JPS5996869A - Controller for 3-phase ac load - Google Patents

Controller for 3-phase ac load

Info

Publication number
JPS5996869A
JPS5996869A JP57206542A JP20654282A JPS5996869A JP S5996869 A JPS5996869 A JP S5996869A JP 57206542 A JP57206542 A JP 57206542A JP 20654282 A JP20654282 A JP 20654282A JP S5996869 A JPS5996869 A JP S5996869A
Authority
JP
Japan
Prior art keywords
phase
load
digital information
signal
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57206542A
Other languages
Japanese (ja)
Inventor
Kazuo Miki
三木 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M SYST GIKEN KK
Original Assignee
M SYST GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M SYST GIKEN KK filed Critical M SYST GIKEN KK
Priority to JP57206542A priority Critical patent/JPS5996869A/en
Publication of JPS5996869A publication Critical patent/JPS5996869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/27Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency

Abstract

PURPOSE:To simplify the mechanism of a controller for a 3-phase AC load by varying the period of a control signal and a pulse time width by the prescribed relationship to the input signal by a microcomputer, thereby continuously controlling phase direction and phase frequency of 3-phase current. CONSTITUTION:A 3-phase AC power source drives and controls a 3-phase induction motor 12 through a 3-phase transformer 11 and switching transistors 13-15. When controlling ON or OFF the transistors 13-15, the desired digital information n is set through an A/D converter 2 from an external control input circuit 1, and is converted through the first table 3 and the second table 4 formed of ROM into information T representing the periods and information B representing the pulse time width. Output signals t1-t3 are obtained from this, a clock signal 6 counted by a counter 5, and a reset signal R of the period T fed from a commercial power source through a zero cross detector 8 and the prescribed detecting means 9, 3-phase pulse signals P1-P3 are formed through a oneshot multivibrator 7, thereby controlling the transistors 13-15.

Description

【発明の詳細な説明】 本発明は三相交流負荷の制御装置に関し、例えば、三相
誘導電動機の制御装置1周波数変換装置。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a three-phase AC load control device, for example, a three-phase induction motor control device 1 frequency conversion device.

周波数安定化装置などに適用できるものである。This can be applied to frequency stabilization devices, etc.

本発明の目的は、マイクロコンピュータを用いてスイッ
チングトランジスタをオンオフ制御することにより、商
用三相交流電源から任意の周波数。
The purpose of the present invention is to control switching transistors on and off using a microcomputer, so that a commercial three-phase AC power source can be used at any frequency.

任意の実効電流値の三相交流電源を得てこれを負荷に供
給する方式の三相交流負荷の制御装置を提供することに
ある。
An object of the present invention is to provide a control device for a three-phase AC load that obtains a three-phase AC power source with an arbitrary effective current value and supplies it to the load.

本発明の三相交流負荷の制御装置は、デジタル情報(n
)を周期を表すデジタル情報(T)に変換する第1のテ
ーブルと、上記デジタル情報(n)をパルス時間幅を表
すデジタル情報(B)に変換する第2のテーブルと、上
記デジタル情報(T)で定まる周期ごとに上記デジタル
情報(B)で定まるパルス幅の制御信号を出力する制御
信号出力手段と、三相交流電源から三相負荷に至る回路
中に設けられ且つ上記制御信号によりオンオフ制御され
るスイッチングトランジスタを有し、上記三相負荷に至
る三相電流の相方向、和周波数を連続的に制御するよう
構成されていることを特徴としている。
The three-phase AC load control device of the present invention provides digital information (n
) into digital information (T) representing the period; a second table converting the digital information (n) into digital information (B) representing the pulse time width; ) control signal output means for outputting a control signal with a pulse width determined by the digital information (B) at intervals determined by the above digital information (B); The present invention is characterized in that it has a switching transistor, and is configured to continuously control the phase direction and sum frequency of the three-phase currents that reach the three-phase load.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図に3相パルスと3個のスイッチングトランジスタ
による3相交流負荷の制御装置の実施例を示す。
FIG. 1 shows an embodiment of a control device for a three-phase AC load using three-phase pulses and three switching transistors.

外部制御入力回路1は正電源+■と負電源−■間に接続
された可変抵抗器VRから成り、その可変端子から所望
のアナログ電位Vが設定される。
The external control input circuit 1 consists of a variable resistor VR connected between a positive power supply +■ and a negative power supply -■, and a desired analog potential V is set from its variable terminal.

A−D変換器2は設定されたアナログ電位■をデジタル
情報(n)に変換する。ROMから成る第■のテーブル
3は、デジタル情報(n)を周期を表すデジタル情報(
T)に変換する。ROMから成る第2のテーブル4は、
デジタル情報(n)゛をパルス時間幅を表すデジタル情
報(B)に変換する。カウンタ5はクロ7り発生器6の
クロック信号を計数しながらリセット状態から1/3T
、2/3T及びTを計数するごとに出力信号t1.  
t2.t3を発し、周期Tごとにリセットを繰返す。ワ
ンショット・マルチバイブレーク7は出力信号a1゜a
2+  a3が出力されたのちデジタル情報(B)に対
応する時間幅の3相のパルス信号Pi、P2゜P3を出
力する。周期Tが後述する所定値1/F1近傍のときに
は、外乱により所定値がふらついても商用電源周波数に
対し一定の関係を保つための不感帯が設けられ、この所
定値は商用交流電源に同期して維持される。そのために
、商用電源のゼロクロス検出器8、所定値1/F1近傍
を検出する所定値検出手段9が設けられ、所定値検出時
には商用交流電源に同期したリセット信号Rがカウンタ
5に入力される。
The AD converter 2 converts the set analog potential ■ into digital information (n). The third table 3 consisting of ROM converts digital information (n) into digital information (n) representing the period.
Convert to T). The second table 4 consisting of ROM is
The digital information (n) is converted into digital information (B) representing the pulse time width. The counter 5 starts from the reset state by 1/3T while counting the clock signal of the clock generator 6.
, 2/3T and T, the output signal t1.
t2. t3 and repeats the reset every cycle T. One-shot multi-by-break 7 output signal a1゜a
After outputting 2+a3, three-phase pulse signals Pi, P2°P3 having a time width corresponding to the digital information (B) are outputted. When the period T is near a predetermined value 1/F1, which will be described later, a dead zone is provided to maintain a constant relationship with the commercial power supply frequency even if the predetermined value fluctuates due to disturbance, and this predetermined value is synchronized with the commercial AC power supply. maintained. For this purpose, a zero cross detector 8 of the commercial power supply and a predetermined value detection means 9 for detecting the vicinity of the predetermined value 1/F1 are provided, and when the predetermined value is detected, a reset signal R synchronized with the commercial AC power supply is input to the counter 5.

上述した第1及び第2のテーブル3,4、カウンタ5、
クロックパルス発生器6、ワンショット・マルチバイブ
レーク7、所定値検出手段9は、マイクロコンピュータ
及びそのソフトウェアにより実施することができる。
The above-mentioned first and second tables 3, 4, counter 5,
The clock pulse generator 6, the one-shot multi-by-break 7, and the predetermined value detection means 9 can be implemented by a microcomputer and its software.

一方、三相商用交流電源の入力端子R,S、Tから三相
トランス11を経て3相交流出力端子U。
On the other hand, the input terminals R, S, and T of the three-phase commercial AC power supply are passed through the three-phase transformer 11 to the three-phase AC output terminal U.

v、Wに至る回路が形成され、出力端子U、  V’。A circuit leading to V and W is formed, and output terminals U and V'.

Wに3相負荷、例えば3相誘導電動m12が接続されて
いる。
A three-phase load, for example, a three-phase induction motor m12, is connected to W.

三相トランス11は、3相−次巻線Ll、L2゜L3と
二次巻線Ln、LL2.Lt3.L2+、LZ2゜L2
3.  L31.  L32.  L33を有し、Ll
に対してLu、Ll2.leaが最も密に磁気結合し、
L2に対してL2+、  LZ2.  LZ3が最も密
に磁気結合し、L3に対してL31.  L32.  
L33が最も密に磁気結合している。そして、Ll2.
L23.L3sの一端が共通接続されて出力端子Uに接
続され、Ll3゜L21.  L32の一端が共通接続
されて出力端子■に接続され、Lll、  L22. 
 L33の一端が共通接続されて出力端子Wに接続され
ている。また、Lll。
The three-phase transformer 11 includes three-phase primary windings Ll, L2°L3 and secondary windings Ln, LL2. Lt3. L2+, LZ2゜L2
3. L31. L32. has L33 and Ll
For Lu, Ll2. lea has the tightest magnetic coupling,
L2+, LZ2. LZ3 is most closely magnetically coupled to L3, and L31. L32.
L33 has the tightest magnetic coupling. And Ll2.
L23. One end of L3s is commonly connected to the output terminal U, and L13°L21. One end of L32 is commonly connected to the output terminal ■, Lll, L22.
One end of L33 is commonly connected to the output terminal W. Also, Lll.

L 21 、  L 31の他端は第1のスイッチング
回路13に接続され、L12.  L22.  L32
の他端は第2のスイッチング回路14に接続され、Lt
a、  L23.  I、33の他端は第3のスイッチ
ング回路15に接続されている。各スイッチング回路1
3’、14又は15は、いずれも第3図に示すように構
成されている。
The other ends of L21, L31 are connected to the first switching circuit 13, and L12. L22. L32
The other end is connected to the second switching circuit 14 and Lt
a, L23. The other end of I, 33 is connected to the third switching circuit 15. Each switching circuit 1
3', 14, or 15 are each constructed as shown in FIG.

すなわち、二次巻線の各他端a*  1)+  Cには
3相全波整流器16が接続され、その整流出方端子d。
That is, a three-phase full-wave rectifier 16 is connected to each other end a*1)+C of the secondary winding, and its rectified output terminal d.

eにスイッチング用パワートランジスタ17のエミッタ
、コレクタ端子が接続され、ベース端子は、前述した3
相のパルス信号PI 、P2.P3のいずれかPにより
作動するホトカブラ18の出方を増幅する増幅器19の
出方端子に接続される。
The emitter and collector terminals of the switching power transistor 17 are connected to e, and the base terminal is connected to the aforementioned 3
Phase pulse signals PI, P2. It is connected to the output terminal of an amplifier 19 that amplifies the output of the photocoupler 18 activated by one of P3.

次に上記実施例の作用を説明する。外部制御入力口g&
1の可変抵抗の設定によりアナログ電位Vが定まり、そ
れに従いデジタル情報(n)が定まる。テーブル3及び
4により周期(T)とパルス幅(B)が一義的に定まる
。カウンタ5の出力信号a1+  a2+a3及び3相
パルス信号P+、P2゜F3のタイムチャートを第3図
に示す。この3相パルス信号Pの周波数rpが商用電源
周波数F1の近傍にあるときだけ、商用交流のゼロクロ
ス信号により同期をかけ、強制的にfp=F+にしてい
る。従って、可変抵抗を連続的に変化させたときのアナ
ログ電位Vとパルス信号Pの周波数fpの関係は第4図
に示すようにfp =FI近傍において不連続部分が生
じ、不感帯を形成している。
Next, the operation of the above embodiment will be explained. External control input port g&
The analog potential V is determined by setting the variable resistor 1, and the digital information (n) is determined accordingly. Tables 3 and 4 uniquely define the period (T) and pulse width (B). A time chart of the output signals a1+a2+a3 of the counter 5 and the three-phase pulse signals P+, P2°F3 is shown in FIG. Only when the frequency rp of this three-phase pulse signal P is near the commercial power supply frequency F1, synchronization is applied by the commercial AC zero-cross signal to force fp=F+. Therefore, when the variable resistance is continuously changed, the relationship between the analog potential V and the frequency fp of the pulse signal P has a discontinuous portion near fp = FI, forming a dead zone, as shown in Figure 4. .

ワンショットマルチバイブレーク7の出力信号Pとスイ
ッチング回路13,14.15の関係は、信号P1が、
Hiレベルのときスイッチング回路13のパワートラン
ジスタが導通し、LOレベルのとき遮断する。同様に、
信号P2によりスイ・ノチング回路14のパワートラン
ジスタ14が開閉し、信号P3によりスイッチング回路
15のパワートランジスタ15が開閉する。パルス信号
PI+P2.Paのうち同時に2つ以上がHtレベルに
なることはなく、従って3個のスイッチング回路13.
14.15のうち2個以上が同時に導通することはない
、3個のスイッチング回路がともにオンのときは出力端
子U、 V、 Wに電圧は現れない。第1のスイッチン
グ回路13がオンになると、全波整流器16を構成する
ダイオードとトランジスタ17のエミッタ、コレクタ回
路によりa、b。
The relationship between the output signal P of the one-shot multi-by-break 7 and the switching circuits 13, 14, and 15 is that the signal P1 is
The power transistor of the switching circuit 13 is conductive when it is at Hi level, and is cut off when it is at LO level. Similarly,
The power transistor 14 of the switching circuit 14 is opened and closed by the signal P2, and the power transistor 15 of the switching circuit 15 is opened and closed by the signal P3. Pulse signal PI+P2. Two or more of the switching circuits 13.
14. Two or more of 15 are never conductive at the same time. When all three switching circuits are on, no voltage appears at the output terminals U, V, and W. When the first switching circuit 13 is turned on, the emitter and collector circuits of the diode and transistor 17 forming the full-wave rectifier 16 cause the signals a and b to be turned on.

C各点間の回路が形成され、出力端子U、 V、 W間
に電圧が現れる。同様にして、第2.第3のスイッチン
グ回路14.15がオンになったときにも出力端子間に
電圧が現れる。
A circuit is formed between each point C, and a voltage appears between the output terminals U, V, and W. Similarly, the second. A voltage also appears across the output terminals when the third switching circuit 14.15 is turned on.

制御信号pi 、F2.Paの周波数をfp  (ただ
しfp =1/T) 、三相トランスの一次側入力の周
波数をFl、出力端子に現れる最も低次の交流周波数を
F2とすれば、 F2 =rp −Fl      ・・・ (1)の関
係が成立する。従って、第7図に示すように外部制御入
力回路lの設定電位Vを連続的に変化させることにより
、出力端子U、V、Wの交流周波数F2を、任意かつ連
続的に制御することができる。
Control signal pi, F2. If the frequency of Pa is fp (where fp = 1/T), the frequency of the primary side input of the three-phase transformer is Fl, and the lowest AC frequency appearing at the output terminal is F2, then F2 = rp - Fl... The relationship (1) holds true. Therefore, by continuously changing the set potential V of the external control input circuit 1 as shown in FIG. 7, the AC frequency F2 of the output terminals U, V, and W can be arbitrarily and continuously controlled. .

第5図ないし第8図に制御信号の周波数fpを変化させ
たときの各部の波形図を示す。
FIGS. 5 to 8 show waveform diagrams of various parts when the frequency fp of the control signal is changed.

第5図は、fp=2F+の場合を示し、従って(1)式
から明らかなように、出力端子U、V、Wには、 F2 =fp −Fl =F+ の周波数成分を基本とする波形が現れている。なお、パ
ターン波形P1.P2.P3と重ねて、入力の正弦波形
が参考用として画かれている。
Fig. 5 shows the case where fp = 2F+, and therefore, as is clear from equation (1), the output terminals U, V, and W have a waveform based on the frequency component of F2 = fp - Fl = F+. It's appearing. Note that the pattern waveform P1. P2. The input sine waveform is drawn for reference overlapping P3.

第6図は、fp=FIの場合を示している。この場合は
(1)式から明らかなように、2−0 となる。このとき誘導電動機12は全く回転せず、しか
も出力軸に外力が加わるとトルクを発生する。
FIG. 6 shows the case where fp=FI. In this case, as is clear from equation (1), the ratio is 2-0. At this time, the induction motor 12 does not rotate at all, and generates torque when an external force is applied to the output shaft.

第7図は、fp=2/3  ・Flの場合を示しており
、この場合は、 F2 =fp −Fl =−Fl /3となる。従って
、誘導電動機は逆回転しその時の同期回転数は原周波数
F+の場合の1/3となる。
FIG. 7 shows the case where fp=2/3.Fl, in which case F2=fp-Fl=-Fl/3. Therefore, the induction motor rotates in reverse, and the synchronous rotational speed at that time becomes 1/3 of that at the original frequency F+.

第8図は、fp=F2/2の場合を示しており、この場
合は、 F2 =fp−F、=〜F2/2 となる。
FIG. 8 shows the case where fp=F2/2, in which case F2=fp-F,=~F2/2.

本発明の制御信号Pは三相パルスのみに限らず任意の整
数相において実施することができる。第9図に1相パル
スP1により1個のスイッチング回路20を開閉する回
路構成図を示し、第10図にrp >Flの場合、第1
1図にfp<Flの場合の出力波形例を示す。また、第
12図に2相パルスp1.F2により2個のスイッチン
グ回路21.22を開閉する回路構成図を示し、第13
図にその出力波形例を示す。
The control signal P of the present invention is not limited to three-phase pulses, but can be implemented in any integer phase. FIG. 9 shows a circuit configuration diagram for opening and closing one switching circuit 20 by one-phase pulse P1, and FIG. 10 shows that when rp > Fl, the first
Figure 1 shows an example of the output waveform when fp<Fl. In addition, FIG. 12 shows two-phase pulse p1. A circuit configuration diagram showing the opening and closing of two switching circuits 21 and 22 by F2 is shown, and the 13th
The figure shows an example of the output waveform.

本発明のデジタル情報(n)は、実施例に示したように
アナログ電位設定器とAD変換器の組合わせによるほか
、デジタル設定器、デジタル演算出力、コンピュータプ
ログラム、測定データ又はそれと基準値との偏差などに
より設定することができる。
The digital information (n) of the present invention can be obtained not only by the combination of an analog potential setting device and an AD converter as shown in the embodiments, but also by the combination of a digital setting device, a digital calculation output, a computer program, measurement data, or a reference value. It can be set according to deviation, etc.

本発明によれば、制御信号の周期とパルス時間幅を、第
1のテーブルと第2のテーブルの内容に従い入力信号と
所定の関係で変化さ世ることにより、三相交流負荷へ供
給する三相電流の相方向、和周波数を連続的に制御する
ことができるから、制御対象或いは用途に応じて第1及
び第2のテーブルの内容を変更するだけで、各種仕様を
満足させる電源装置を製作することができる。また、三
相負荷として三相誘導電動機を用いるときは、無段変速
機、クラッチ等を介在させることなく、制御対象を任意
方向、任意速度、任意の力で駆動することができ、制御
装置の機構部が簡素化される。
According to the present invention, the period and pulse time width of the control signal are changed in a predetermined relationship with the input signal according to the contents of the first table and the second table, thereby controlling the control signal to be supplied to the three-phase AC load. Since the phase direction and sum frequency of phase currents can be continuously controlled, power supplies that satisfy various specifications can be manufactured by simply changing the contents of the first and second tables depending on the control target or application. can do. Furthermore, when a three-phase induction motor is used as a three-phase load, the controlled object can be driven in any direction, at any speed, and with any force without the intervention of a continuously variable transmission, clutch, etc. The mechanical part is simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路構成図、第2図は
第1図のスイッチング回路13.14又は15の内容を
示す回路構成図である。第3図ないし第8図はいずれも
上記実施例の作用説明図であって、そのうち特に第5図
ないし第8図は出力波形例を示す図である。第9図は本
発明の他の実施例を示す回路構成図、第10図及び第1
1図はその作用説明図、第12図は本発明のさらに他の
実施例を示す回路構成図、第13図はその作用説明図で
ある。 3・・・第1のテーブル、 4・・・第2のテーブル 5・・・カウンタ 6・・・クロンク発生器 7・・・ワンショットマルチバイブレーク11・・・三
相トランス 12・・・三相誘導モータ 13.14.15・・・スイッチング回路17・・・ス
イッチングトランジスタ 11A、IIB・・・三相トランス 20.21.22・・・スイッチング回路特許出願人 
株式会社エム・システム技研代理人   弁理士 西 
 1)  新第9図 第12し。 第13図
FIG. 1 is a circuit configuration diagram showing one embodiment of the present invention, and FIG. 2 is a circuit configuration diagram showing the contents of the switching circuit 13, 14 or 15 in FIG. 1. All of FIGS. 3 to 8 are explanatory diagrams of the operation of the above embodiment, and especially FIGS. 5 to 8 are diagrams showing examples of output waveforms. FIG. 9 is a circuit configuration diagram showing another embodiment of the present invention, FIG.
1 is an explanatory diagram of its operation, FIG. 12 is a circuit configuration diagram showing still another embodiment of the present invention, and FIG. 13 is an explanatory diagram of its operation. 3...First table, 4...Second table 5...Counter 6...Kronk generator 7...One-shot multi-vibration break 11...Three-phase transformer 12...Three-phase Induction motor 13.14.15...Switching circuit 17...Switching transistor 11A, IIB...Three-phase transformer 20.21.22...Switching circuit Patent applicant
M-System Giken Co., Ltd. Agent Patent Attorney Nishi
1) New figure 9 figure 12. Figure 13

Claims (1)

【特許請求の範囲】 (11デジタル情報(n)を周期を表すデジタル情報(
T)に変換する第1のテーブルと、上記デジタル情報(
n)をパルス時間幅を表すデジタル情報(B)に変換す
る第2のテーブルと、上記デジタル情報(T)で定まる
周期ごとに上記デジタル情報(B)で定まるパルス幅の
制御信号を出力する制御信号出力手段と、三相交流電源
から三相負荷に至る回路中に設けられ、且つ上記制御信
号によりオンオフ制御されるスイッチングトランジスタ
を有し、上記三相負荷に至る三相電流の相方向。 相同波数を連続的に制御するよう構成された三相交流負
荷の制御装置。 (2)上記制御信号が1相パルス列であり、上記スイッ
チングトランジスタが1個である、特許請求の範囲第1
項記載の三相交流負荷の制御装置。 (3)  上記制御信号が2相パルス列であり、上記ス
イッチングトランジスタが2個である、特許請求の範囲
第1項記載の三相交流負荷の制御装置。 (4)  上記制御信号が3相パルス列であり、上記ス
イッチングトランジスタが3個である、特許請求の範囲
第1項記載の三相交流負荷の制御装置。 (5)上記三相負荷が三相誘導電動機である、特許請求
の範囲第2項、第3項又は第4項記載の三相交流負荷の
制御装置。
[Claims] (11 Digital information (n) is digital information representing a period (
T) and the first table to convert the digital information (
a second table for converting n) into digital information (B) representing a pulse time width; and control for outputting a control signal having a pulse width determined by the digital information (B) at each cycle determined by the digital information (T). A signal output means, and a switching transistor provided in a circuit leading from a three-phase AC power supply to a three-phase load and controlled on/off by the control signal, the phase direction of the three-phase current leading to the three-phase load. A three-phase AC load control device configured to continuously control homologous wave numbers. (2) Claim 1, wherein the control signal is a one-phase pulse train, and the number of switching transistors is one.
A control device for a three-phase AC load as described in . (3) The three-phase AC load control device according to claim 1, wherein the control signal is a two-phase pulse train and the number of switching transistors is two. (4) The three-phase AC load control device according to claim 1, wherein the control signal is a three-phase pulse train and the number of switching transistors is three. (5) The three-phase AC load control device according to claim 2, 3, or 4, wherein the three-phase load is a three-phase induction motor.
JP57206542A 1982-11-24 1982-11-24 Controller for 3-phase ac load Pending JPS5996869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57206542A JPS5996869A (en) 1982-11-24 1982-11-24 Controller for 3-phase ac load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57206542A JPS5996869A (en) 1982-11-24 1982-11-24 Controller for 3-phase ac load

Publications (1)

Publication Number Publication Date
JPS5996869A true JPS5996869A (en) 1984-06-04

Family

ID=16525099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57206542A Pending JPS5996869A (en) 1982-11-24 1982-11-24 Controller for 3-phase ac load

Country Status (1)

Country Link
JP (1) JPS5996869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005025044A1 (en) * 2003-09-09 2005-03-17 Honeywell International Inc. System and method utilizing a solid state power controller (sspc) for controlling an electrical load of a variable frequency three-phase power source
US8053685B2 (en) 2007-04-25 2011-11-08 Denso Corportion Metal wiring plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126298A (en) * 1981-01-29 1982-08-05 Toyo Electric Mfg Co Ltd Controlling method for inverter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126298A (en) * 1981-01-29 1982-08-05 Toyo Electric Mfg Co Ltd Controlling method for inverter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005025044A1 (en) * 2003-09-09 2005-03-17 Honeywell International Inc. System and method utilizing a solid state power controller (sspc) for controlling an electrical load of a variable frequency three-phase power source
US8053685B2 (en) 2007-04-25 2011-11-08 Denso Corportion Metal wiring plate

Similar Documents

Publication Publication Date Title
US4706180A (en) Pulse width modulated inverter system for driving single phase a-c induction motor
CA1279093C (en) Method and apparatus for controlling a rotating-field machine
EP0030462B1 (en) Induction motor drive apparatus
US4364109A (en) Control device of inverters
EP0174741A1 (en) Control system for permanent magnet synchronous motor
CA1203566A (en) Control and stabilizing system for damperless synchronous motor
JPS58151867A (en) Bidirectional 4-quadrant power converter
GB1503948A (en) Pulse width modulated circuit arrangement for producing alternating current power
CN1937386A (en) Method and apparatus for fault detection in a switching power supply
US7999497B2 (en) Device for controlling polyphase rotating machine
KR980012815A (en) Inverter control method and device
GB1600617A (en) Method of energising a load and converter system therefor
JPS6134693B2 (en)
JPS5996869A (en) Controller for 3-phase ac load
JPH04248328A (en) Portable generator
JPH07312898A (en) Three-phase electric inverter of variable-speed motor and its driving method
EP0154312B1 (en) Load drive apparatus
KR860700321A (en) Control method and device of synchronous motor
JPH01311889A (en) Controller for induction motor
JPS5849108B2 (en) Dengen Sochi
JP2705081B2 (en) DC intermediate voltage detection method for voltage source inverter device
SU754311A1 (en) Rotational speed-to-pulse train converter
JPH04364395A (en) Power converter
SU736329A1 (en) Method of control of multiphase electric drive
KR950007982Y1 (en) Speed control circuit of im