 Heat exchanger for water heater Pending JPS5997455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207111A JPS5997455A (en) 1982-11-25 1982-11-25 Heat exchanger for water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207111A JPS5997455A (en) 1982-11-25 1982-11-25 Heat exchanger for water heater

Publications (1)

Publication Number Publication Date
JPS5997455A true JPS5997455A (en) 1984-06-05

Family

ID=16534375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207111A Pending JPS5997455A (en) 1982-11-25 1982-11-25 Heat exchanger for water heater

Country Status (1)

Country Link
JP (1) JPS5997455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032354A (en) * 2006-07-31 2008-02-14 Gastar Corp Heat exchange apparatus and combustion device equipped therewith
JP2021101131A (en) * 2019-12-24 2021-07-08 株式会社ノーリツ Heat exchanger and water heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032354A (en) * 2006-07-31 2008-02-14 Gastar Corp Heat exchange apparatus and combustion device equipped therewith
JP2021101131A (en) * 2019-12-24 2021-07-08 株式会社ノーリツ Heat exchanger and water heating device

Similar Documents

Publication Publication Date Title
US20190011150A1 (en) Heat exchanger
CN203949198U (en) The multistage retracting device of natural gas fume afterheat
WO2014044208A1 (en) Forced spiral finned coil condensation heat-supplying heat exchanger
WO2014044205A1 (en) Forced spiral finned coil and finned serpentine coil condensation heat-supplying heat exchanger
JPH04244589A (en) Condenser and power plant using it, heat exchanger and atomic power plant using it, absorber and absorption type refrigerator using it, condenser and heat transfer tube
JPS5842A (en) Heat exchanger
JPS5997455A (en) Heat exchanger for water heater
CN205807677U (en) A kind of efficiency energy-saving gas water heater
JP2002267273A (en) Hot water supply apparatus
KR0132742B1 (en) Heat exchanger apparatus
CN201016608Y (en) Heat exchanger for condensing gas water heater
CN208349870U (en) Cogeneration of heat and power air heat-exchange system
JP2003114057A (en) Heat exchange device and heat exchange system using the same
CN107655211A (en) Heat-exchange tube length dislocation type water heater
CN110486099A (en) A kind of high-temperature heat pipe turbo blade thermal protection structure
JP2003254626A (en) Heat exchanger
JP2002107068A (en) Heat exchanger
JPS59125350A (en) Hot water heating device
JPH0122551B2 (en)
JP3485463B2 (en) Exhaust heat recovery unit
JP2003139400A (en) Heat exchanger
JPS5883188A (en) Heat exchanger
JP4065741B2 (en) Absorption chiller / heater
JP2001208302A (en) Condensation type economizer for oxygen burning boiler
CN207487481U (en) A kind of duplex heat exchanger