JPS599622A - Optical resolving system - Google Patents

Optical resolving system

Info

Publication number
JPS599622A
JPS599622A JP57118954A JP11895482A JPS599622A JP S599622 A JPS599622 A JP S599622A JP 57118954 A JP57118954 A JP 57118954A JP 11895482 A JP11895482 A JP 11895482A JP S599622 A JPS599622 A JP S599622A
Authority
JP
Japan
Prior art keywords
lens barrel
aperture
objective
distance
original surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57118954A
Other languages
Japanese (ja)
Inventor
Hiroaki Kodera
小寺 宏「あき」
「よし」田 邦夫
Kunio Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57118954A priority Critical patent/JPS599622A/en
Publication of JPS599622A publication Critical patent/JPS599622A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To vary resolving power continuously without varying an aperture diameter and changing lenses by providing the 2nd adjusting mechanism which operates associatively with the 1st adjusting mechanism which varies the distance between an original surface and an objective. CONSTITUTION:The objective 3 is mounted on the 1st lens barrel 6 which is rotated to vary the distance (a) between the original surface 1 and objective 3. Simultaneously, a projection 12 moves relatively along a spiral groove 8, but the 2nd lens barrel 11 does not rotate because a key groove 14 operates as a rotation stopper, so the lens barrel 11 moves forth and back according to the pitch of the spiral groove 8 to move an aperture 4 and a photodetector 5 fixed to the rear part of the lens barrel 11 together with the lens barrel 11. Namely, the distance (a) between the original surface and objective 3 is varied, and consequently the distance (b) between the objective 3 and aperture 4 for extracting a fine area in the original surface 1 placed on the image forming surface of the objective 2 is varied nonlinearly and assiciatively with said variation.

Description

【発明の詳細な説明】 本発明は、ファクシミリや電子製版用スキャナなどに用
いられる画像走査用の分解光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resolving optical system for image scanning used in facsimiles, electronic plate making scanners, and the like.

従来、原稿面を点順次式に分解″走査するドラム回転型
スキャナやフィルム面上を丑面的に微動しながら濃度を
計測するマイクロデンシトメータなどの装置では、基本
的に第1図のような分解光学系が用いられている。第1
図において、スポット光により照明された原稿面1の上
の絵素点2から反射(または透過)した光は、対物レン
ズ3によりアパーチャ4の一ヒに絵素点2の像を結ぶ。
Conventionally, devices such as drum-rotating scanners that scan the document surface in a point-by-point manner, and microdensitometers that measure the density by making small movements on the film surface, basically perform a scan as shown in Figure 1. A resolving optical system is used.
In the figure, light reflected (or transmitted) from a pixel dot 2 on a document surface 1 illuminated by spot light forms an image of the pixel dot 2 on an aperture 4 by an objective lens 3.

アパーチャ4はその中央に小孔があけられており、その
小孔を通過した光は、光検出器5に受光され電気信号に
変換される。このような分解光学系の分解能は、対物レ
ンズ3とアパーチャ4の位置関係で定まる像倍率とアパ
ーチャ4の開d径によって決定されることは周知の通り
である。したがって分解能を変えたい場合には、像倍率
を変化するが開口径を変える必要がある。前記の製版用
スキャナやマイクロデンシトメータでは、分解能の変更
は開口径寸法の変更によって行われるのが一般的であり
、たとえば開口径の異なる数種のアパーチャを切換えも
しくは交換したり開口径が微動機構によシ調節できる可
変口径型アパーチャを使用するなどの方法が用いられて
いる。これらの方法は、第1図におけるアパーチャ4の
位置にそのような機能をもつ機構を組込むことによって
実現できる。
The aperture 4 has a small hole in its center, and light passing through the small hole is received by a photodetector 5 and converted into an electrical signal. It is well known that the resolution of such a resolving optical system is determined by the image magnification determined by the positional relationship between the objective lens 3 and the aperture 4 and the aperture d diameter of the aperture 4. Therefore, when it is desired to change the resolution, it is necessary to change the aperture diameter while changing the image magnification. In the above-mentioned plate-making scanners and microdensitometers, the resolution is generally changed by changing the aperture size; for example, by switching or replacing several types of apertures with different aperture diameters, or by changing the aperture diameter slightly. Methods have been used, such as using a variable aperture that can be adjusted by a mechanism. These methods can be realized by incorporating a mechanism having such a function at the position of the aperture 4 in FIG. 1.

しかしながら機構的に複雑となりかつ高い精度が゛要求
されるので高価となり易い。さらに開口径を変更すると
開口径の2乗比で光重が大幅に変化するため検出系の感
度調節幅を大きくとる必要があるなどの欠点があった。
However, since it is mechanically complex and requires high precision, it tends to be expensive. Furthermore, when the aperture diameter is changed, the light weight changes significantly depending on the square ratio of the aperture diameter, so there is a drawback that the sensitivity adjustment range of the detection system must be widened.

また開口径を変える代りに焦点距離の異なる対物レンズ
3を交換使用する方法もあるが、交換の手間や焦点調節
が煩雑で得策とは云えない。
Alternatively, instead of changing the aperture diameter, there is a method of exchanging objective lenses 3 with different focal lengths, but this is not a good idea because the exchange is laborious and the focus adjustment is complicated.

本発明の目的は以上のような問題点を改善して、開口径
やレンズを変更することなく、分解能を連続的に可変で
きる分解光学系を実現しようとするものである。
An object of the present invention is to improve the above-mentioned problems and to realize a resolving optical system in which the resolution can be continuously varied without changing the aperture diameter or lens.

すなわち、本発明の目的は開口径の代りに像倍率を連続
的にかつ焦点ボケなく可変できる簡便で実用的なピント
調節機構を有する分解光学系を提供することにある。
That is, an object of the present invention is to provide a resolving optical system having a simple and practical focus adjustment mechanism that can continuously vary the image magnification instead of the aperture diameter without blurring the focus.

以下に本発明の原理構造について説明し、具体的な実施
例にもとづいて詳細を述べる。
The principle structure of the present invention will be explained below, and the details will be described based on specific examples.

第1図の分解光学系においていったん焦点調節がなされ
た後は、原稿面1から対物レンズ3までの距離aと対物
レンズ3からアパーチャ4捷での距離すとは固定される
。ここで対物レンズ3の焦点距離f、!:a、bおよび
像倍率mとの間には、よく知られた次の関係がある。
Once the focus is adjusted in the resolving optical system shown in FIG. 1, the distance a from the document surface 1 to the objective lens 3 and the distance from the objective lens 3 to the aperture 4 are fixed. Here, the focal length of the objective lens 3 is f,! : There is the following well-known relationship between a, b and image magnification m.

(1)式より が得られ、また原稿面1よりアパーチャ4までの距離を
Cとすれば、 2 c = a + b =  −(4)  −f となる。
Equation (1) is obtained, and if the distance from the document surface 1 to the aperture 4 is C, then 2 c = a + b = -(4) - f.

第2図(〜および(B)は(2)式および(3) 、 
(4)式を距離aに対してグラフに描いたものである。
FIG. 2 (- and (B) are equations (2) and (3),
This is a graph of equation (4) versus distance a.

第2図(B)によれば、a ) fの条件でaを増すに
したがいbはb=fに漸近する単調減少関数となり、同
図(5)によればmはm = Oに漸近する単調減少関
数となるがいずれも図のごとく非直線となる。またa 
= 2 fのときa=b、m=1となり、2 f :>
 a > fの範囲で拡大像、 a ) 2 fでは縮
小像となるが、原稿面から結像面であるアパーチャまで
の距離Cは第2図(B)よりa=2fにおいて最小値c
 = 4 fをとる。しだがってアパーチャ面は、a=
−2fを境にして必らずc=4fより後方に位置する点
に注意すべきである。
According to Figure 2 (B), as a increases under the conditions of a) f, b becomes a monotonically decreasing function that asymptotes to b = f, and according to Figure 2 (5), m asymptotes to m = O. Although it is a monotonically decreasing function, it is non-linear as shown in the figure. Also a
When = 2 f, a=b, m=1, and 2 f :>
The image is enlarged in the range of a > f, and the image is reduced in the range of a) 2 f. However, the distance C from the document surface to the aperture, which is the imaging plane, is the minimum value c at a = 2f from Fig. 2 (B).
= 4 Take f. Therefore, the aperture plane is a=
It should be noted that it is always located behind c=4f with -2f as the boundary.

以上の特性に注意すれば、たとえばaを変化した場合に
aに連動してbもしくはCが第2図に示す曲線にしたが
って移動するような調節を行えば、aの増減に対し像倍
率mを単調に増減できることが明らかである。本発明の
原理は、aに対するbもしくはCを第2図の結像条件を
満たしつつ非線形に微動せしめる点にあり、mすなわち
分解能を連続可変するものである。
If you pay attention to the above characteristics, for example, if you change a and make an adjustment so that b or C moves along the curve shown in Figure 2 in conjunction with a, the image magnification m will change as a increases or decreases in a. It is clear that it can be monotonically increased or decreased. The principle of the present invention is to slightly move b or C with respect to a in a nonlinear manner while satisfying the imaging conditions shown in FIG. 2, and to continuously vary m, that is, the resolution.

第3図(A) 、 (B)は、本発明による分解光学系
の具体的な一実施例を示す断面側面図および斜視図で、
図中第1図と同一部分には同一符号を付す。
FIGS. 3(A) and 3(B) are a cross-sectional side view and a perspective view showing a specific embodiment of the resolving optical system according to the present invention,
The same parts in the figure as in FIG. 1 are given the same reference numerals.

対物レンズ3は、原稿面1の上の絵素点2の像をアパー
チャ4に結び、アパーチャ4を通過した光は光検出器5
によって電気信号に変換される。本例は単色分解の場合
を例示しているが、原稿がカラーの場合にはアパーチャ
4より後方部に色分解フィルターおよび各色成分に対応
した光検出器を配置すればよい。対物レンズ3は第1の
鏡筒6にマウントされており、鏡筒6には前筒部に一定
ピツナの移動ネジ部7.後筒部には不等間隔のスパイラ
ル溝8が刻まれている。鏡筒6は移動ネジ部7と同じネ
ジピッチをもつ固定ブラケット9に挿入保持され、リン
グ部1oを回転することによって鏡筒6全体が回転し原
稿面に垂直方向に前進または後退する。すなわち、絵素
点2と対物レンズ3と9距離aは、鏡筒6の回転角に比
例して変化する。一方、鏡筒6のスパイラル溝80部分
は第2の鏡筒11内に挿入され、鏡筒11の内壁にある
突起12がスパイラル溝8にはまり込むように加工され
ている。第2の鏡筒11の下部には、軸方向にスライド
キ一部13が突出しており、キ−溝14に沿って前後に
滑らかにスライドするようはめ合い加工が施こされてい
る。そこで、第1の鏡筒6を回転すると、前記の突起1
2はスパイラル溝8に沿って相対的に移動するが、第2
の鏡筒11はキー溝14が回り止めの役目を果たして回
転しないので、結果として鏡筒11がスパイラル溝8の
ピンチに従って前後に移動することになる。
The objective lens 3 connects the image of the pixel dot 2 on the document surface 1 to the aperture 4, and the light passing through the aperture 4 is transmitted to the photodetector 5.
is converted into an electrical signal by Although this example illustrates the case of monochromatic separation, if the document is in color, a color separation filter and a photodetector corresponding to each color component may be arranged behind the aperture 4. The objective lens 3 is mounted on a first lens barrel 6, and the lens barrel 6 has a moving threaded portion 7 with a constant pin on the front barrel. Spiral grooves 8 are carved at irregular intervals in the rear cylinder part. The lens barrel 6 is inserted and held in a fixed bracket 9 having the same screw pitch as the movable screw portion 7, and by rotating the ring portion 1o, the entire lens barrel 6 rotates and moves forward or backward in a direction perpendicular to the document surface. That is, the distance a between the pixel point 2 and the objective lens 3 changes in proportion to the rotation angle of the lens barrel 6. On the other hand, the spiral groove 80 portion of the lens barrel 6 is inserted into the second lens barrel 11 and processed so that the protrusion 12 on the inner wall of the lens barrel 11 fits into the spiral groove 8. A slide key part 13 protrudes in the axial direction from the lower part of the second lens barrel 11, and is fitted so as to slide smoothly back and forth along a key groove 14. Therefore, when the first lens barrel 6 is rotated, the protrusion 1
2 moves relatively along the spiral groove 8, but the second
Since the lens barrel 11 does not rotate because the key groove 14 serves as a rotation stopper, the lens barrel 11 moves back and forth according to the pinch of the spiral groove 8.

アパーチャ4および光検出器5は鏡筒11の後部に固定
され、鏡筒11と共に移動する。スパイラル溝8は図示
のごとく、溝のピッチが密から粗へ連続的に非直線性を
もって変化しており、鏡筒6を原稿面1へ近づける方向
に回転するときは鏡筒11は鏡筒6に対して相対的に後
退し、逆に鏡筒6を原稿面から遠ざける方向に回転する
ときには鏡筒11は鏡筒6に対して相対的に前進するよ
うに運動する。すなわち、第2図におけるaを減少する
方向への回転に対して、突起12はスパイラル溝8のピ
ッチが粗な方向へ移動し、逆にaを増加する方向への回
転に対しては、突起12はスパイラル溝8のピッチが密
な方向へ移動する。そこで回転に封子るスパイラル溝8
の進みが前記第2図(B)の曲線すに一致するような非
線形ピッチの加工を施こしておけば、結像条件を満たし
つつaに相対してbを連動可変せしめることができる。
The aperture 4 and the photodetector 5 are fixed to the rear of the lens barrel 11 and move together with the lens barrel 11. As shown in the figure, the pitch of the spiral groove 8 changes continuously from fine to coarse with non-linearity, and when the lens barrel 6 rotates in a direction that brings the lens barrel 6 closer to the document surface 1, the lens barrel 11 moves closer to the lens barrel 6. Conversely, when the lens barrel 6 is rotated in a direction away from the document surface, the lens barrel 11 moves forward relative to the lens barrel 6. That is, in response to rotation in the direction of decreasing a in FIG. 2, the protrusion 12 moves in a direction in which the pitch of the spiral groove 8 becomes coarser; 12 moves in the direction in which the pitch of the spiral grooves 8 becomes denser. There, the spiral groove 8 that seals the rotation
By processing the nonlinear pitch so that the progression of the curve matches the curve shown in FIG. 2(B), it is possible to interlock and vary b relative to a while satisfying the imaging condition.

−例として、第2図においてaの変化範囲を15f〜3
.ofとすれば、これに対してbは3.0f〜15fの
範囲で変化するが、Cは4.5f〜4ofの間の0.5
fだけ変化し、像倍率mとしては2.0〜%の4倍の変
化幅が得られる。この数値例は極めて実用的な値であり
、原稿面1からアパーチャ4捷での距離Cの変化が小さ
いので、鏡筒11が移動することが装置製作上の支障と
はならない。
- As an example, in Fig. 2, the range of change of a is 15f to 3
.. on the other hand, b changes in the range of 3.0f to 15f, but C changes to 0.5 between 4.5f and 4of.
It changes by f, and the image magnification m has a four-fold change range of 2.0 to %. This numerical example is a very practical value, and since the change in the distance C from the document surface 1 to the four apertures is small, movement of the lens barrel 11 does not pose a problem in manufacturing the apparatus.

壕だ本発明では、アパーチャ4の開口径は一定であるだ
め検出光量はaの変化に対して対物レンズ3の開口径が
見込む立体角内に到達する光束に依存する。立体角はa
を増すにしたがい小さくなるが、一方面倍率mもaと共
に減少する。一方面倍率mが小さくなることは、逆に一
定寸法の開1コ径内に集光される原画1fi1の絵素面
積が拡大されることになり、aを増すにしたがって絵素
面積に比例的に反射光量が増す。すなわち、aの変化に
対して上記の立体角の変化とピックアップされる絵素面
積の変化とは互に逆の関係となるので、結果としてアパ
ーチャ4を通過する光量の変化を相殺する作用をなし、
像倍率mの変化に対して光量変化を抑制する特性をもつ
。したがって、従来の開口径を変化して像倍率を変える
方法に対して、本発明は検出光の感度レベルの調整範囲
が小さくて済むという利点がある。
However, in the present invention, the aperture diameter of the aperture 4 is constant, and the amount of detected light depends on the light flux that reaches within the solid angle expected by the aperture diameter of the objective lens 3 with respect to a change in a. The solid angle is a
The one-sided magnification m also decreases with increasing a. On the other hand, when the surface magnification m becomes smaller, the pixel area of the original image 1fi1 that is focused within a certain aperture diameter increases, and as a increases, the pixel area becomes proportional to the pixel area. The amount of reflected light increases. In other words, the above-mentioned change in the solid angle and change in the area of the picture element to be picked up have an inverse relationship with respect to the change in a, and as a result, there is no effect of offsetting the change in the amount of light passing through the aperture 4. ,
It has a characteristic of suppressing changes in light amount with respect to changes in image magnification m. Therefore, compared to the conventional method of changing the image magnification by changing the aperture diameter, the present invention has the advantage that the adjustment range of the sensitivity level of the detection light can be narrowed.

なお第3図の実施例では、距離aを一定ビソチ、距離す
を非線形な可変ピンチで変化させる場合を例示したが、
これを逆にしてaを可変ピッチ、bを一定ピッチにして
もよく、また両方を可変ピッチとしても目的を達しうろ
ことは言うまでもない。
In the embodiment shown in FIG. 3, the case where the distance a is changed by a constant bias and the distance is changed by a non-linear variable pinch is exemplified.
It goes without saying that this may be reversed and that a has a variable pitch and b a constant pitch.Also, it goes without saying that even if both have variable pitches, the objective can be achieved.

以上のように、本発明は原稿面と対物レンズとの距離a
を可変する第1の調整機構と、第1の調節機構と連動し
て開口板と対物レンズとの距離すを可変にする第2の調
節機構を備え、距離aの変化に対して距離すを非直線的
に変化させるようにした可変倍率の分解光学系を提供す
るものであり、連続的に像倍率を変化させて分解能を任
意に選択でき、かつ常に焦点面が自動的に調節されるの
で操作性にも優れている。また実施列に示されるように
、機構的にも簡素であり、小型化、経済化にも適してい
る。さらに倍率を変化しても検出光計レベルの変化が少
く、検出回路系の感度調整が容易であるなどの実用的効
果が得られる。
As described above, the present invention provides a distance a between the document surface and the objective lens.
a first adjustment mechanism that changes the distance between the aperture plate and the objective lens; and a second adjustment mechanism that changes the distance between the aperture plate and the objective lens in conjunction with the first adjustment mechanism. It provides a resolving optical system with variable magnification that changes non-linearly, allowing the resolution to be arbitrarily selected by continuously changing the image magnification, and the focal plane being automatically adjusted at all times. It also has excellent operability. Furthermore, as shown in the examples, it is mechanically simple and suitable for downsizing and economy. Further, even when the magnification is changed, there is little change in the level of the detection light meter, and practical effects such as easy sensitivity adjustment of the detection circuit system can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の分解光学系の一例を示す断面図、第2図
(A) 、 (B)は本発明の詳細な説明するだめのレ
ンズの結像特性を示すグラフ、第3図(A) 、 (B
)は本発明による分解光学系の実施例を示す断面側面図
および斜視図である。 1・・・・原稿面、2 ・・絵素点、3・・・・対物レ
ンズ、4・・・・アパーチャ、5−・・・光検出器、6
.11・・・−鏡筒、了−・・・移動ネジ、8・・・・
・スパイラル溝、9・・・固定ブラケット、10・・・
リング、12・・−・・・突起、13 ・・−ストライ
ドキー、14・・・・キー溝。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名葛1
1(2) a− α。
Fig. 1 is a cross-sectional view showing an example of a conventional resolving optical system, Figs. 2 (A) and (B) are graphs showing the imaging characteristics of a lens that does not provide a detailed explanation of the present invention, and Fig. 3 (A ), (B
) are a cross-sectional side view and a perspective view showing an embodiment of a resolving optical system according to the present invention. 1... Original surface, 2... Pixel point, 3... Objective lens, 4... Aperture, 5-... Photodetector, 6
.. 11... - Lens barrel, completed -... Moving screw, 8...
・Spiral groove, 9... Fixed bracket, 10...
Ring, 12...Protrusion, 13...Stride key, 14...Keyway. Name of agent: Patent attorney Toshio Nakao and 1 other person
1(2) a- α.

Claims (2)

【特許請求の範囲】[Claims] (1)原稿面と対物レンズとの距離aを変化させる第1
の調節機構と、前記対物レンズの結像面に置かれ前記原
稿面の微小領域を抽出する開口板と、前記第1の調節機
構と連動して前記開口板と前記対物レンズの距離すを前
記距離aの変化に対して非直線的に変化させるよう光軸
に沿って移動させる第2の調節機構とを具備したことを
特徴とする分解光学系。
(1) First step to change the distance a between the document surface and the objective lens
an adjustment mechanism, an aperture plate placed on the imaging plane of the objective lens for extracting a minute area on the document surface, and an aperture plate that adjusts the distance between the aperture plate and the objective lens in conjunction with the first adjustment mechanism 1. A resolving optical system comprising: a second adjustment mechanism that moves along the optical axis so as to change the distance a non-linearly.
(2)第1または第2の調節機構の少くとも一方が連続
的にピッチが可変な送りネジ機構である特許請求の範囲
第1項記載の分解光学系。
(2) The resolving optical system according to claim 1, wherein at least one of the first or second adjustment mechanism is a feed screw mechanism whose pitch is continuously variable.
JP57118954A 1982-07-07 1982-07-07 Optical resolving system Pending JPS599622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57118954A JPS599622A (en) 1982-07-07 1982-07-07 Optical resolving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57118954A JPS599622A (en) 1982-07-07 1982-07-07 Optical resolving system

Publications (1)

Publication Number Publication Date
JPS599622A true JPS599622A (en) 1984-01-19

Family

ID=14749370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57118954A Pending JPS599622A (en) 1982-07-07 1982-07-07 Optical resolving system

Country Status (1)

Country Link
JP (1) JPS599622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205261A (en) * 2012-03-26 2014-12-10 松下电器产业株式会社 Reactor apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205261A (en) * 2012-03-26 2014-12-10 松下电器产业株式会社 Reactor apparatus

Similar Documents

Publication Publication Date Title
US6320979B1 (en) Depth of field enhancement
US4578712A (en) Picture image discriminating apparatus
EP0297361A2 (en) Telecentric image-forming system having variable magnifications
US4742401A (en) Opto-electronic scan head which has a housing portion and a housing member that are coupled together by first and second guide rods so as to allow relative motion therebetween
JPS599622A (en) Optical resolving system
JP2630229B2 (en) Spectrometer
JP4017752B2 (en) Focus adjustment method when assembling the taking lens
US4585314A (en) Projection lens
JPS63110867A (en) Solid-state image pickup element
GB2128050A (en) Arrangement for automatic focusing of photographic cameras
GB2350250A (en) Variable aperture lens scanner with multiple scan speeds
DE10349611A1 (en) Systems and methods for providing multiple object levels in an optical image scanner
US6593559B2 (en) Image readout apparatus and image readout method using the same
JP3448829B2 (en) Image reading device
US11841548B2 (en) Variable-zoom imaging apparatus
JPH0467836B2 (en)
JP3362927B2 (en) Image reading device
DE10349612A1 (en) Systems and methods for providing multiple object levels in an optical image scanner
JP3078717B2 (en) Image input device
JP2007116575A (en) Image reading optical system
JP3271827B2 (en) Image reading device
JP2572152B2 (en) Imaging device
JPS6229942B2 (en)
Miller et al. Microdensitometers
JPS61219263A (en) Variable power method for digital image reader