JPS599615A - Optical fiber connector - Google Patents
Optical fiber connectorInfo
- Publication number
- JPS599615A JPS599615A JP11822682A JP11822682A JPS599615A JP S599615 A JPS599615 A JP S599615A JP 11822682 A JP11822682 A JP 11822682A JP 11822682 A JP11822682 A JP 11822682A JP S599615 A JPS599615 A JP S599615A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- optical fiber
- spacer
- fiber
- plug
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/3616—Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
- G02B6/3624—Fibre head, e.g. fibre probe termination
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/32—Optical coupling means having lens focusing means positioned between opposed fibre ends
- G02B6/325—Optical coupling means having lens focusing means positioned between opposed fibre ends comprising a transparent member, e.g. window, protective plate
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4202—Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
- G02B6/4203—Optical features
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は元ファイバ同士或いは元ファイバと他の機器と
を光学的に接続するのに用いる元ファイバ接続具に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a source fiber connector used for optically connecting source fibers to each other or source fibers to other equipment.
此種の元ファイバ接続具、例えば光フアイバプラグとし
ては、従来から第1図に示す様な構造のものがある。こ
の第1図に於いて、各プラグ(21a)(21b)は、
円筒状のフェル−71/ (ia)(ib)、コ0)
7エルール(18X1b)の中空部分に嵌装され且つ長
さが元の蛇行周期の%ピッチの奇数倍である屈折率分布
型レンズ(2aX2b)及びC(1) L/ 7ズ(2
aX2b) 0)略軸心位置に接合された元ファイバ(
3aX3b)から成っている。This type of fiber connector, for example, an optical fiber plug, has a conventional structure as shown in FIG. In this FIG. 1, each plug (21a) (21b) is
Cylindrical fer-71/ (ia) (ib), co0)
A gradient index lens (2aX2b) fitted into the hollow part of a 7-erule (18X1b) and whose length is an odd multiple of the % pitch of the original meandering period and a C(1) L/7 lens (2
aX2b) 0) Original fiber spliced approximately at the axial center position (
3aX3b).
この様なプラグ(218X21b)の端面同士を対向ざ
ぜると、−万の光ファイバ(3a)の一端面から放射状
に射出された光(4)は、レンズ(2a)に依って屈折
作用を受けた結果、このレンズ(2a)の端面位置に於
いては、レンズ(2a)の軸心に略平行な光(4Jにな
る。その後光(4〕は、対向するレンズ(2b)中で更
に束するので、元ファイバ(6a)と(3b)と光学的
に接続される。When the end faces of such a plug (218x21b) are placed opposite each other, the light (4) emitted radially from one end face of the optical fiber (3a) is refracted by the lens (2a). As a result, at the end face position of this lens (2a), the light (4J) is approximately parallel to the axis of the lens (2a).Then, the light (4) is further bundled in the opposing lens (2b). Therefore, it is optically connected to the original fibers (6a) and (3b).
ところで、屈折率分布型レンズの屈折率Nの理想分布は
、レンズの軸心上での屈折率をNo、軸心から径方向へ
の距離をrとすると、
N = N(15ech (y’Kr )A 券A
=No (1−−r2+ −)2r’ −” C”)
3r’−1−”、”、)2902
で表わざtする。ここでAは屈折率分布定数と呼ばれる
ものであり、この分布定数が大きい程、光フは
アイバ(6a)又(3b)から射出される光(4)のレ
ンズ(2a)又は(2b)の端面に於ける広がりは大き
くなる。By the way, the ideal distribution of the refractive index N of a gradient index lens is N = N(15ech (y'Kr )A Ticket A =No (1--r2+ -)2r'-"C")
3r'-1-'','',)2902 It is expressed as t. Here, A is called a refractive index distribution constant, and the larger this distribution constant is, the more the light (4) emitted from the eyeglass (6a) or (3b) will be affected by the lens (2a) or (2b). The spread at the end face becomes larger.
しかし現状ではこの分布定数をある程度以上に大きくす
ることは困難であり、その結果、通常の光ファイバ(コ
ア径=50μm1開口数=0.20)を用いた場合、光
の拡がりはレンズ直径の40〜50%程度が限度である
。従って、第1図に示す様な屈折率分布型レンズ(2a
〕又は(2b)を使用するプラグ(21a)又は(21
b)は、その軸心が対向するプラグの軸心から僅かにず
れただけでも、元の結合損失が大きい。第2図1こは、
この軸ずれ量と光の結合損失との関係が示され、この第
2図のグラフ中の勾配が急な曲線は屈折率分布型レンズ
についてのものである。ここで結合損失とは、−万のレ
ンズ(2a)から射出される元(4)の円形の断面積を
So、この射出される元(4)の内で他方のレンズ(2
b)に集光された後光ファイバ(6b)の端面に収束さ
れる光(4)のレンズ(2りへの入射時の断面積を81
としたとき、
と定義されるものである。この式は、レンズ(2a〕か
ら射出される光(4)の直径を2d1軸ずれ量をrとし
、θ−CO5−1(r/2d)とした場合、1
結合損失−i o iog ; (θ−pin 2θ)
[dB:]となる。この式に於いて、レンズ(2a)
(2b)の直径を2mm、射出される元(4)の直径2
dを1 mmとした場合が、第2図の上記曲想である。However, currently it is difficult to increase this distribution constant beyond a certain level, and as a result, when using a normal optical fiber (core diameter = 50 μm, numerical aperture = 0.20), the spread of light is 40 μm of the lens diameter. The limit is about 50%. Therefore, a gradient index lens (2a
] or (2b) using plug (21a) or (21
In b), even if the axial center of the plug is slightly shifted from the axial center of the opposing plug, the original coupling loss is large. Figure 2 1.
The relationship between the amount of axis deviation and the coupling loss of light is shown, and the curve with a steep slope in the graph of FIG. 2 is for a gradient index lens. Here, the coupling loss means that the circular cross-sectional area of the element (4) emitted from the lens (2a) is So, and the other lens (2) of this emitted element (4) is
The cross-sectional area of the light (4) when it enters the lens (2) is 81
When , it is defined as . This formula is expressed as: 1 Coupling loss -io iog; (2d) is the diameter of the light (4) emitted from the lens (2a), r is the axis deviation amount, and θ-CO5-1 (r/2d); θ-pin 2θ)
[dB:]. In this formula, lens (2a)
The diameter of (2b) is 2 mm, and the diameter of the injection source (4) is 2 mm.
The above idea in FIG. 2 is obtained when d is 1 mm.
一万、屈折率Nを示す上記の式は理想分布であり、屈折
率分布が上記の式に従うと、収差のない理想的なレンズ
となる。しかし上記式の高次項を制御することは容易で
なく、現状では収差が残存し、その結果、第1図に示す
様な屈折率分布型レンズ(28X2b)f使用するプラ
グ(218X21b)は、光の結合損失が太きい。The above equation showing the refractive index N is an ideal distribution, and if the refractive index distribution follows the above equation, an ideal lens without aberrations will be obtained. However, it is not easy to control the higher-order terms in the above equation, and as a result, aberrations remain, and as a result, the plug (218x21b) used with a gradient index lens (28x2b) f as shown in Figure 1 is The coupling loss is large.
一万、第1図に示ずような元ファイバ接続具において、
集光・平行光変換用レンズ体として屈折率分布型レンズ
(2aX2b)にかえて凸レンズを用いると、既述の円
形の断面積Soに相描する人出射光束の直径をレンズの
直径と略等しくすることが可能である。従って元ファイ
バから射出される光の直径を凸レンズの直径と略等しく
なる才で拡げることが出来、このために軸ずれに伴う光
の結合損失は少なくてすむ。例えば、凸レンズ及び射出
される元の倒れの直径をも2mmとした場合の結合損失
は、第2図のグラフ中の勾配が緩やかな曲線に示すよう
になる。10,000, In the original fiber connector as shown in Figure 1,
If a convex lens is used instead of a gradient index lens (2aX2b) as a condensing/parallel light converting lens body, the diameter of the human emitted light beam drawn in relation to the circular cross-sectional area So described above will be approximately equal to the diameter of the lens. It is possible to do so. Therefore, the diameter of the light emitted from the original fiber can be expanded to be approximately equal to the diameter of the convex lens, and therefore the coupling loss of light due to axis misalignment can be reduced. For example, the coupling loss when the diameter of the convex lens and the inclination of the ejected original are also 2 mm is shown by a curve with a gentle slope in the graph of FIG.
また凸レンズは一般的に屈折率分布型レンズに比べて収
差が少ないので、上述のように凸レンズを用いれば、第
1図に示す様な構成の元ファイバプラグに比べて、収差
ζこ依る元の結合損失が少ない。In addition, convex lenses generally have less aberration than gradient index lenses, so if a convex lens is used as described above, the aberration ζ will be reduced compared to the original fiber plug with the configuration shown in Figure 1. Low coupling loss.
しかし上述のように、集光・平行光変換用レンズ体とし
て凸レンズを用いると、一般的には凸レンズから適当距
離離れた位置にある凸レンズの焦点に光ファイバの先端
面を正確ζこ配置する必要がある。従って凸レンズに対
して光ファイバを所定の位置に配設する作業がはなはだ
面倒である。However, as mentioned above, when a convex lens is used as a lens body for condensing and collimating light, it is generally necessary to precisely position the tip of the optical fiber at the focal point of the convex lens, which is located an appropriate distance away from the convex lens. There is. Therefore, the task of arranging the optical fiber at a predetermined position relative to the convex lens is extremely troublesome.
本発明は上述の如き問題を解決する為に発明されたもの
であって、レンズ体として凸レンズを使用した場合にも
、レンズ体に対して元ファイバを所定の位置に配設する
作業が極めて容易なものを提供し得るようにしている。The present invention was invented to solve the above-mentioned problems, and even when a convex lens is used as the lens body, it is extremely easy to arrange the original fiber at a predetermined position with respect to the lens body. I'm trying to provide something.
以下本発明の実施例を第3図及び第4図を参照して説明
する。Embodiments of the present invention will be described below with reference to FIGS. 3 and 4.
第6図は本発明に依る元ファイバプラグの実施例を示し
ている。この第3図に於いて、プラグ(221は、略円
筒状のフェルール(1)全具備し、このフェルール(1
)内には、凸レンズ(5)、スペーサ(6)及び光フア
イバ支持体(刀が互いに接触した状態に順次内装されて
い′る。フェルール(1)はステンレス等の金属、合成
樹脂或いはセラミックス等で構成されている。レンズ(
5)及びスペーサ(6)はガラス、合成樹脂等の光学的
に透明な略円柱状の媒体で構成され、スペーサ(6)は
その屈折率が一様でかつ両端が平坦な透明縁体であって
よく、またレンズ(5)とは反対側の端面にレンズ(5
)の焦点が位置する様な厚みを有している。才だ支持体
(刀はガラス、合成樹脂、金属或いはセラミックス等で
略円柱状に構成され、その外径はフェルール(1)の内
径よりも幾分小さくなっている。また支持体(7)の細
心部分には元ファイバを挿通させるための挿通孔(9)
が形成され、この挿通孔(9)の外側端はテーパ状の開
口QOIとなっている。なおレンズ(5)を保睦する為
に、フェルール(1)の一端に必要に応じてカバーガラ
ス(8)を設けても良い。FIG. 6 shows an embodiment of an original fiber plug according to the invention. In FIG. 3, the plug (221) is completely equipped with a substantially cylindrical ferrule (1),
), a convex lens (5), a spacer (6), and an optical fiber support (the blades are installed in this order in a state where they are in contact with each other).The ferrule (1) is made of metal such as stainless steel, synthetic resin, ceramics, etc. It consists of a lens (
5) and the spacer (6) are composed of an optically transparent substantially cylindrical medium such as glass or synthetic resin, and the spacer (6) is a transparent frame whose refractive index is uniform and both ends are flat. The lens (5) may be attached to the end surface opposite to the lens (5).
) has a thickness such that the focal point of the area is located. The support (sword) is made of glass, synthetic resin, metal, ceramics, etc. and is approximately cylindrical, and its outer diameter is somewhat smaller than the inner diameter of the ferrule (1). There is an insertion hole (9) in the delicate part for inserting the original fiber.
is formed, and the outer end of this insertion hole (9) is a tapered opening QOI. In order to protect the lens (5), a cover glass (8) may be provided at one end of the ferrule (1) if necessary.
上記構成のプラグ(221を組立てる手l1laを第4
図に付き説明する。談ずフェルール(11内にレンズ(
5)及びスペーサ(6)を接着固定し、支持体(7)を
フェルール(1)内に接着することなく単に挿入し、こ
れを第4図に示すように平行光光源(lυの前方の支持
装置(1′lJに固定するとともに支持体(7)の挿通
孔(9)内に光量測定用元ファイバ03)を挿入してこ
の元ファイバの先端面をスペーサ(6)の一端面に密層
させる。才た元ファイバ(1皺の他端側には、予め他の
元ファイバプラグ(23)を接続しておく。なおこの他
方の元ファイバプラグ(ハ)も第6図に示すものと実質
的に同一の構成で既に組立てが完了したものであってよ
い。The fourth step is to assemble the plug (221) with the above configuration.
This will be explained with reference to the diagram. No need ferrule (lens inside 11)
5) and spacer (6) are adhesively fixed, the support (7) is simply inserted into the ferrule (1) without adhesive, and this is inserted into the support in front of the collimated light source (lυ) as shown in Figure 4. Fix the device (1'lJ) and insert the source fiber 03 for light intensity measurement into the insertion hole (9) of the support (7), and place the tip of this source fiber in a dense layer on one end surface of the spacer (6). Connect another original fiber plug (23) to the other end of the bent original fiber (1 wrinkle) in advance.This other original fiber plug (c) is also substantially the same as the one shown in FIG. They may have the same configuration and have already been assembled.
そして光ファ、イイf(13+からの出射光をこの他方
の元ファイバプラグ(2:(lで平行光に変換し、この
平行光を受−ye累子0(シで受けて受光量を光量モニ
タa力で測定する。上記測定システムにおいて、光源0
υからの平行光束(181r、rプラグ+221内のレ
ンズ(5)に入射さ「、モニタODでう°Cファイバ(
13)の伝送光量を測定し一つつ、プラグ内の支持体(
7)を元軸とは直交する方向に移動させて受光対がピー
クを示す位置、っオリレンズ(51の光軸と支持体(7
)の中心帷が一致するへγ置を探す。そしてこの位置で
、支持体(7)を接着剤(141等で固定し、元ファイ
バ0.3)を支持体(7)から抜き取る。Then, the light emitted from the optical fiber, ii f(13+) is converted into parallel light by the other original fiber plug (2:(l), and this parallel light is received by Measure with monitor a power.In the above measurement system, light source 0
Parallel light beam from υ (181r, r plug + input to lens (5) in 221), monitor OD to the °C fiber (
13) While measuring the amount of transmitted light, the support inside the plug (
7) in a direction perpendicular to the original axis to the position where the light-receiving pair shows its peak.
) Find the γ position where the center lines of the lines match. At this position, the support (7) is fixed with an adhesive (141, etc.), and the original fiber 0.3 is extracted from the support (7).
以上の手順で組立てられた元ファイバプラグを使用する
場合には、このプラグ(22)を使用場所迄運搬し、こ
のプラグ(2侃こ接続すべき元ファイバ(3)の先端部
を支持体(7)の挿通孔(9)に挿通させてその端面を
スペーサ(6)の端面に密着させる。そしてこの状態で
テーパ状開口(10)に接着剤(15)を充填する等し
て支持体(7)に元ファイバ(3)を固定する。When using the original fiber plug assembled in the above procedure, transport this plug (22) to the place of use, and attach the tip of the original fiber (3) to be connected to the support ( 7) through the insertion hole (9) and its end face is brought into close contact with the end face of the spacer (6).In this state, the tapered opening (10) is filled with adhesive (15), etc., and the support member ( 7) fix the original fiber (3).
以上本発明を実施例に付き説明したが、本発明はこの実
施例に限定されるものではなく、更に各種の変更が可能
である。Although the present invention has been described above with reference to embodiments, the present invention is not limited to these embodiments and can be further modified in various ways.
例えは、集光・平行光変換用レンズ体は、凸レンズ以外
の球面レンズまたは屈折率分布型レンズ若しくはこれら
のレンズの組合せであっても良い。For example, the condensing/parallel light converting lens body may be a spherical lens other than a convex lens, a gradient index lens, or a combination of these lenses.
才た支持体として屈折率分布型レンズを用いることも可
能である。It is also possible to use a gradient index lens as a suitable support.
本発明は上述のように、レンズ体と元ファイバ支持体と
の間にこれらの双方に接触さゼて透明部材を介在させた
ので、レンズ体に対して光ファイバの端面をその光軸方
向に所定距離離れた所定位置に配置する操作が簡単であ
る。また元ファイバの挿通孔を有する元ファイバ支持体
を筒状部材に配設するようにしたので、元ファイバの一
端部を筒状部材に直接設けた挿通孔に挿通させる場合に
較べて、レンズ体に対する元ファイバの径方向の位置合
ゼの操作も簡単である。従って本発明によれば、レンズ
体(こ対して元ファイバをその軸心方向に所定距離離し
て軸心方向及び径方向の双方について正確に位置合ぜし
て堆付けるのが極めて容易である。As described above, in the present invention, a transparent member is interposed between the lens body and the original fiber support body in contact with both of them, so that the end face of the optical fiber is aligned with respect to the lens body in the optical axis direction. The operation of placing it at a predetermined position a predetermined distance apart is easy. In addition, since the original fiber support having the insertion hole for the original fiber is arranged in the cylindrical member, it is easier to insert the original fiber into the lens body than in the case where one end of the original fiber is inserted through the insertion hole provided directly in the cylindrical member. The radial alignment of the source fiber with respect to the fiber is also easy. Therefore, according to the present invention, it is extremely easy to deposit the lens body (with respect to the original fiber) at a predetermined distance in the axial direction of the lens body and with accurate alignment in both the axial direction and the radial direction.
第1図は従来公知の元ファイバプラグの使用状態を示す
概略的な断面図、第2図は軸すれに依る元の結合損失を
示すグラフ、第6図は本発明を適用した元ファイバプラ
グの一実施例の概略的な断面図、第4図は第3図(こ示
す元ファイバプラクの組立手順を示す概略図である。
なお図面ζこ用いられている符号に於いて、(1)・・
・・・・・・・・・・・・・フェルール(5)・・・・
・・・・・・・・・・・凸レンズ(61・・・・・・・
・・・・・・・・スペーサ(7)・・・・・・・・・・
・・・・・元ファイバ支持体(9)・・・・・・・・・
・・・・・・挿通孔である。
代理人 上屋 勝
〃 常 包 芳 男
〃 杉 浦 俊 貢
第1図
第2図
中山ず′#L量[7F1?yl]
第3図
第4図Fig. 1 is a schematic cross-sectional view showing the state of use of a conventionally known original fiber plug, Fig. 2 is a graph showing the original coupling loss due to axial slippage, and Fig. 6 is a diagram of the original fiber plug to which the present invention is applied. A schematic cross-sectional view of one embodiment, FIG. 4 is a schematic diagram showing the assembly procedure of the original fiber plaque shown in FIG.・
・・・・・・・・・・・・ Ferrule (5)・・・・
・・・・・・・・・Convex lens (61・・・・・・・
・・・・・・・・・Spacer (7)・・・・・・・・・
...Original fiber support (9) ...
......It is an insertion hole. Agent Masaru Ueya, Yoshio Tsune, Shun Sugiura, Mitsugu Figure 1 Figure 2 Nakayamazu'#L quantity [7F1? yl] Figure 3 Figure 4
Claims (1)
れたレンズ体と、前記中空部分の他端側に配設され且つ
元ファイバの挿通孔を有する元ファイバ支持体と、前記
レンズ体及び前記元ファイバ支持体&の間にこれらの双
方に接触して介在し耳つ前記レンズ体に依って集光され
る平行光が前記元ファイバ支持体の端面に収束する様に
構成された透明部材とから成る光フアイバ接続具。a cylindrical member; a lens body disposed at one end of the hollow portion of the cylindrical member; a source fiber support body disposed at the other end of the hollow portion and having an insertion hole for the source fiber; The lens body and the original fiber support are interposed so as to be in contact with both of them, so that the parallel light focused by the lens body is converged on the end face of the original fiber support. An optical fiber connector consisting of a transparent member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11822682A JPS599615A (en) | 1982-07-07 | 1982-07-07 | Optical fiber connector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11822682A JPS599615A (en) | 1982-07-07 | 1982-07-07 | Optical fiber connector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS599615A true JPS599615A (en) | 1984-01-19 |
Family
ID=14731340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11822682A Pending JPS599615A (en) | 1982-07-07 | 1982-07-07 | Optical fiber connector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS599615A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61215504A (en) * | 1985-01-28 | 1986-09-25 | テイ ア−ル ダブリユ− インコ−ポレ−テツド | Centering of connector for optical fiber |
US6816644B1 (en) | 2000-07-27 | 2004-11-09 | Ingvar Nils Nodfelt | Lens system with variable focal length for connecting optical fibres |
-
1982
- 1982-07-07 JP JP11822682A patent/JPS599615A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61215504A (en) * | 1985-01-28 | 1986-09-25 | テイ ア−ル ダブリユ− インコ−ポレ−テツド | Centering of connector for optical fiber |
US6816644B1 (en) | 2000-07-27 | 2004-11-09 | Ingvar Nils Nodfelt | Lens system with variable focal length for connecting optical fibres |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7068883B2 (en) | Symmetric, bi-aspheric lens for use in optical fiber collimator assemblies | |
US20070019908A1 (en) | Fiber optic rotary joint with de-rotating prism | |
US7920763B1 (en) | Mode field expanded fiber collimator | |
US6847770B2 (en) | Lens function-including optical fiber and method of producing the same | |
CN101004467A (en) | Optical component for optical communication | |
JPS61264304A (en) | Optical fiber terminal and making thereof | |
US8520990B2 (en) | High-power collimating lens assemblies, and methods of reducing the optical power density in collimating lens assemblies | |
JP6898529B2 (en) | Fiber-End Caps-End Caps, Assemblies and Methods to Improve the Alignment of Fixtures | |
JP2004517370A (en) | Optical system for injecting light from a light source into a medium | |
US20020197020A1 (en) | Optical fiber collimator with long working distance and low insertion loss | |
JP2004061830A (en) | Optical fiber parts | |
US5701375A (en) | Method and system for aligning of optical elements | |
JPS599615A (en) | Optical fiber connector | |
US7010190B2 (en) | Silicon optic based wavelength division multiplexing device | |
US20030138214A1 (en) | Optical collimator with molding lens | |
JPS62113032A (en) | Loop-shaped repulsion type interference device using single-mode optical fiber | |
US20230228950A1 (en) | Optical fiber connection structure | |
JP2004302222A (en) | Optical fiber collimator and manufacturing method therefor | |
US7340131B2 (en) | Collimator and optical filter device using the same | |
JP4275445B2 (en) | Optical fiber collimator lens and optical coupler | |
JP2935553B2 (en) | Collimator | |
US6469835B1 (en) | Optical collimator with long working distance | |
US4890897A (en) | Single mode connector | |
US20030219203A1 (en) | Multi-channel collimating device | |
CN104297850A (en) | Optical attenuator for compensating wavelength dependent loss |