JPS599655A - Formation of resin pattern - Google Patents

Formation of resin pattern

Info

Publication number
JPS599655A
JPS599655A JP11943882A JP11943882A JPS599655A JP S599655 A JPS599655 A JP S599655A JP 11943882 A JP11943882 A JP 11943882A JP 11943882 A JP11943882 A JP 11943882A JP S599655 A JPS599655 A JP S599655A
Authority
JP
Japan
Prior art keywords
layer
resist
resin
forming
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11943882A
Other languages
Japanese (ja)
Inventor
Atsushi Ueno
上野 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11943882A priority Critical patent/JPS599655A/en
Publication of JPS599655A publication Critical patent/JPS599655A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer

Abstract

PURPOSE:To obtain a resist pattern mark good in precision of pattern transfer, by forming a resin layer on a substrate having a relief, and on this layer a layer of a resin having higher mol.wt. than that of the resin of said layer, and then, forming a pattern of the resin layer. CONSTITUTION:A silicon substrate 11 provided with about 500nm vertical level difference is coated as the first layer with a UV sensitive negative resist 12 controlled to 100-10,000 average mol.wt. in a condition of forming 100-1,000nm thickness on a flat base, and baked. The first layer is coated with a UV sensitive positive type resist 13 having 1,000-100,000 average mol.wt. in a condition of forming about 1,000nm thickness on a flat base, and selectively exposed to UV rays to form patterns 13a and 13b. The disclosed part of the undercoat negative resist film 12 is perfectly removed by using the resist 13 as a mask and the RIE method, and for example, the conditions of 10-100Torr, 200W, and several SCCM oxygen.

Description

【発明の詳細な説明】 本発明は樹脂パターンの形成方法に関し、特に凹凸状を
有した半導体基板表面に形成された被エツチング膜上に
、断面形状が急峻でかつ基板表面段差に影響されないパ
ターン転写精度の良いレジストマスクパターンを形成す
る方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a resin pattern, and in particular to a method for transferring a pattern that has a steep cross-sectional shape and is not affected by steps on the substrate surface onto a film to be etched formed on the surface of a semiconductor substrate having an uneven shape. The present invention provides a method for forming a highly accurate resist mask pattern.

半導体集積回路を製造する上で基板表面は薄膜の堆積エ
ツチングを繰り返す事により凹凸状になる。例えはMO
8型集積回路の製造を例にとるとi1図に示すように、
a I″in型シリコン基板1にpチャネルMO8)ラ
ンジスタのソース、ドレインのp型拡散領域5,6を形
成したところであり、フィールド酸化膜2を約7000
人(ンリコン基板表面から約3500人盛り上がってい
る。)、ゲート酸化膜3を約500人、ポリシリコン膜
4を約5000人としている。ここまでの工程で基板表
面の最大段差は、フィールド酸化膜3上のポリシリコン
膜4表面とゲート酸化膜3表面でその差約8000人と
なる。
In manufacturing semiconductor integrated circuits, the surface of a substrate becomes uneven due to repeated deposition and etching of thin films. For example, MO
Taking the manufacturing of an 8-inch integrated circuit as an example, as shown in Figure i1,
p-type diffusion regions 5 and 6 for the source and drain of a p-channel MO8) transistor have been formed on an in-type silicon substrate 1, and the field oxide film 2 is approximately 7000 m thick.
(approximately 3,500 people are raised from the surface of the silicon substrate), approximately 500 people for the gate oxide film 3, and approximately 5,000 people for the polysilicon film 4. In the steps up to this point, the maximum height difference on the substrate surface is about 8,000 between the surface of the polysilicon film 4 on the field oxide film 3 and the surface of the gate oxide film 3.

次に工程としてトランジスタの各電極の取りIBしにコ
ンタクト用窓開は工程を行う。これはb図に示すように
、a図の最終工程(ソース・ドレイン用拡散領域形成)
後、基板表面全体に厚さ5000へのンリコン酸化膜7
をCVD法により形成する。次にホトリソグラフィ一工
程により、シリコン酸化膜7上全面に感光性樹脂例えば
ポジ型感光性樹脂8(以下感光性樹脂をレジストと称す
る。)を、/リコン基板表τmが平坦な場合で約100
00人となる条件で塗布(スピンナによる関連回転塗布
)すると、レジストは粘性がある為、8図のような基板
表面に段差があっても凸部に薄<(q′!fにフィール
ド酸化膜上のボリンリコン膜表面)、四部に厚く(リー
ス・ドレイン拡散領域上のゲート酸化膜表向)なり、レ
ジスト膜厚の差として下地のパターン配置や断面形状で
異なるが、約5000〜8000人となる。
Next, as a step, a contact window opening step is performed to remove each electrode of the transistor. As shown in figure b, this is the final step in figure a (formation of source/drain diffusion regions).
After that, a silicon oxide film 7 is formed on the entire surface of the substrate to a thickness of 5000 mm.
is formed by CVD method. Next, by one photolithography process, a photosensitive resin such as a positive type photosensitive resin 8 (hereinafter, the photosensitive resin is referred to as a resist) is applied to the entire surface of the silicon oxide film 7 at a density of approximately 100% when the silicon substrate surface τm is flat.
If the resist is coated under the conditions of 0.00 (relevant rotational coating using a spinner), the resist is viscous, so even if there is a step on the substrate surface as shown in Figure 8, a thin field oxide film is formed on the convex parts (q′!f). The resist film thickness is approximately 5,000 to 8,000, although the difference in resist film thickness varies depending on the underlying pattern arrangement and cross-sectional shape. .

次にコンタクト窓開は用ガラスマスクを用いて例えば等
倍型反射投影露光装置を用いて紫外線をポジ型レジスト
8に照射すると、0図のようにコンタクト窓開孔部9と
10で、開孔寸法に差が生じ、凸部の開孔部9が大きく
、四部の開孔部10で小さくなる。この場合3μmマス
クとすると凸部と凹部の寸法差は約0.5μmとなる。
Next, when the positive resist 8 is irradiated with ultraviolet rays using a glass mask for contact window openings and, for example, a 1-magnification reflection projection exposure device, the contact window openings 9 and 10 are opened as shown in Figure 0. Differences occur in dimensions, with the aperture 9 of the convex portion being larger and the apertures 10 of the four portions being smaller. In this case, if a 3 μm mask is used, the dimensional difference between the convex portion and the concave portion will be approximately 0.5 μm.

これはポジ型レジストは寸法変形に対して紫外線の照射
量及び膜厚が影響する為であり、膜厚が一定であれば照
射計を太きくすると開孔部の寸法が太きくなる。照射量
が一定であれはレノスト膜厚の薄いほど開孔部の寸法が
大きくなる。これは特に等倍型反射投影露光方式に於い
て顕著である。実際にはし/スト膜厚は部分的に下地基
板の影響で異なり、紫外線の照射ポを部分的に任意に調
整して、寸法を制御する事は不可能であり、集積回路を
製造するに当たり、膜の堆積、エツチングを繰り返して
工6に進めると、基板表面に段差が発生し、レジスト等
の樹脂を塗布すると凸部と凹部で膜厚差が生じ、レジス
トパターン寸法をすべてに当たり、均一に制御すること
は不可能になってくる。
This is because the dimensional deformation of a positive resist is affected by the amount of ultraviolet irradiation and the film thickness; if the film thickness is constant, the diameter of the opening increases as the irradiation meter becomes thicker. As long as the irradiation dose is constant, the thinner the Lennost film is, the larger the size of the opening becomes. This is particularly noticeable in the same magnification reflection projection exposure method. In reality, the thickness of the film varies depending on the underlying substrate, and it is impossible to control the dimensions by partially adjusting the UV irradiation point. When proceeding to step 6 by repeating the film deposition and etching, steps will occur on the substrate surface, and when a resin such as resist is applied, a difference in film thickness will occur between the convex and concave areas. It becomes impossible to control.

本発明は上記問題点を考慮し、基板表面の四部と凸部上
に寸法が同等な樹脂パターンを形成さす為、被エツチン
グ膜上に複数の特有の樹脂層を設ける方法を用いるもの
であり、以下本発明の、実施例に沿って本発明の詳細な
説8J1する。
In consideration of the above problems, the present invention uses a method of providing a plurality of unique resin layers on the film to be etched in order to form a resin pattern with the same dimensions on the four parts and the convex parts of the substrate surface. A detailed explanation of the present invention will be given below along with examples.

第2図に於いて例えばンリコン基板11に5000人の
垂直な段差を設けた基板に於いて、寸ず第1実施例とし
て、第1層目に紫外線感光用ネガレジスト12の平均分
子量ヲ数百〜数千に制御し、平坦な基板上で数千入vc
yxる条件(例えば60cpで5000rprlで[【
事献塗布し、約80℃〜140’Cで数分〜数十分ベー
クする。次に第2層l=Iとして平均分子量数千〜数万
の紫外線感光用ポジ型レジスト13を平坦な基板で約1
oOoO人になる条件(例えば27cpで5o○Orp
m)で1[11転塗布する(第2図a) 次に紫外線を選択的に照射してポジ型レジスト13にパ
ターン13aと13bを形成する。この場合、ポジレジ
スト13の現像に於いて、下地のネガレジスト12は溶
解しない。又ネガレジスト120表面はほぼ平坦であり
、ポジレジスト13の膜厚もほぼ均一となる。その為ポ
ジレジストパターン13a、13bの形成時に下地基板
の凹凸部の影・響かなくなり、各々凸部上、凹部上のポ
ジレジストパターン13aと13bの寸法はほぼ同等と
なり、基板の四部上と凸部上のポジレジストパターン寸
法差はほぼ零となる。この時露光量を調整することによ
り(パターン焼付は方式を密着露光方式とする)、残さ
れたボジレンストマスク13の断面形状を急峻にするこ
とかできる。
In FIG. 2, for example, in a substrate in which 5,000 vertical steps are provided on the silicon substrate 11, as the first embodiment, the average molecular weight of the negative resist 12 for ultraviolet rays in the first layer is several hundred. ~Controlling thousands of VCs on a flat board
yx conditions (for example, 60 cp and 5000 rprl [[
Coat the coating and bake at approximately 80°C to 140'C for several minutes to several tens of minutes. Next, as a second layer l=I, a UV-sensitive positive resist 13 having an average molecular weight of several thousand to several tens of thousands is coated on a flat substrate with approximately 1
oOoO Conditions for becoming a person (for example, 27cp and 5o○Orp)
1[11] transfer coating is performed in step m) (FIG. 2a) Next, patterns 13a and 13b are formed on the positive resist 13 by selectively irradiating ultraviolet rays. In this case, during the development of the positive resist 13, the underlying negative resist 12 is not dissolved. Further, the surface of the negative resist 120 is substantially flat, and the film thickness of the positive resist 13 is also substantially uniform. Therefore, when forming the positive resist patterns 13a and 13b, there is no influence of the uneven parts of the base substrate, and the dimensions of the positive resist patterns 13a and 13b on the convex parts and the concave parts, respectively, are almost the same, and the dimensions on the four parts of the substrate and the convex parts are almost the same. The dimensional difference in the upper positive resist pattern becomes almost zero. By adjusting the exposure amount at this time (the pattern printing is performed using a contact exposure method), the cross-sectional shape of the remaining blurred mask 13 can be made steep.

次に第2図Cに示すごとくポジレジスト13をマスクに
、RIE法を用いて例えば数十ミl) Torr。
Next, using the positive resist 13 as a mask, as shown in FIG.

200W、02ガス数SCCMの条件て下地ネガレジス
ト膜12が露出している部分を完全に除去する。この場
合、ポジレジストマスク13の断面が急峻な為、横方向
への拡がりはほとんどなく、かう、マスク13は下地ネ
ガレジスト12に対して+均分子量が1桁はど冒い為、
酸素に対するポジレジストマスク13とネガレジスト1
2のエツチング速度比d:数倍ネガレジスト12の方が
速くなる。その為ネガレジスト12のオーバエッチ時間
全多少長くしても、ポジレジストマスク13のマスク効
果は十分イイる(図の破線はポジレジストの変化を示し
ている。)かつ寸法の横方向変化はほとんどす<、最終
的に均一性の良いパターン寸法が基板の四部上及び凸部
上に形成できる〇第2実施例として」二組第1実施例で
示した第2層目の感光性樹脂に遠紫外線用感光性樹脂や
、電子線用感光性樹脂を用いる方法がある。これらは紫
外線感光用樹脂よりζ数桁平均分子量が大きい為、上記
第1実施例で説明した場合と同じように形成すると同等
な結果が得られる。この場合、下地第1層樹脂として坏
ガレシストに限らず、ポジレジスト(紫外線感光用の低
分子樹脂)でも良い。
The exposed portion of the base negative resist film 12 is completely removed under the conditions of 200 W and 0.2 gas SCCM. In this case, since the cross section of the positive resist mask 13 is steep, there is almost no spreading in the lateral direction, and the average molecular weight of the mask 13 is one order of magnitude higher than that of the underlying negative resist 12.
Positive resist mask 13 and negative resist 1 for oxygen
Etching speed ratio d: several times faster for negative resist 12. Therefore, even if the total overetching time of the negative resist 12 is slightly longer, the masking effect of the positive resist mask 13 is sufficiently good (the broken line in the figure shows the change in the positive resist), and there is almost no lateral change in dimensions. Finally, a pattern with good uniformity can be formed on the four parts and the convex parts of the substrate. There is a method using a photosensitive resin for ultraviolet rays or a photosensitive resin for electron beams. Since these have an average molecular weight several orders of magnitude higher than those of the UV-sensitive resins, the same results can be obtained if they are formed in the same manner as described in the first embodiment. In this case, the base first layer resin is not limited to Kyogalesyst, but may also be a positive resist (low molecular resin for ultraviolet ray exposure).

その他ポリミド樹脂等の非感光性樹脂でも良い○上記第
2層目に遠紫外線用や電子線又はX線用感光性樹脂を用
いると短波長(200nm以下)に感光する為、0.6
〜1μmの解像度が得られ、より一層の微細化が可能と
なり、微細化にとって好都合となる。
Other non-photosensitive resins such as polymide resins may also be used. If a photosensitive resin for far ultraviolet rays, electron beams, or X-rays is used for the second layer, it will be sensitive to short wavelengths (200 nm or less), so 0.6
A resolution of ~1 .mu.m can be obtained, which enables further miniaturization, which is advantageous for miniaturization.

以」二のように1凹凸基板上に均一な寸法の樹脂パター
ンをイnるため、本発明ではまず最下層に平均分子量が
最も小さい樹脂を形成してたとえば酸素に対するエツチ
ング速度が大きくなるようにする。そして上層に形成す
る樹脂は下層よシも平均分子量を犬キ<シて酸素に対す
るエツチング速度を小さくし、かつ解像度が高くなる感
光性樹脂を最上層に用いるように上記多種の感光性樹脂
及びポリマーを設定して複数の組み合わせて基板上に形
成することが可能である。なお、エツチングガスとして
は酸素に限らず下地基板がエツチングされず、レジスト
がエツチングきれるもの、たとえはCF、 、 C04
4等の他のガスでもよい。
In order to inject a resin pattern of uniform dimensions on a single uneven substrate as described in 2 below, in the present invention, a resin having the smallest average molecular weight is first formed in the bottom layer to increase the etching rate against oxygen, for example. do. The resin formed in the upper layer has a lower average molecular weight than the lower layer to reduce the etching rate against oxygen, and the photosensitive resin with high resolution is used in the top layer. It is possible to set and form a plurality of combinations on a substrate. Note that the etching gas is not limited to oxygen, but may also be one that does not etch the underlying substrate and can completely etch the resist, such as CF, C04, etc.
Other gases such as No. 4 may also be used.

り上のように本発明によると、高段差を有する被エツチ
ング膜の凸部と四部でもパターン寸法が同等となり、寸
法精度の向上及び半導体テハイスの製造に大きく寄与す
るものである。
As described above, according to the present invention, the pattern dimensions are the same for the convex portion and the four portions of the film to be etched which have a high step difference, which greatly contributes to improving the dimensional accuracy and manufacturing of semiconductor technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1 図(a)〜(C)は従来のMO8型トラン/スタ
の要部製造工程断面拡大図、第2図(a)〜(c)は本
発明の一実施例にかかるシリコン基板の段差−ヒに複数
の樹脂によりパターン形成する工程断面図である。 11・・・・・・シリコン基板、12・・・・・・第1
層ネガレジスト、13・・・・・・第2層ポジレジス)
、13a。 13b・・・・・パターン。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 牛 第2図 1.3
Figures 1 (a) to (C) are enlarged cross-sectional views of the main parts of a conventional MO8 type transistor/star manufacturing process, and Figures 2 (a) to (c) are steps of a silicon substrate according to an embodiment of the present invention. - Fig. 5 is a cross-sectional view of the process of forming a pattern using a plurality of resins. 11... Silicon substrate, 12... First
layer negative resist, 13...second layer positive resist)
, 13a. 13b...pattern. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 1.3

Claims (2)

【特許請求の範囲】[Claims] (1)凹凸を有する基板上に第1の平均分子量を有する
第1の樹脂層を形成し、この第1の樹脂層−にに前記第
1の平均分子量よりも大きい第2の平均分子量を有する
感応性の第2の樹脂層を形成し、前記第2の樹脂層を選
択的に除去して前記第2の樹脂層パターンを形成し、前
記パターンをマスクとして前記第1の樹脂層を除去して
前記基板を露出することを特徴とする樹脂パターンの形
成方法。
(1) A first resin layer having a first average molecular weight is formed on a substrate having irregularities, and the first resin layer has a second average molecular weight larger than the first average molecular weight. forming a sensitive second resin layer, selectively removing the second resin layer to form the second resin layer pattern, and removing the first resin layer using the pattern as a mask; A method for forming a resin pattern, the method comprising: exposing the substrate through a step of exposing the substrate.
(2)第1の樹脂層の除去を酸素ガスにて行うことf:
特徴とする特許請求の範囲第1項に記載の樹脂パターン
の形成方法。
(2) Removal of the first resin layer using oxygen gas f:
A method for forming a resin pattern according to claim 1.
JP11943882A 1982-07-08 1982-07-08 Formation of resin pattern Pending JPS599655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11943882A JPS599655A (en) 1982-07-08 1982-07-08 Formation of resin pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11943882A JPS599655A (en) 1982-07-08 1982-07-08 Formation of resin pattern

Publications (1)

Publication Number Publication Date
JPS599655A true JPS599655A (en) 1984-01-19

Family

ID=14761415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11943882A Pending JPS599655A (en) 1982-07-08 1982-07-08 Formation of resin pattern

Country Status (1)

Country Link
JP (1) JPS599655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473722A (en) * 1987-09-16 1989-03-20 Matsushita Electric Ind Co Ltd Resist film formation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473722A (en) * 1987-09-16 1989-03-20 Matsushita Electric Ind Co Ltd Resist film formation

Similar Documents

Publication Publication Date Title
KR930000293B1 (en) Fine pattern forming method
JPH0620062B2 (en) Method for manufacturing semiconductor device
KR20080100691A (en) Method of forming pattern of semiconductor device
JPS6323657B2 (en)
JP2764542B2 (en) Fine resist pattern forming method
US5139922A (en) Method of making resist pattern
JPH02252233A (en) Fine pattern forming method
US6566274B1 (en) Lithography process for transparent substrates
JPS599655A (en) Formation of resin pattern
US6849538B2 (en) Semiconductor device and a fabrication method thereof
JPH03138922A (en) Minute-pattern forming method
WO1983003485A1 (en) Electron beam-optical hybrid lithographic resist process
JP3986927B2 (en) Manufacturing method of semiconductor device
JPS63254729A (en) Forming method for resist pattern
JPH02156244A (en) Pattern forming method
JP3021549B2 (en) Method of forming resist pattern
JP2712407B2 (en) Method of forming fine pattern using two-layer photoresist
KR930006133B1 (en) M.o.s. contact hole forming method
JP2666420B2 (en) Method for manufacturing semiconductor device
JPS6116526A (en) Pattern forming process
JPH042183B2 (en)
JPH0683025A (en) Photomask and its forming method
JPS63254728A (en) Forming method for resist pattern
KR100928513B1 (en) Manufacturing method of semiconductor device
JPS60106132A (en) Formation of pattern