JPS5997035A - Apparatus for measuring pore distribution - Google Patents

Apparatus for measuring pore distribution

Info

Publication number
JPS5997035A
JPS5997035A JP20793682A JP20793682A JPS5997035A JP S5997035 A JPS5997035 A JP S5997035A JP 20793682 A JP20793682 A JP 20793682A JP 20793682 A JP20793682 A JP 20793682A JP S5997035 A JPS5997035 A JP S5997035A
Authority
JP
Japan
Prior art keywords
pressure
pressure chamber
temp
mercury
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20793682A
Other languages
Japanese (ja)
Other versions
JPH0477262B2 (en
Inventor
Jun Sakai
潤 酒井
Shozo Yano
省三 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP20793682A priority Critical patent/JPS5997035A/en
Publication of JPS5997035A publication Critical patent/JPS5997035A/en
Publication of JPH0477262B2 publication Critical patent/JPH0477262B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • G01N15/0886Mercury porosimetry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enable accurate measurement without lowering reliability in detecting a penetration amount in high sensitivity by reducing the change in the surface tension of mercury, by controlling a pressure changing speed on the basis of the change rate of the temp. in a pressure chamber. CONSTITUTION:A specimen W is preliminarily inserted into a specimen cell 1 which is then evacuated to be filled with mercury. This cell 1 is placed in the pressure chamber 4 filled with oil 3 and hermetically closed. At first, a control signal for operating a pressure amplifier 6 to a pressurizing direction at a predetermined speed is outputted from a control part 5 to increase the pressure in the pressure chamber 4 while the temp. in the pressure chamber 4 is raised by the adiabatic compression and dissolution of gas mixed in the oil 3. A pressure detecting value and a temp. detecting value are momentarily supplied to the control part 5 and temp. change is calculated and stored at each constant pressure change while, based on this data, a pressure increase speed for preventing the temp. in the pressure chamber 4 from exceeding the preset temp. range is operated and the amplifier 6 is operated by said speed. Therefore, mercury 2 continuously changes from atmospheric pressure to high pressure in a set tolerant temp. to high pressure in a set tolerant temp. range. In addition, reduced pressure measurement is similarily performed.

Description

【発明の詳細な説明】 本発明は、多孔性の供試試料を圧力室内の水銀中に浸漬
し、圧力室内の圧力を圧力媒体によって経時的に変化さ
せて試料表面の細孔内への水銀侵入量を変化させ、水銀
が侵入し得る最小細孔直径がその圧力に反比例する性質
を利用して、適宜その圧力と水銀侵入量を計測すること
によって試料に存在する細孔の直径分布を測定する、い
わゆる水銀圧入式細孔分布測定装置に関する。
Detailed Description of the Invention The present invention involves immersing a porous test sample in mercury in a pressure chamber, and changing the pressure in the pressure chamber over time using a pressure medium to remove mercury from entering the pores on the surface of the sample. Measure the diameter distribution of pores existing in a sample by changing the amount of penetration and measuring the pressure and amount of mercury penetration as appropriate, taking advantage of the property that the minimum pore diameter into which mercury can enter is inversely proportional to the pressure. The present invention relates to a so-called mercury intrusion type pore distribution measuring device.

一般に、この種測定装置の原理は、圧力室内の圧力Pと
水銀が侵入し得る最小の細孔直径りとが、水銀の表面張
力をσ、水銀と試料との接触角をθとすれば、 D−(2/P )  ・4 a、cosθ −(11な
る関係を有することを利用して、圧力室内の圧力Pとそ
の時点における水銀侵入量Vを順次測定すれば、各圧力
Pに対応する最小細孔直径りより、も大きな直径の細孔
の容積■が求められ、これより試料に存在する細孔の分
布を求める。
Generally, the principle of this type of measuring device is that the pressure P in the pressure chamber and the minimum pore diameter through which mercury can enter, the surface tension of mercury as σ, and the contact angle between mercury and the sample as θ, D-(2/P) ・4a, cosθ-(11) If we sequentially measure the pressure P in the pressure chamber and the amount of mercury intrusion V at that point, we can obtain the following values corresponding to each pressure P. The volume of pores with a diameter larger than the minimum pore diameter is determined, and from this the distribution of pores present in the sample is determined.

ここで、圧力室内の圧力Pは、圧力室内に満たされたオ
イル等の圧力媒体の加、減圧によって制御され、また、
試料細孔内への水銀侵入量■は、試料容器内の水銀の体
積変化を検出することによって求められる。
Here, the pressure P in the pressure chamber is controlled by applying and depressurizing a pressure medium such as oil filled in the pressure chamber, and
The amount of mercury intruding into the sample pore (2) is determined by detecting the change in the volume of mercury in the sample container.

従来のこの種測定装置においては、気体が一部共存する
オイル等の圧力媒体を加、減圧するとき、断熱圧縮、断
熱膨張、あるいは気体の溶解等によって圧力室内の温度
が変化し、その為水銀の体積変化検出値に誤差が生じた
り、また水銀の表面張力σが変化して(11式による細
孔直径りの算出値に誤差が生じ、細孔分布の測定精度を
低下せしめる原因となっていた。
In conventional measuring devices of this type, when pressurizing or depressurizing a pressure medium such as oil in which some gases coexist, the temperature inside the pressure chamber changes due to adiabatic compression, adiabatic expansion, or gas dissolution, and as a result, mercury An error may occur in the detected value of the volume change, or the surface tension σ of mercury may change (an error may occur in the calculated value of the pore diameter using Equation 11, causing a decrease in the measurement accuracy of the pore distribution. Ta.

本発明は上記に鑑みなされたもので、圧力室内の圧力を
、圧力室内温度がある設定値以上変化しないような速度
のもとに制御し得る細孔分布測定装置の提供を目的とす
る。
The present invention has been made in view of the above, and an object of the present invention is to provide a pore distribution measuring device that can control the pressure in a pressure chamber at such a rate that the temperature in the pressure chamber does not change beyond a certain set value.

本発明の特徴とするところは、圧力室内の温度を測定し
、その温度の変化率に基づいて圧力室内の圧力変化速度
を制御し、圧力室内の温度があらかじめ設定された範囲
を越えないような速度で圧力を変化させるよう構成した
ことにある。
The present invention is characterized by measuring the temperature inside the pressure chamber, controlling the rate of change in pressure inside the pressure chamber based on the rate of change in temperature, and controlling the temperature inside the pressure chamber so that it does not exceed a preset range. The reason is that it is configured to change the pressure depending on the speed.

以下、図面に基づいて本発明実施例を説明する。Embodiments of the present invention will be described below based on the drawings.

図面は本発明実施例の構成を示すブロック図である。The drawing is a block diagram showing the configuration of an embodiment of the present invention.

供試試料Wは試料セル1内に挿入され、その周囲に水銀
2が充填されている。この試料セル1は圧力媒体である
オイル3が満たされた圧力室4内に載置される。圧力室
4の圧力は、演算制御部5から出力される制御信号に基
づいて作動する圧カ増中器6により、オイル3を加圧又
は減圧することによって変化する。その圧力室4内の圧
力Pは、圧力計7によって検出され、その検出信号は演
算制御部5に導入される。一方、圧力室4内の温度は、
圧力室4内に設けられた測温体8と、その出力を増巾す
るアンプ9によって検出されて演算制御部5に供給され
る。演算制御部5は、圧力計7からの圧力検出値の一定
の変化ごとに温度の変化量または変化率を算出し、その
データに基づいて圧力室4内温度があらかじめ設定され
た範囲を越えないような圧力変化速度を演算し、その演
算された速度で圧力項中器6を作動させるよう構成され
ている。なお、試料Wの細孔への水銀侵入量Vは、試料
セル1のステム部1aに設けられたシース電極10・と
水銀2とでコンデンサを形成し、この静電容量を静電検
出器11で検出して水銀2の液面変位をとらえ、その検
出値を演算制御部5に導入して水銀2の体積に換算する
ことによって求められる。演算制御部5ではこのように
して求まった水銀侵入量Vと、圧力計7による圧力検出
値Pを(1)式によって細孔直径りに換算した値とによ
り、試料Wに存在する細孔の分布が算出され、その結果
が出力される。
A test sample W is inserted into a sample cell 1, and its surroundings are filled with mercury 2. This sample cell 1 is placed in a pressure chamber 4 filled with oil 3 as a pressure medium. The pressure in the pressure chamber 4 is changed by pressurizing or depressurizing the oil 3 by a pressure intensifier 6 that operates based on a control signal output from the arithmetic control section 5. The pressure P in the pressure chamber 4 is detected by the pressure gauge 7, and the detection signal is introduced into the calculation control section 5. On the other hand, the temperature inside the pressure chamber 4 is
It is detected by a temperature measuring element 8 provided in the pressure chamber 4 and an amplifier 9 that amplifies its output, and is supplied to the arithmetic control section 5. The arithmetic control unit 5 calculates the amount or rate of change in temperature for each fixed change in the pressure detection value from the pressure gauge 7, and based on the data, prevents the temperature inside the pressure chamber 4 from exceeding a preset range. The pressure change rate is calculated and the pressure intermediate device 6 is operated at the calculated rate. The amount V of mercury entering into the pores of the sample W can be determined by forming a capacitor with the sheath electrode 10 provided on the stem portion 1a of the sample cell 1 and the mercury 2, and measuring this capacitance with the electrostatic detector 11. It is obtained by detecting the liquid level displacement of the mercury 2 and introducing the detected value into the arithmetic and control section 5 to convert it into the volume of the mercury 2. The arithmetic control unit 5 calculates the amount of pores existing in the sample W based on the mercury penetration amount V thus determined and the value obtained by converting the pressure detection value P by the pressure gauge 7 into the pore diameter using equation (1). The distribution is calculated and the results are output.

次に作用を増圧測定の場合を例にとって説明する。Next, the operation will be explained using the case of pressure increase measurement as an example.

試料Wはあらかじめ試料セルl内に挿入され、試料セル
1内を排気するとともに水銀2を充填しておく。このよ
うな試料セル1をオイル3が満たされた圧力室4内に載
置して圧力室4を密閉すると測定準備は完了する。演算
制御部5からは当初、所定の速度で圧力項中器6を加圧
方向に作動させる制御信号が出力され、これによって圧
力室4内の圧力は増圧され、このときオイル3に混在す
る気体の断熱圧縮および溶解等によって圧力室4内の温
度が上昇する。演算制御部5には刻々の圧力検出値およ
び温度検出値が圧力計7およびアンプ9から供給されて
おり、一定の圧力変化ごとに温度の変化を算出して記憶
し、そのデータに基づいて圧力室4内の温度があらかじ
め設定された温度の範囲を越えない増圧速度が演算され
、その速度で圧力項中器6を作動させる。従って試料W
をとりま(水銀2は、あらかじめ設定された許容温度範
囲内で常圧から高圧まで連続的に変化する。
The sample W is inserted into the sample cell 1 in advance, and the sample cell 1 is evacuated and filled with mercury 2. Preparation for measurement is completed when such a sample cell 1 is placed in a pressure chamber 4 filled with oil 3 and the pressure chamber 4 is sealed. Initially, the arithmetic control unit 5 outputs a control signal that operates the pressure intermediate unit 6 in the pressurizing direction at a predetermined speed, thereby increasing the pressure in the pressure chamber 4, and at this time, the pressure inside the pressure chamber 4 is increased. The temperature inside the pressure chamber 4 increases due to adiabatic compression and dissolution of the gas. The arithmetic control unit 5 is supplied with momentary pressure detection values and temperature detection values from a pressure gauge 7 and an amplifier 9, calculates and stores changes in temperature for each constant pressure change, and calculates the pressure based on the data. A pressure increase rate that does not cause the temperature in the chamber 4 to exceed a preset temperature range is calculated, and the pressure intermediate device 6 is operated at that rate. Therefore, sample W
(Mercury 2 changes continuously from normal pressure to high pressure within a preset allowable temperature range.

また、減圧測定に際しても同様に、減圧によって生ずる
オイル3内の気体の断熱膨張に起因する温度の低下が生
ずるが、あらかじめ設定された温度の範囲を越えない減
圧速度が演算され、その速度で圧力項中器6を作動させ
る。
Similarly, when measuring decompression, the temperature decreases due to the adiabatic expansion of the gas in the oil 3 caused by depressurization, but a decompression rate that does not exceed a preset temperature range is calculated, and the pressure is reduced at that rate. Activate the nuchal device 6.

なお、図面において測温体8の配設位置を圧力室4内の
オイル3に触れる位置としたが、例えば試料セル1に密
着させて配置したり、あるいは試料セル1内に設けても
よい。
In the drawings, the temperature measuring element 8 is placed at a position where it touches the oil 3 in the pressure chamber 4, but it may be placed in close contact with the sample cell 1, or may be placed inside the sample cell 1, for example.

更に、本発明実施例においては、温度の変化を一定の圧
力変化ごとにとらえるよう、すなわち圧力の関数として
とらえたが、一定時間ごと(時間の関数)やあるいは単
に圧力増巾器6の所定作動量ごとにとらえてもよいこと
は勿論である。
Furthermore, in the embodiments of the present invention, temperature changes are taken at every fixed pressure change, that is, as a function of pressure. Of course, it may also be considered in terms of quantity.

以上説明したように本発明によれば、ある限定された許
容温度領域内で測定が実行されるので、水銀表面張力σ
の値が無視し得る程度しか変化せず従って細孔直径りの
算出精度が安定して向上するとともに、温度変化に起因
する水銀の体積変化による水銀侵入NVの検出誤差も無
視し得る程度に抑えることができる。更に温度変化に起
因する水銀の体積変化が無視し得るので、試料セルのス
テム部の径を小さくして高感度の侵入量検出を行っても
信頼性が低下せず、密な測定を行うことができる。
As explained above, according to the present invention, since measurements are performed within a certain limited allowable temperature range, the mercury surface tension σ
The value of changes only to a negligible extent, thus stably improving the calculation accuracy of the pore diameter, and also suppressing the detection error of mercury intrusion NV due to changes in mercury volume due to temperature changes to a negligible extent. be able to. Furthermore, since changes in the volume of mercury due to temperature changes can be ignored, the reliability does not decrease even if the diameter of the stem of the sample cell is made small to detect the amount of intrusion with high sensitivity, making it possible to perform precise measurements. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明実施例の構成を示すブロフク図である。 1・・・試料セル、   2・・・水銀、3・・・オイ
ル、     4・・・圧力室、5・・・演算制御部、
  6・・・圧カ増中器、7・・・FE 力g+、  
  8・・・測温体、9・・・アンプ、    1o・
・・シース電極、11・・・静電検出器。 特許出願人  株式会社島津製作所 代 理 人  弁理士  西1) 新
The drawing is a block diagram showing the configuration of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Sample cell, 2... Mercury, 3... Oil, 4... Pressure chamber, 5... Arithmetic control unit,
6...Pressure intensifier, 7...FE force g+,
8...Thermometer, 9...Amplifier, 1o.
... Sheath electrode, 11... Electrostatic detector. Patent applicant Shimadzu Corporation Representative Patent attorney Nishi 1) New

Claims (1)

【特許請求の範囲】[Claims] 圧力室内の水銀中に多孔性の供試試料を浸漬し、上記圧
力室内の圧力を圧力媒体によって経時的に変化せしめて
供試試料に存在する細孔内への水銀侵入量を変化させ、
上記圧力と水銀侵入量を順次計測して各圧力に対応する
水銀侵入量を求め、上記各圧力を水銀が侵入し得る細孔
直径に換算することによって供試試料に存在する細孔の
直径分布を測定する装置において、上記圧力室内の温度
を測定する手段と、その測定温度の変化率に基づいて上
記圧力室内の圧力変化速度を制御する手段を備え、上記
圧力室内の温度があらかしめ設定された範囲を越えない
ような速度で上記圧力室内の圧力を変化させ得るよう構
成したことを特徴とする細孔分布測定装置。
A porous test sample is immersed in mercury in a pressure chamber, and the pressure in the pressure chamber is changed over time by a pressure medium to change the amount of mercury that enters into the pores present in the test sample,
The above pressures and the amount of mercury intrusion are sequentially measured to determine the amount of mercury intrusion corresponding to each pressure, and the diameter distribution of the pores existing in the test sample is calculated by converting each of the above pressures to the pore diameter into which mercury can enter. A device for measuring temperature in the pressure chamber, comprising means for measuring the temperature in the pressure chamber and means for controlling a rate of change in pressure in the pressure chamber based on a rate of change in the measured temperature, the temperature in the pressure chamber being preset. A pore distribution measuring device characterized in that it is configured to be able to change the pressure within the pressure chamber at a rate that does not exceed a certain range.
JP20793682A 1982-11-26 1982-11-26 Apparatus for measuring pore distribution Granted JPS5997035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20793682A JPS5997035A (en) 1982-11-26 1982-11-26 Apparatus for measuring pore distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20793682A JPS5997035A (en) 1982-11-26 1982-11-26 Apparatus for measuring pore distribution

Publications (2)

Publication Number Publication Date
JPS5997035A true JPS5997035A (en) 1984-06-04
JPH0477262B2 JPH0477262B2 (en) 1992-12-07

Family

ID=16547988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20793682A Granted JPS5997035A (en) 1982-11-26 1982-11-26 Apparatus for measuring pore distribution

Country Status (1)

Country Link
JP (1) JPS5997035A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660412A (en) * 1985-12-16 1987-04-28 Porous Materials Inc. Three fluid method for non-mercury intrusion porosimetry
JPH0719509U (en) * 1993-09-07 1995-04-07 株式会社近藤組 Rebar safety cap

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660412A (en) * 1985-12-16 1987-04-28 Porous Materials Inc. Three fluid method for non-mercury intrusion porosimetry
JPH0719509U (en) * 1993-09-07 1995-04-07 株式会社近藤組 Rebar safety cap

Also Published As

Publication number Publication date
JPH0477262B2 (en) 1992-12-07

Similar Documents

Publication Publication Date Title
US4549134A (en) Moisture probe and technique
US3442773A (en) Electrochemical gas measuring systems
EP0266955A2 (en) Diffusion measurement
JP2000088891A (en) Bridge circuit and detector using the same
US5406831A (en) Instrument for measurement of vacuum in sealed thin wall packets
JPS5997035A (en) Apparatus for measuring pore distribution
US20050152431A1 (en) Dynamic dew point analysis method and a device for determining the dew point temperature and relative humidity
US3681026A (en) Method and apparatus for determining the carbon activity of fluids
US9835574B2 (en) Gas measurement device and measurement method thereof
US5048319A (en) Method for calibrating an acceleration sensor
US5048339A (en) Acceleration pick-up device
JPH0319940B2 (en)
RU2196319C2 (en) Procedure measuring specific surface of dispersive and porous materials
JP2003315233A (en) Measuring cell for quartz resonator
US4000652A (en) Method and device for measuring the correction factor
US5065634A (en) Method and apparatus for the automatic determination of surface area
RU2186365C2 (en) Procedure determining porosity parameters o materials
Warshawsky Piston manometer as an absolute standard for vacuum-gauge calibration
JP3367234B2 (en) Streaming potential measurement method
SU1013819A2 (en) Device for determination material hardness under high temperatures
JP3211530B2 (en) Streaming potential measurement device
RU2186375C2 (en) Method and device for measurement of dew-point temperature
JP3751958B2 (en) Leak inspection device calibration method, leak inspection device
RU2097742C1 (en) Porosimeter
Park Aids for the Analyst-Semimicro Gas Permeability Apparatus for Sheet Material