JPS5997010A - Flowmeter - Google Patents

Flowmeter

Info

Publication number
JPS5997010A
JPS5997010A JP20833482A JP20833482A JPS5997010A JP S5997010 A JPS5997010 A JP S5997010A JP 20833482 A JP20833482 A JP 20833482A JP 20833482 A JP20833482 A JP 20833482A JP S5997010 A JPS5997010 A JP S5997010A
Authority
JP
Japan
Prior art keywords
fluid
shaped tube
measured
mercury
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20833482A
Other languages
Japanese (ja)
Inventor
Takaki Kunihiro
國廣 隆紀
Bunsuke Kariya
苅谷 文介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP20833482A priority Critical patent/JPS5997010A/en
Publication of JPS5997010A publication Critical patent/JPS5997010A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/36Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with stationary measuring chambers having constant volume during measurement
    • G01F3/38Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with stationary measuring chambers having constant volume during measurement having only one measuring chamber

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve accuracy with a simplified construction by providing a means of detecting the movement of the level of mercury, a specified amount of which is sealed into U-shaped tube with both ends thereof erected vertically, for example. CONSTITUTION:One end of a U-shaped tube 8 is connected to a third port 7 of a four-way changeover valve 1 while the other end thereof 8 is connected to a fourth port 9 and mercury 13 is sealed into the U-shaped tube 8 in a specified amount, for example, only enough to hold the mercury level 13A at an intermediate position where said mercury level 13A moves in the U-shaped tube 8. Straight tube sections at both ends of the U-shaped tube 8 are erected vertically and detection coils 14 are wound on the one erection section at two points as detection means. This can simplify the construction to achieve a highly accurate and stable measurement of flow rate.

Description

【発明の詳細な説明】 本発明は流量計に係り、特に、高圧、微少流体の流量を
計測するに適した流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flowmeter, and particularly to a flowmeter suitable for measuring the flow rate of high-pressure, minute fluids.

流量計の構造は一般に推測式と実測式とに大別されるが
、微少流体の流量を計測するには実測式の体積型流量計
が適している。このような実測式の体積型流量計には従
来より、たとえば、容器内に設けた隔膜板の上下動より
流量を計測する構造(特公昭45−25028号)があ
るが、このものは高圧流体の計測に適用することが困難
であった。
The structure of flowmeters is generally classified into two types: estimated type and actual measurement type, and actual measurement type volumetric flowmeters are suitable for measuring the flow rate of microfluid. Conventionally, such an actual measurement type volumetric flowmeter has a structure (Japanese Patent Publication No. 45-25028) that measures the flow rate by the vertical movement of a diaphragm plate installed in a container, but this type does not measure high-pressure fluid. It was difficult to apply it to the measurement of

また、ループ状の導管の途中に透明なシリンダを設け、
前記シリンダ内に往復運動可能なピストンを挿入し、シ
リンダ内の流体の流れに伴うピストシの移動量を光学的
に計測する構造(特公昭47−40829号)も既に提
案されているが、このような既提案の構造にあっても前
記シリンダとピストンとの間の漏洩あるいは摩擦損失を
無視できない場合があり、高圧の流体を計測するには適
しないものであった。更にまた、均一な断面を有する管
路を切換弁を介してループ状に構成し、前記管路内に移
動子が一定方向に循環できるよう挿入し、前記移動子の
移動量から流量を計測する構造(特公昭49−4898
4号)も既に提案されているが、このものにあっては前
記管路の曲管部分や前記切換弁内を移動子が通過する構
造である為、漏洩の防止が一層困難なものであり、従っ
て、前記各従来例と同様あるいはそれ以上に高圧流体の
測定には適しないものであった。更にまた、前述した何
れの従来例にあっても、流体の漏洩を減少させる為には
高精度加工を要し、しかも、必ずしも全体として構造の
簡易なものではなかった。
In addition, a transparent cylinder is installed in the middle of the loop-shaped conduit,
A structure (Japanese Patent Publication No. 47-40829) has already been proposed in which a reciprocating piston is inserted into the cylinder and the amount of movement of the piston due to the flow of fluid in the cylinder is optically measured. Even with the previously proposed structure, leakage or friction loss between the cylinder and piston cannot be ignored in some cases, and it is not suitable for measuring high-pressure fluid. Furthermore, a pipe line having a uniform cross section is formed into a loop via a switching valve, a moving element is inserted into the pipe line so as to circulate in a fixed direction, and the flow rate is measured from the amount of movement of the moving element. Structure (Tokuko Sho 49-4898
No. 4) has already been proposed, but in this case, the structure is such that the slider passes through the bent pipe portion of the pipeline and the switching valve, making it even more difficult to prevent leakage. Therefore, it is not suitable for measuring high-pressure fluids as well as or more than the above-mentioned conventional examples. Furthermore, in any of the conventional examples described above, high-precision machining is required to reduce fluid leakage, and the overall structure is not necessarily simple.

本発明の目的は、構造が簡易で、高圧流体の高精度測定
が可能な流量計を提供するにある。
An object of the present invention is to provide a flow meter that has a simple structure and can measure high-pressure fluid with high accuracy.

その為本発明は、両端部が、たとえば垂直に。Therefore, in the present invention, both ends are, for example, vertical.

立設されているU字管内に水銀を所定量封入し、前記水
銀の水銀レベルの移動を検知する検知手段を設け、たと
えば四方切換弁のように、前記U字管の一端に被測定流
体を流入させるときには他端より被測定流体を流出させ
前記他端に被測定流体を流入させるときには前記一端よ
り被測定流体を流出させ且つ前記検知手段による検知信
号に応じて切換操作される弁機構を前記U字管に連結し
、更に、前記検知手段による検知信号に基づき被測定流
体の流量を算出する演算部と、を設け、換言すれば、前
記U字管内に封入された水銀が前記弁機構の操作により
前記U字管内において往復運動するようにし、その往復
運動を前記検知手段により検知して、前記演算部により
被測定流体の流量を算出するようにして前記目的を達成
しようとするものである。
A predetermined amount of mercury is sealed in an upright U-shaped tube, and a detection means for detecting the movement of the mercury level is provided. When the fluid to be measured flows out from the other end when flowing in, and when the fluid to be measured flows into the other end, the fluid to be measured flows out from the one end, and the valve mechanism is operated to switch according to a detection signal from the detecting means. A calculation section is connected to the U-shaped tube and further calculates the flow rate of the fluid to be measured based on the detection signal from the detection means. In other words, the mercury sealed in the U-shaped tube is connected to the valve mechanism. The object is achieved by causing a reciprocating movement in the U-shaped tube by operation, detecting the reciprocating movement by the detecting means, and calculating the flow rate of the fluid to be measured by the calculating section. .

以下1本発明の実施例を図面に基づいて説明する。An embodiment of the present invention will be described below based on the drawings.

第1,2図には本発明による流量計の一実施例の概略構
成が示されており、第1図中弁機構としての四方切換弁
1の第1ボート2には流入管3が接続され、この流入管
3より被測定流体が四方切換弁1へと流入されるよう構
成されている。第1ポー)2に対向する位置の第2ポー
ト4には流出管5が接続され、この流出管5より被測定
流体が四方切換弁1より流出されるとともに、前記流出
管5には流出される被測定流体の温度、圧力検出器6が
必要に応じて設けられており、この温度、圧力検出器6
により被測定流体の温度、圧力が検出されるように7.
(つている。
1 and 2 show a schematic configuration of an embodiment of a flowmeter according to the present invention. In FIG. 1, an inflow pipe 3 is connected to a first boat 2 of a four-way switching valve 1 as a valve mechanism. The fluid to be measured is configured to flow into the four-way switching valve 1 through the inflow pipe 3. An outflow pipe 5 is connected to a second port 4 located opposite to the first port 2, and the fluid to be measured flows out from the four-way switching valve 1 through this outflow pipe 5, and also flows out into the outflow pipe 5. A temperature and pressure detector 6 for the fluid to be measured is provided as necessary.
7. so that the temperature and pressure of the fluid to be measured are detected.
(It's on.

四方切換弁1の弁体11には駆動機構12が接続されて
おり、@動機構12により駆動される弁体11が第1図
中実線で示される状態に位置されるときには、第1ボー
ト2と第4ボート9とが連通され且つ第2ポート4と第
3ポート7とが接続され、また、弁体11が鎖線で示さ
れる状態に位置されるよう回転駆動される場合には、第
1ボート2と第3ボート7とが連通され且つ第2ポート
4と第3ポート7とが連通されるよう構成されている。
A driving mechanism 12 is connected to the valve body 11 of the four-way switching valve 1, and when the valve body 11 driven by the driving mechanism 12 is positioned in the state shown by the solid line in FIG. and the fourth boat 9 are communicated, and the second port 4 and the third port 7 are connected, and when the valve body 11 is rotationally driven to be positioned as shown by the chain line, the first The boat 2 and the third boat 7 are configured to communicate with each other, and the second port 4 and the third port 7 are configured to communicate with each other.

また、四方切換5P1の第3ボート7にはU字管8の一
端が接続され、第4ポート9にはU字管8の他端が接続
されており、このU字管8内には水銀13が所定量、た
とえばU字管8内の水銀レベル13Aの移動する中間位
置に前記水銀レベル13Aが位置する量だけ封入されて
いる。
Further, one end of a U-shaped tube 8 is connected to the third boat 7 of the four-way switching 5P1, and the other end of the U-shaped tube 8 is connected to the fourth port 9. 13 is sealed in a predetermined amount, for example, an amount such that the mercury level 13A is located at an intermediate position within the U-shaped tube 8 where the mercury level 13A moves.

また、U字管8の形状、内径、全長はいずれも任意のも
のとなし得るが、耐久性、加工容易性。
Further, the shape, inner diameter, and overall length of the U-shaped tube 8 can all be arbitrary, but they are durable and easy to process.

適用範囲性等から内径(直径)については5.0 mm
〜10mm程度、全長については1.0%〜5.0m程
度であることが適当である。さらに、U字管8の材質は
ステンレス等の金属、あるいは硬質ガラス等が挙げられ
る。
The inner diameter (diameter) is 5.0 mm due to the applicable range etc.
Appropriately, the length is about 10 mm, and the total length is about 1.0% to 5.0 m. Further, the material of the U-shaped tube 8 may be metal such as stainless steel, hard glass, or the like.

前記U字管80両端側の直管状部分は垂直に立設されて
おり、一方の立役部(第1図中左側)には所定の間隔を
隔てて検知手段としての検知コイル14が2箇所に巻設
されている。
The straight tubular portions at both ends of the U-shaped tube 80 are vertically erected, and one of the vertical portions (on the left side in FIG. 1) has two detection coils 14 as a detection means spaced apart from each other by a predetermined distance. It is wrapped.

検知コイル14には、第2図に示されるように。The sensing coil 14 is as shown in FIG.

発振器21から増幅器22を介して所定の周波数の交流
信号が与えられる。周波数の大きさは特に制限されるも
のではないが、20KHz〜30KH7程度が適当であ
る。検知コイル14内に前記水銀レベル13Aが位置す
るか否かKより検知コイル14における交流信号の位相
に変化が生ずる。この検知コイル14における交流信号
と前記発振器21より発信される常時一定の交流信号と
の位相差は位相検波回路23において検知される。
An alternating current signal of a predetermined frequency is provided from an oscillator 21 via an amplifier 22. Although the magnitude of the frequency is not particularly limited, approximately 20 KHz to 30 KH7 is appropriate. Depending on whether or not the mercury level 13A is located within the detection coil 14, the phase of the alternating current signal in the detection coil 14 changes. The phase difference between the AC signal in the detection coil 14 and the constantly constant AC signal transmitted from the oscillator 21 is detected by the phase detection circuit 23.

前記位相差は、比較器24において所定の値より大きい
か否か比較され、前記位相差が所定の値に対して大なる
ときには比較器24から検知信号が制御部25および演
算部としてのマイクロコンピュータ26へと同時に与え
られる。検知信号が与えられた制御部25からは直ちに
駆動信号が前記駆動機構12へと与えられ、これにより
前記弁体11が回転駆動されて切換操作される。一方、
マイクロコンピュータ26においては、前記検知信号に
基づき被測定流体の流量が算出される。具体的には、2
つの検知コイル14間の水銀レベル13Aの移動時間を
検知信号より計測し、水銀レベル13Aの移動範囲に等
しいU字管8の内容積に基づく定数値を、換言すれば2
つの検知コイル14間におけるU字管8の内容積に基づ
く定数値を前記計測された移動時間で除すことにより流
量が算出される。この際、必要に応じて温度、圧力検出
器6より流体の温度、圧力データが入力されて適宜換算
が施され得るようになっている。また。
The phase difference is compared in a comparator 24 to see if it is larger than a predetermined value, and when the phase difference is larger than the predetermined value, a detection signal is sent from the comparator 24 to a control unit 25 and a microcomputer as an arithmetic unit. 26 at the same time. The control unit 25 to which the detection signal has been applied immediately applies a drive signal to the drive mechanism 12, whereby the valve body 11 is rotationally driven to perform a switching operation. on the other hand,
The microcomputer 26 calculates the flow rate of the fluid to be measured based on the detection signal. Specifically, 2
The travel time of the mercury level 13A between the two detection coils 14 is measured from the detection signal, and a constant value based on the internal volume of the U-shaped tube 8 that is equal to the travel range of the mercury level 13A is determined, in other words, 2
The flow rate is calculated by dividing a constant value based on the internal volume of the U-shaped tube 8 between the two sensing coils 14 by the measured travel time. At this time, the temperature and pressure data of the fluid are inputted from the temperature and pressure detector 6 as necessary, so that appropriate conversion can be performed. Also.

測定結果は、デジタル式あるいはアナログ式の表示器2
7により表示されるよう構成されている。
The measurement results are displayed on a digital or analog display 2.
7 is configured to be displayed.

次に1本実施例の作用につき説明する。Next, the operation of this embodiment will be explained.

四方切換弁1の弁体11を第1図中実線で示される回動
位置に停止させて流入管3より被測定流体を供給し、U
字管80図中右側の立設部内に被測定流体を流入させる
。流入された被測定流体により、右側の立設部内の水銀
レベルは下方側へと押下けられ、一方U字管8の図中左
側の立設部内の水銀レベル13Aは右側の水銀レベルが
押下げられた変位量に対応した量だけ上昇される。この
左側の立設部内の水銀レベル13Aの上昇に伴い、左側
の立設部内の被測定流体は四方切換弁1を介して流出管
5より流出される。
The valve body 11 of the four-way switching valve 1 is stopped at the rotational position shown by the solid line in FIG. 1, and the fluid to be measured is supplied from the inflow pipe 3.
The fluid to be measured is caused to flow into the upright portion on the right side of the tube 80 in the figure. The inflow of the fluid to be measured pushes the mercury level in the right-side upright part downward, while the mercury level 13A in the left-hand upright part of the U-shaped tube 8 in the figure is pushed down by the mercury level on the right side. It is raised by an amount corresponding to the amount of displacement. As the mercury level 13A in the left standing section rises, the fluid to be measured in the left standing section is discharged from the outflow pipe 5 via the four-way switching valve 1.

前記水銀レベル13Aが図中上方側に巻設された検知コ
イル14内に至ると、検知コイル14に通じである交流
信号の位相に変化が生じ、この位相変化は前記位相検波
回路23により検知され。
When the mercury level 13A reaches the detection coil 14 wound on the upper side in the figure, a change occurs in the phase of the AC signal leading to the detection coil 14, and this phase change is detected by the phase detection circuit 23. .

次いで比較器24により検知信号が与えられる。A sense signal is then provided by comparator 24.

比較器24で与えられる検知信号により前記制御部25
を介して前記駆動機構12が駆動されて四方切換弁1の
弁体11は第11ffl中鎖線で示される状態へと回転
駆動される。即ち、水銀レベル13Aが図中下方側に位
置する検知コイル14内に至ると、四方切換弁1の切換
操作がなされることとなる。
The control unit 25 uses the detection signal provided by the comparator 24.
The drive mechanism 12 is driven through the four-way switching valve 1, and the valve body 11 of the four-way switching valve 1 is rotationally driven to the state shown by the dashed line in the 11th ffl. That is, when the mercury level 13A reaches the inside of the detection coil 14 located on the lower side in the figure, the four-way switching valve 1 is switched.

四方切換弁1の弁体11が図中鎖線で示される状態に切
換えられると、流入管3より供給される被測定流体は、
第1図中左側の立設部内へと流入され、これにより前記
水銀レベル13Aは押下げられるとともに、右側の立設
部l内の被測定流体は四方切換弁1を介して流出管5よ
り流出される。
When the valve body 11 of the four-way switching valve 1 is switched to the state shown by the chain line in the figure, the fluid to be measured supplied from the inflow pipe 3 is
The mercury level 13A is pushed down by the mercury level 13A, and the fluid to be measured in the right upright part 1 flows out from the outflow pipe 5 through the four-way switching valve 1. be done.

左側の立役部内の水銀レベル13Aが下降して図中下方
側の検知コイル14内に至ると、この下方側の検知コイ
ル140位相に変化が生じ、この位相の変化は前記位相
検波回路23にて検知され、次いで比較器24にて検知
信号が与えられる。この検知信号に基づき制御部25を
介して前記駆動機構12が駆動され、四方切換弁1の弁
体11は再び図中実線で示される状態へと切換操作され
When the mercury level 13A in the vertical section on the left falls and reaches the detection coil 14 on the lower side in the figure, a change occurs in the phase of the detection coil 140 on the lower side, and this change in phase is detected by the phase detection circuit 23. It is detected and then a detection signal is provided by the comparator 24. Based on this detection signal, the drive mechanism 12 is driven via the control section 25, and the valve body 11 of the four-way switching valve 1 is again switched to the state shown by the solid line in the figure.

水銀レベル13Aは再び上昇することとなる。Mercury levels will rise again at 13A.

このようKして、水銀レベル13Aは2つの検知コイル
14間を往復運動するとともに、各検知コイル14内に
至った瞬間には検知信号が発生する。この検知信号に基
づき検知コイル14間の水銀レベル13Aの移動時間を
マイクロコンピュータ26により計測し、予めマイクロ
コンピュータ26内に記憶されているU字管8の前記2
つの検知コイル14間の内容積に基づく定数値を前記移
動時間で除して流量が算出され、算出された結果は前記
表示器27において測定値として表示される。
In this manner, the mercury level 13A reciprocates between the two detection coils 14, and a detection signal is generated at the moment it reaches each detection coil 14. Based on this detection signal, the microcomputer 26 measures the travel time of the mercury level 13A between the detection coils 14, and measures the travel time of the mercury level 13A between the detection coils 14.
The flow rate is calculated by dividing a constant value based on the internal volume between the two sensing coils 14 by the travel time, and the calculated result is displayed as a measured value on the display 27.

なお、被測定流体が、たとえば気体の場合には。Note that when the fluid to be measured is, for example, gas.

前記流出管5に設けた温度、圧力検出器6により被測定
流体の測定時の温度、圧力を検出し、この温度、圧力に
基づきマイクロコンピュータ26内において必要な換算
を施して標準状態の体積流量として表示器27において
表示するようにしてもよい。
The temperature and pressure at the time of measurement of the fluid to be measured are detected by the temperature and pressure detector 6 provided in the outflow pipe 5, and the necessary conversion is performed in the microcomputer 26 based on the temperature and pressure to determine the volumetric flow rate in the standard state. It may also be displayed on the display 27 as follows.

このような本実施例によれば次のような効果がある。This embodiment has the following effects.

U字管8内において水銀13を往復運動させる構造であ
る為、たとえばシリンダ内にピストンを封入して前記ピ
ストンを往復運動させるような場合と異なり、別言すれ
ば、シリンダ内に固体を摺動させるような場合と異なり
、被測定流体の漏洩が極めて少ナク、あるいは皆無であ
る為、被測定流体の漏洩に基づく測定誤差を解消させる
ことができるという効果がある。
Since the structure is such that the mercury 13 is reciprocated within the U-shaped tube 8, it is different from the case where a piston is enclosed in a cylinder and the piston is reciprocated. Unlike the case where the fluid to be measured is leaked, there is very little or no leakage of the fluid to be measured, so there is an effect that measurement errors due to leakage of the fluid to be measured can be eliminated.

また、シリンダ内に固体であるピストンを往復運動させ
る場合にはシリンダ内壁とピストン外周との摩擦に基づ
く圧力損失が生ずるが、U字管8円における水銀13は
U字管8の内壁をあたがも濡らすようにしながら内部流
動して往復運動するものである為、別言すれば、U字管
8円の水銀13はU字管8の内壁に摩擦接触しながら往
復運動するものではない為に、水銀13の往復運動に基
づ(圧力損失は極めて少ない。従って、この点からも高
圧流体を高精度測定することができるという効果がある
Furthermore, when a solid piston is reciprocated in a cylinder, a pressure loss occurs due to friction between the inner wall of the cylinder and the outer periphery of the piston, but the mercury 13 in the U-shaped tube 8 hits the inner wall of the U-shaped tube 8. In other words, the mercury 13 in the U-shaped tube 8 does not move back and forth while making frictional contact with the inner wall of the U-shaped tube 8. In addition, based on the reciprocating motion of the mercury 13 (pressure loss is extremely small), this also has the effect of allowing high-pressure fluid to be measured with high precision.

更に、水銀13はU字管80曲管部をも密閉状態を維持
したまま容易に移動できる為、固体の移動子を曲管部内
を移動させる場合と異なり、被測定流体の漏洩防止の為
の伺らの手段を構する必要もな(、全体として極めて簡
易な構造とすることができる。
Furthermore, since the mercury 13 can be easily moved through the U-shaped tube 80 while maintaining a sealed state, unlike when moving a solid moving element inside the bent tube, it is necessary to There is no need to prepare any additional means (the structure as a whole can be extremely simple).

しかも、水銀レベル13Aの移動をU字管8に蓚設され
た検知コイル140位相変化に基づいて検知するもので
ある為、水銀レベル13の移動を検知する検知手段自体
の構成をも簡易なものとすることができ、この点からも
全体として構造が簡易で1組立ても容易な流量計とする
ことができる。
Moreover, since the movement of the mercury level 13A is detected based on the phase change of the detection coil 140 installed in the U-shaped tube 8, the configuration of the detection means itself for detecting the movement of the mercury level 13 is simplified. From this point of view as well, the flowmeter has a simple structure as a whole and is easy to assemble.

更には、前記2つの検知コイル14間の内容積さえ高精
度に求めておけば、U字管8の内壁をそれ根病精度加工
させた(とも、十分高精度な測定結−果を得ることがで
きるものである。
Furthermore, as long as the internal volume between the two sensing coils 14 is determined with high precision, the inner wall of the U-shaped tube 8 can be machined with great precision. It is something that can be done.

また、被測定流体の漏洩がない為、被測定流体として毒
性、引火性等を有する種々の危険な気体を用いても安全
であるという効果がある。
Furthermore, since there is no leakage of the fluid to be measured, there is an effect that it is safe even when various dangerous gases having toxicity, flammability, etc. are used as the fluid to be measured.

なお、実施にあたり、U字管80両端側より適宜被測定
流体を切換えながら流出入する弁機構は四方切換弁1で
あるとしたが、四方切換弁1に盟らずこれと同様の作用
をする。たと”えば、複数の開閉弁が組合わされてなる
もの等であってもよい。
In the implementation, it was assumed that the valve mechanism that flows in and out of the U-shaped pipe 80 while appropriately switching the fluid to be measured is the four-way switching valve 1; . For example, it may be a combination of a plurality of on-off valves.

また、検知手段としての検知コイル14は所定の間隔を
隔ててU字管802箇所に巻設されるものとしたが、3
箇所以上に巻設され且つ被測定流体の流量に応じて適宜
選択的に前記3個以上の検知コイルより2つの検知コイ
ルを選んで用いるようにしてもよいし、あるいは、検知
コイル14を各々巻設位置変位可能とし、これにより検
知コイル14間の間隔を適宜変位調整可能なものとして
もよい。
In addition, the detection coil 14 as a detection means was assumed to be wound around two U-shaped tubes 802 at a predetermined interval, but three
Two sensing coils may be selected and used from the three or more sensing coils that are wound at more than one location and are used selectively depending on the flow rate of the fluid to be measured, or alternatively, the sensing coils 14 may be wound around each of the three or more sensing coils. The installation position may be movable, so that the distance between the detection coils 14 can be adjusted as appropriate.

また、検知コイル14に生ずる位相変化を、位相検波回
路23において検知し、且つ比較器24において検知コ
イル14内を移動する水銀レベル13Aの移動を検知コ
イル14に生ずる位相変化の状態から求めるようにした
が、位相変化を位相検波回路23において検知し、比較
器24によりパルスを発生させ、マイクロコンピュータ
26により、単位時間当り発生したパルスを計測し、こ
のパルス数にU字管8の内容積に基づく定数を乗じて流
量を求めることとしてもよい。あるいは、検知コイル1
4内を移動する水銀レベル13Aの速度によりコイル1
4に生ずる位相変化状態が異なることから、別言すれば
、同じく位相変化するものではあっても、速く移動する
ときと遅く移動するときとでは位相変化の状態は互いに
異なるものであることから、この位相変化の状態を把え
て流量を算出するようにしてもよい。この場合は1つの
検知コイルで足ることとなる。
Further, the phase change occurring in the detection coil 14 is detected by the phase detection circuit 23, and the movement of the mercury level 13A moving within the detection coil 14 is determined by the comparator 24 from the state of the phase change occurring in the detection coil 14. However, the phase change is detected by the phase detection circuit 23, the comparator 24 generates a pulse, the microcomputer 26 measures the pulses generated per unit time, and calculates the internal volume of the U-shaped tube 8 into the number of pulses. The flow rate may also be determined by multiplying by a constant based on the flow rate. Alternatively, the detection coil 1
Due to the speed of the mercury level 13A moving in coil 1
In other words, even though the phase changes are the same, the phase change states are different when moving quickly and when moving slowly. The flow rate may be calculated by grasping the state of this phase change. In this case, one detection coil is sufficient.

更には、検知手段は検知コイル14に限らず、リードス
イッチ等の磁気的検出器や発光素子受光素子等の光学的
検出器等を用いるものであってもよい。
Furthermore, the detection means is not limited to the detection coil 14, but may be a magnetic detector such as a reed switch, an optical detector such as a light emitting element or light receiving element, or the like.

更にまた。U字管8の両端側の立設部は必ずしも垂直に
立設されている必要はなく、傾いた状態で立設されるも
のであってもよい。
Yet again. The upright portions at both ends of the U-shaped tube 8 do not necessarily need to be vertically erected, and may be erected in an inclined state.

上述のよ5に本発明によれば、構造が簡易で。As mentioned above, according to the present invention, the structure is simple.

高圧流体の高精度測定の可能な流量計を提供できる。A flowmeter capable of highly accurate measurement of high-pressure fluid can be provided.

次に、以下の実験例により本発明を更に詳細に説明する
。・ 実施例 内直径6.2 wn、全長2−のステンレスチューブに
よりU字管8を形成するとともに、四方切換弁1として
ホーク社製のアクチュエータ付四方切換弁を採用し、被
測定流体としての水素ガスを供給して、この水素ガスを
温度25℃、圧力22okl/2αm ・Gの高圧下で、流量を50〜100ONL/hrの間
で種々変化させながら、流量測定を行なった。この結果
、誤差範囲は、±0.5%以内であり、しかも被測定流
体である水素ガスのガス漏れは検知されず、高精度且つ
安全に流量測定ができることが確認された。
Next, the present invention will be explained in more detail using the following experimental examples. - The U-shaped tube 8 was formed by a stainless steel tube with an inner diameter of 6.2 wn and a total length of 2 mm, and a four-way switching valve with an actuator manufactured by Hawk was used as the four-way switching valve 1, and hydrogen was used as the fluid to be measured. Gas was supplied, and the flow rate of the hydrogen gas was measured at a temperature of 25 DEG C. and a high pressure of 22 okl/2.alpha.m.G while varying the flow rate between 50 and 100 ONL/hr. As a result, it was confirmed that the error range was within ±0.5%, and no leakage of hydrogen gas, which was the fluid to be measured, was detected, making it possible to measure the flow rate with high precision and safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による流量計の一実施例の概略構成を示
す正面図、第2図は前記実施例の回路図である。 1・・・弁機構としての四方切換弁、3・・・流入管。 5・・・流出管、8・・・U字管、11・・・弁体、1
2・・・駆動機構、13・・・水銀、13A・・・水候
レベル、14・・・検知手段としての検知コイル、21
・・・発振器、23・・・位相検波回路、24・・・比
較器、25・・・制御器、26・・・演算部としてのマ
イクロコンピュータ。 2T・・・表示器。 代理人 弁理士 木 下 實 三 (ほか1名)
FIG. 1 is a front view showing a schematic configuration of an embodiment of a flowmeter according to the present invention, and FIG. 2 is a circuit diagram of the embodiment. 1... Four-way switching valve as a valve mechanism, 3... Inflow pipe. 5...Outflow pipe, 8...U-shaped pipe, 11...Valve body, 1
2... Drive mechanism, 13... Mercury, 13A... Water temperature level, 14... Detection coil as detection means, 21
...Oscillator, 23.. Phase detection circuit, 24.. Comparator, 25.. Controller, 26.. Microcomputer as an arithmetic unit. 2T...Indicator. Agent: Patent attorney Minoru Kinoshita (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1)両端側が立設されているU字管と、U字管内に所
定量封入された水銀と、水銀レベルの移動を検知する検
知手段と、前記U字管の一端に被測定流体を流入させる
ときには他端より被測定流体を流出させ前記他端に被測
定流体を流入させるときには前記一端より被測定流体を
流出させ且つ前記検知手段による検知信号に応じて切換
操作される弁機構と、前記検知手段による検知信号に基
づき被測定流体の流量を算出する演算部と、が偏見られ
ることを特徴とする流量計。 (2、特許請求の範囲第1項において、前記検知手段は
前記U字管の少な(とも2箇所に巻設された検知コイル
よりなり、水銀レベルの検知コイル内の出入に伴う検知
コイルの電流の位相変化により前記水銀レベルの移動が
検知されるよう構成されることをtrj徴とする流量計
(1) A U-shaped tube with both ends erected, a predetermined amount of mercury sealed in the U-shaped tube, a detection means for detecting movement of the mercury level, and a fluid to be measured flowing into one end of the U-shaped tube. a valve mechanism that causes the fluid to be measured to flow out from the other end when the fluid is to be measured, and causes the fluid to be measured to flow out from the one end when the fluid to be measured is to flow into the other end, and is switched in response to a detection signal from the detection means; A flowmeter characterized in that a calculation section that calculates a flow rate of a fluid to be measured based on a detection signal from a detection means is biased. (2. In claim 1, the detection means consists of a detection coil wound in two places in the U-shaped tube, and the current of the detection coil as the mercury level moves in and out of the detection coil. A flow meter configured to detect a movement of the mercury level by a phase change of the mercury level.
JP20833482A 1982-11-26 1982-11-26 Flowmeter Pending JPS5997010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20833482A JPS5997010A (en) 1982-11-26 1982-11-26 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20833482A JPS5997010A (en) 1982-11-26 1982-11-26 Flowmeter

Publications (1)

Publication Number Publication Date
JPS5997010A true JPS5997010A (en) 1984-06-04

Family

ID=16554544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20833482A Pending JPS5997010A (en) 1982-11-26 1982-11-26 Flowmeter

Country Status (1)

Country Link
JP (1) JPS5997010A (en)

Similar Documents

Publication Publication Date Title
EP0332690A1 (en) Enhanced pressure measurement flow control system
US4829808A (en) Flow meter prover apparatus and method
JPS62501992A (en) Method and apparatus for measuring flow characteristics of a positive displacement flowmeter
CN110261100A (en) Valve detection method and valve detection system
JPS5997010A (en) Flowmeter
US4067239A (en) Adding flowmeter
EP0033905B1 (en) Microflow transducer
JPS60168974A (en) Flow-rate control valve
US4041756A (en) Force-type flowmeter
JP3637988B2 (en) Flow meter testing device
JPS6039967B2 (en) Flow measurement and adjustment device
JPS6173024A (en) Piston prober
KR100406859B1 (en) Fluidistor meter for liquids
JPS6425011A (en) Mass flowmeter
US3535926A (en) Device and process for the measurement of fluid flow,especially pulsed liquid flow
JPH07209037A (en) Flow meter
RU2130589C1 (en) Flow meter
RU2331852C2 (en) Device for measurement of fluid reagent flow rate
SU682767A1 (en) Device for calibrating flow meters
SU1569552A1 (en) Flowmeter of viscous products
JPH01119722A (en) Flow rate detector
SU699332A1 (en) Rate-of-flow meter
JP2003315117A (en) Method and device for detecting flow rate of fluid, and supplying device thereof
NL8105339A (en) METHOD FOR MEASURING A FLUID FLOW AND DEVICE FOR ITS EXECUTION
RU2057295C1 (en) Flowmeter