JPS5995545A - Two-color picture forming method - Google Patents

Two-color picture forming method

Info

Publication number
JPS5995545A
JPS5995545A JP57207334A JP20733482A JPS5995545A JP S5995545 A JPS5995545 A JP S5995545A JP 57207334 A JP57207334 A JP 57207334A JP 20733482 A JP20733482 A JP 20733482A JP S5995545 A JPS5995545 A JP S5995545A
Authority
JP
Japan
Prior art keywords
color
potential
magnetic
latent image
picture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57207334A
Other languages
Japanese (ja)
Inventor
Susumu Tanaka
晋 田中
Kaoru Takebe
武部 馨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP57207334A priority Critical patent/JPS5995545A/en
Priority to US06/534,144 priority patent/US4562129A/en
Publication of JPS5995545A publication Critical patent/JPS5995545A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/01Electrographic processes using a charge pattern for multicoloured copies
    • G03G13/013Electrographic processes using a charge pattern for multicoloured copies characterised by the developing step, e.g. the properties of the colour developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/04Arrangements for exposing and producing an image
    • G03G2215/0495Plural charge levels of latent image produced, e.g. trilevel

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To obtain a sharp dichroic picture by forming an electrostatic latent image on a photosensitive body in the opposite relation of a picture part potential to a two-color picture, developing the latent image with a developer consisting of nonmagnetic toner in the 1st color and high-resistance magnetic carriers in the 2nd color, and transferring the picture. CONSTITUTION:The rotating photosensitive body 1 is electrified positively by a corona charger 2 and exposed to the picture of an original to form a primary electrostatic latent image. The photosensitive body is then electrified negatively by a corona charger 6 and exposed to the same original through a red cutting filter 8. The electrostatic latent image having the opposite potential relation between the 1st color picture part and the 2nd picture part is developed by a magnetic brush developing device 10 and then charged by a corona charger 12 for transfer. The developing material for the device 10 uses the nonmagnetic toner in the 1st color and high-resistance magnetic carriers in the 2nd color which is electrified by friction to the polarity opposite to said toner, contains magnetic particulates dispersed in insulating resin, has >=10<12>OMEGA.cm and about 5-10mum particle size so that 50-75wt% carriers are incorporated on the basis of the whole of magnetic particles.

Description

【発明の詳細な説明】 技術分野 本発明は摩擦帯電される高抵抗磁性キャリアと非磁性絶
縁トナーを現像剤として用い、2色画像を容易に形成す
ることのできる2色画像形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a two-color image forming method that uses a triboelectrically charged high-resistance magnetic carrier and a non-magnetic insulating toner as a developer to easily form a two-color image.

従来技術 2色画像を形成する方法として既に数多く提案されてい
るが、その−例として例えば特開昭55−117155
号公報に示されるように、感光体として導電性基鈑上に
第1色(例えば赤色)に対し光感度を有する第1光導電
層、中間層及び第2色(例えば黒色)に対(7光感度を
有する第2光辱電層を順次積層してなるものを用い、所
定の工程を経て第1色と第2色画像に対応する静電潜像
を夫々逆極性の関係となるように形成し、互いに逆極性
に帯電され異なる色に着色された2種のトナーで現像す
ることにより可視像化するものがある。
PRIOR ART A number of methods have already been proposed for forming two-color images; for example, Japanese Patent Laid-Open No. 55-117155
As shown in the above publication, a first photoconductive layer having photosensitivity to a first color (for example, red), an intermediate layer, and a second photoconductive layer (for example, black) are formed on a conductive substrate as a photoreceptor. A second photosensitive layer having photosensitivity is sequentially laminated, and through a predetermined process, the electrostatic latent images corresponding to the first color and second color images are made to have a relationship of opposite polarity. There is a type of toner that is formed into a visible image by developing it with two types of toners that are charged with opposite polarities and colored in different colors.

捷た、」二記の他に感光体として導電性基板に両極性且
つ2色に光感度を有する光導電層を積層してなるものも
のを用い、所定の工程を経て@1色、第2色画像部に対
応する静電潜像を逆極性の関係となるように形成し、2
種の異なる色のトナーで現像する2色画像形成方法も提
案されている。
In addition to the above, a photoreceptor made by laminating a photoconductive layer having bipolar properties and photosensitivity to two colors on a conductive substrate is used as a photoreceptor, and through a predetermined process, @1 color, 2 colors An electrostatic latent image corresponding to the color image area is formed so as to have a relationship of opposite polarity, and 2
A two-color image forming method has also been proposed in which the image is developed using toners of different colors.

ところが、これらの方法を含む2色両像形成方法におい
ては、2種の異なる色のトナーにより現像するため、一
般に2つの現像装置が必要とされ、その分複写機の大型
化が避けられないという欠点がある。もっとも一つの現
像装置で2色現像する方法も提案されているが、往々に
して複写画像中にカプリを生じたり混色が生じ鮮明な2
色画像を得られないものであった。
However, in two-color image forming methods including these methods, two developing devices are generally required because two types of toners of different colors are used, which inevitably increases the size of the copying machine. There are drawbacks. Although a method of developing two colors using one developing device has been proposed, capri or color mixture often occurs in the copied image, resulting in sharp two-color development.
It was not possible to obtain a color image.

発明の目的 本発明は以上の事実に鑑みて成されたもので、その目的
とするところは、極めて容易な条件設定ト簡素な構成で
もってカブリのない鮮明な2色画像を形成することので
きる2色画像形成方法を提供することにある。
Purpose of the Invention The present invention has been made in view of the above facts, and its purpose is to form a clear two-color image without fogging with extremely easy condition setting and a simple configuration. An object of the present invention is to provide a two-color image forming method.

発明の要旨 本発明に1係る2色画像形成方法は、その第1の特徴と
して、非磁性絶縁トナーと、該トナーと逆極性に摩擦帯
電し抵抗値が10120・備以上と高抵抗であり粒径が
約5乃至40ミクロンであるとともに絶縁性樹脂中に磁
性微粉末を分散してなり月つ、その磁性微粉末の粒子全
体に占める割合が50乃至75重量%である高抵抗磁性
キャリアさの少なくとも2つの成分から成るものを現像
剤として用いた点にある。
SUMMARY OF THE INVENTION The first feature of the two-color image forming method according to the present invention is that it uses a non-magnetic insulating toner, which is frictionally charged to the opposite polarity to the toner and has a high resistance value of 10120 or more, A high-resistance magnetic carrier having a diameter of about 5 to 40 microns and made by dispersing magnetic fine powder in an insulating resin, in which the proportion of the magnetic fine powder to the whole particle is 50 to 75% by weight. The point is that a developer consisting of at least two components is used.

この現像剤は既に本願出願人によって特開F@55−3
2073号公報に開示されているところであるが、従来
のものに比べて特に解像力と寛容度の点で非常に優れて
いる。より具体的に、上記現像剤において、高抵抗磁性
キャリアは例えば絶縁性樹脂と磁性微粉末を溶融混合し
、冷却後微粉砕し、これを約5乃至40ミクロンに粒径
選別することによって製造される。ここで上記絶縁性樹
脂中しては、ポリエチレン、ポリアクリル酸エステル、
ポリメチルメタクリレート、ポリスチレン、スチレンア
クリル重合体、エポキシ樹脂、クマロン樹脂、マイレン
酸樹脂、石炭酸樹脂、弗素酸樹脂等が使用できる。また
、磁性微粉末としてはFe703FeO4、フェライト
、マグネタイト等を適宜選択すればよい。一方、非磁性
絶縁トナーとしては従来より公知のものが使用でき、そ
の平均粒径は約5乃至50ミクロンで体積抵抗は約10
140・cm以上である。
This developer has already been developed by the applicant in Japanese Patent Application Publication No. F@55-3.
This is disclosed in Japanese Patent No. 2073, and is extremely superior to conventional ones, especially in terms of resolution and latitude. More specifically, in the above-mentioned developer, the high-resistance magnetic carrier is produced by, for example, melting and mixing an insulating resin and a magnetic fine powder, cooling it, pulverizing it, and selecting the particle size to about 5 to 40 microns. Ru. Here, among the above insulating resins, polyethylene, polyacrylic acid ester,
Polymethyl methacrylate, polystyrene, styrene acrylic polymer, epoxy resin, coumaron resin, maleic acid resin, carbonic acid resin, fluoric acid resin, etc. can be used. Further, as the magnetic fine powder, Fe703FeO4, ferrite, magnetite, etc. may be appropriately selected. On the other hand, conventionally known non-magnetic insulating toners can be used, with an average particle size of about 5 to 50 microns and a volume resistivity of about 10.
It is 140 cm or more.

そして上記高抵抗磁性キャリアと非磁性絶縁トナーとを
攪拌して互いに逆極性に摩擦帯電させ、磁気ブラシ現像
方法により磁気刷子を形成し非磁性絶縁トナーを潜像パ
ターンに応じて付着させることによって現像するもので
ある。
Then, the high-resistance magnetic carrier and the non-magnetic insulating toner are stirred and frictionally charged to opposite polarities, and developed by forming a magnetic brush using a magnetic brush development method and depositing the non-magnetic insulating toner in accordance with the latent image pattern. It is something to do.

本願発明者は上記現像剤を用い様々な条件の下に磁気ブ
ラシ現像したところ、下記する事実を見い出した。即ち
、磁気ブラシ現像は現像電極にバイアス電圧の印加とと
もに行われる。この/くイアスミ圧は静電潜像の非画像
部電位より幾分高い目に設定することによってトナーの
非画像部への付着を防止するためである。上記現像剤を
用いて磁気ブラシ現像する場合でも同様に行われるが、
本願発ツ]者は、第1の点としてバイアス電圧値と略等
しいかその近辺の電位、特にバイアス電圧以下では非磁
性絶縁トナーは付着し々いこと、第2の点としてバイア
ス電圧を基準としてトナーが付着する潜像電位と逆関係
に一定範囲の電位までは高抵抗磁性キャリアは付着しな
いがその電位を越える電位部分に対してキャリアが付着
することを見い出した。
The inventor of the present invention performed magnetic brush development under various conditions using the above-mentioned developer and discovered the following fact. That is, magnetic brush development is performed while applying a bias voltage to the development electrode. This bias pressure is set to be somewhat higher than the potential of the non-image area of the electrostatic latent image in order to prevent toner from adhering to the non-image area. The same method is used when developing with a magnetic brush using the above developer.
The inventor of the present application has stated that the first point is that non-magnetic insulating toner hardly adheres at a potential that is approximately equal to or near the bias voltage value, especially below the bias voltage value, and the second point is that, based on the bias voltage value, non-magnetic insulating toner tends to adhere It has been found that, in an inverse relationship to the latent image potential to which toner adheres, high-resistance magnetic carriers do not adhere to potentials up to a certain range of potential, but carriers adhere to potential areas exceeding that potential.

これを第1図により説明すると、同図において縦軸は像
濃度を、横軸は感光体上の電位を、また(A)、(B)
は夫々電位に応じての非磁性絶縁トナーと高抵抗磁性キ
ャリアの付着量を示す。更に後述からも明らかとなるが
木発F3Aにおいては2色画像を得るためには第1色画
像部に対応する潜像電位部と第2色画像部に対応する潜
像電位部ば逆様性の関係となるので、これと一致する目
的で例えば(Vl)を負極性で第1色両像部に対応する
潜像電位、(v2)を正極性で第2色画像部に対応する
電位とする。また(V、、)は非画像部(白地部)電位
(v3)より幾分高く設定され現像電極に印加するバイ
アス電圧値、(Vo)は磁場及び電場の合成の閾値電位
である。
To explain this with reference to Figure 1, the vertical axis represents the image density, the horizontal axis represents the potential on the photoreceptor, and (A) and (B)
represent the amount of adhered non-magnetic insulating toner and high-resistance magnetic carrier depending on the potential, respectively. Furthermore, as will become clear from the description below, in order to obtain a two-color image in the wood F3A, the latent image potential portion corresponding to the first color image portion and the latent image potential portion corresponding to the second color image portion are required to have an inverse pattern. Therefore, for the purpose of matching this, for example, (Vl) is a latent image potential corresponding to both image areas of the first color with negative polarity, and (v2) is a potential of positive polarity corresponding to the image area of the second color. do. Further, (V, , ) is a bias voltage value set somewhat higher than the non-image area (white background area) potential (v3) and applied to the developing electrode, and (Vo) is a threshold potential of the combination of the magnetic field and the electric field.

この図から明らかなように、バイアス電圧(Vb)の近
辺の電位部分に対しては非磁性トナーはほとんど付着せ
ず、特に(Vb、)以下では付荷は全くおこらない。こ
れに対し、(Vb)以上の電位、っ捷り(Vl)によっ
て表わされる電位部に対しカーブ(A)に示すように付
着する。一方、高抵抗磁・+m−キャリアは、バイアス
電圧(Vb)を基準として閾値電位(Vo)までは付着
しないが、その(VC)をこえる(V2)の電位部に対
しカーブ(B)に示すように付着する。この閾値電位(
Vo)はキャリア自体が持つ磁力、現像手段そのものの
磁力、潜像電位(v2)等に依存するが、後述する実験
例からも明らかなようにバイアス電圧(Vb)に対し絶
対値で200v程度の差があればキャリアの付着が生じ
(V2)か(VC)より高いことにより高濃度に付着す
る。
As is clear from this figure, almost no non-magnetic toner adheres to the potential portion near the bias voltage (Vb), and in particular, no adhesion occurs at voltages below (Vb, ). On the other hand, when the potential is higher than (Vb), it adheres as shown in curve (A) to the potential area represented by the bend (Vl). On the other hand, high-resistance magnetic +m-carriers do not adhere to the threshold potential (Vo) based on the bias voltage (Vb), but the curve (B) shows the potential part (V2) exceeding that (VC). It sticks like that. This threshold potential (
Vo) depends on the magnetic force of the carrier itself, the magnetic force of the developing means itself, the latent image potential (v2), etc., but as is clear from the experimental examples described later, the absolute value is about 200 V with respect to the bias voltage (Vb). If there is a difference, carriers will adhere at a high concentration due to being higher than (V2) or (VC).

このように本発明においては、非磁性絶縁トナーと高抵
抗磁性キャリアか夫々逆極性の電位パターンに付着する
こと、高抵抗磁性キャリアはその粒径かトナーと略等し
い5乃至40ミクロンと微小て両像形成用として用いて
も解像力に優れていること、更に定着性が良好で所望の
色に着色できること等により2色画像を得るものである
In this way, in the present invention, the non-magnetic insulating toner and the high-resistance magnetic carrier are attached to potential patterns of opposite polarity, and the high-resistance magnetic carrier has a particle size of 5 to 40 microns, which is approximately the same as that of the toner. Even when used for image formation, two-color images can be obtained because of its excellent resolution, good fixing properties, and the ability to be colored in desired colors.

第2図は本発明に係る2色画像形成方法を実施するだめ
の複写機の構成を示し、正負両極性に感度を有し反時計
方向に回転する感光体ドラム(1)はまず第1コロナチ
ヤージヤ(2)により第1の極性に均一帯電され、続い
て往復動可能な原稿台(3)上に載置された2色原稿を
露光ランプ(4)により寂光し、レンズ(5)を介して
遂次露光することによって1次静電潜像が形成される。
FIG. 2 shows the configuration of a copying machine for carrying out the two-color image forming method according to the present invention, in which the photosensitive drum (1), which is sensitive to both positive and negative polarities and rotates counterclockwise, is first connected to the first corona charger. (2), the two-color original is uniformly charged to the first polarity, placed on a reciprocating document table (3), is exposed to light by an exposure lamp (4), and then exposed to light through a lens (5). A primary electrostatic latent image is formed by successive exposures.

この1次静電潜像は次に第2極性の第2コロナチヤージ
ヤ(6)により帯電され、その後、同一原稿が露光ラン
プ(7)により露光されカットフィルター(8)、レン
ズ(9)を介して投影され2次静電潜像が形成される。
This primary electrostatic latent image is then charged by a second corona charger (6) of a second polarity, and then the same document is exposed to light by an exposure lamp (7) and passed through a cut filter (8) and a lens (9). A secondary electrostatic latent image is formed.

また、(10)はこの2次静電潜像を現像するだめの磁
気ブラシ現像装置、(11)は現像により付着した非磁
性絶縁トナーと高抵抗磁性キャリアを何れかの極性に揃
えるた用コロナチャージャ、(14)は転写された転写
紙をドラム面より分離するための分離用コロナチャージ
ャ、(15)は残留現像剤を除去するだめのグレードク
リーナ並びに(16)は残留電荷を除電するだめのイレ
ーザランプである。
In addition, (10) is a magnetic brush developing device for developing this secondary electrostatic latent image, and (11) is a corona for aligning the non-magnetic insulating toner and high-resistance magnetic carrier attached during development to either polarity. Charger (14) is a separating corona charger for separating the transferred transfer paper from the drum surface, (15) is a grade cleaner for removing residual developer, and (16) is for removing residual charge. It is an eraser lamp.

上記磁気ブラシ現像装置(10)は上述の高抵抗磁性キ
ャリアと非磁性絶縁トナーを現像剤として使用するもの
であるが、これらは攪拌ローラ(17)により充分に攪
拌されて互いに逆極性に摩擦帯電される。(18)はマ
グネットローラ、(19)はスリーブローラで夫々速度
差をもって同方向に回転可能とし、スリーブローラ上に
磁気ブラシを形成することによって2次静電潜像を現像
する。尚、スリーブローラ(19)には直流電圧源(2
0)・より所定のバイアス電圧(vb)が印加されるよ
うになっている。
The above-mentioned magnetic brush developing device (10) uses the above-mentioned high-resistance magnetic carrier and non-magnetic insulating toner as a developer, and these are sufficiently stirred by the stirring roller (17) and frictionally charged to opposite polarities. be done. A magnetic roller (18) and a sleeve roller (19) are rotatable in the same direction at different speeds, and a secondary electrostatic latent image is developed by forming a magnetic brush on the sleeve roller. In addition, the sleeve roller (19) is connected to a DC voltage source (2
0)・A predetermined bias voltage (vb) is applied.

尚、この現像装置の具体的構成としては例えば特開昭5
5−414.60  号公報に示されるものを利用でき
る。
The specific structure of this developing device is, for example, disclosed in Japanese Patent Application Laid-open No. 5
5-414.60 can be used.

以」二の構成の複写機により本発明に係る2色画像形成
方法は次のように行われる。回転する感光体ドラム(L
)id4ず正極性に第1コロナチヤージヤ(2)Kより
第3図(a)に示すように(Vo)の表面電位に均一帯
電される。次に2色原稿を画像露光して第゛3図(b)
に示すような1次静電潜像を形成する。この場合、原稿
として赤色の画像と黒色の画像を含むものを用いたとき
、画像露光により赤色画像部に対応する電位は(Vo)
から(Vr)VC,、、=Ifだ非画像部(白地部)は
0に近い(Vg)に減衰する一方、黒色画像部は(Vo
)と略等しい。
The two-color image forming method according to the present invention is carried out as follows using the copying machine having the following configuration. Rotating photoreceptor drum (L
) id4 is uniformly charged to a positive polarity by the first corona charger (2)K to a surface potential of (Vo) as shown in FIG. 3(a). Next, the two-color original is exposed to image light as shown in Figure 3(b).
A primary electrostatic latent image as shown in FIG. In this case, when an original containing a red image and a black image is used, the potential corresponding to the red image area due to image exposure is (Vo)
From (Vr) VC, ,, = If.The non-image area (white background area) attenuates to (Vg) close to 0, while the black image area attenuates (Vg).
) is approximately equal to

この(Vo、)、(Vr)、(vg)の電位パターンを
有する1次静電潜像は次に第2コロナチヤージヤ(6)
により負極性帯電され、第3図(c)のようになる。即
ち、負極性帯電により最も低い非画像部電位(vg)は
反転して逆に負極性の(vg・)となり、赤色画像部の
電位(Vr)も負極性の(Vl)に反転する一方、黒色
画像部の電位(Vo)は正極性を維持したまま(V2)
−1:で低下する。この状態で再び同一原稿を露光する
。但し、このときけ赤色カットフィルター(8)を介在
させで露光しその結果、第3図(d)に示す電位パター
ンの2次静電潜像が形成される。つ捷りこの露光により
非画像部電位(Vg’ )がOに近い(v3)に減衰す
る一方、赤色、黒色画像部に対応する(vl)、(■2
)はその−1ま維持される。
This primary electrostatic latent image having the potential pattern of (Vo, ), (Vr), (vg) is then transferred to the second corona charger (6).
It becomes negatively charged, as shown in FIG. 3(c). That is, due to negative polarity charging, the lowest non-image area potential (vg) is reversed and becomes negative polarity (vg), and the red image area potential (Vr) is also reversed to negative polarity (Vl), The potential (Vo) of the black image area remains positive (V2)
-1: Decreases. In this state, the same original is exposed again. However, at this time, exposure is performed with a red cut filter (8) interposed, and as a result, a secondary electrostatic latent image having the potential pattern shown in FIG. 3(d) is formed. Due to this exposure, the potential of the non-image area (Vg') attenuates to (v3) close to O, while the potential (vl) corresponding to the red and black image areas (■2
) is maintained until -1.

こうして形成された2次静電潜像は続いて磁気ブラシ現
像装置(10)により現像されるのであるが、例えば非
磁性絶縁トナーとしては赤色両像部の電位(V、)と逆
、極性(正極性)に摩擦帯電され赤色に着色されたもの
を、また高抵抗磁性キャリアとしては該トナーと逆極性
で黒色画像部の電位(V2)と逆極(負極性)に帯電さ
れ黒色に着色されたものを用いる。一方、直流電圧源(
2o)が位(V3)より幾分高く設定される。そしてス
リーブローラ(19)上に磁気ブラシ穂を形成するとと
もにバイアス電圧(Vb)を印加することによって、(
vb)と赤色画像部電位(V、)@には非磁性絶縁トナ
ーか、捷た(Vo)と黒色画像部電位(v2)間には高
抵抗磁性キャリアが付着する。
The secondary electrostatic latent image thus formed is then developed by a magnetic brush developing device (10). For example, as a non-magnetic insulating toner, the potential (V, A high-resistance magnetic carrier is tribo-electrified to a positive polarity (positive polarity) and colored red, and a high-resistance magnetic carrier is charged to an opposite polarity (negative polarity) to the potential (V2) of the black image area and is colored black. Use something similar. On the other hand, a DC voltage source (
2o) is set somewhat higher than digit (V3). By forming magnetic brush ears on the sleeve roller (19) and applying a bias voltage (Vb), (
Non-magnetic insulating toner is deposited between the voltage (V, ) @ of the red image area (vb) and the potential of the black image area (v2), and a high-resistance magnetic carrier is adhered between the voltage (Vo) and the potential of the black image area (v2).

これを具体的に説明すると、第1図との関連でも述べた
通り、バイアス電圧(Vb)近辺、特にそれ以下では非
磁性絶縁トナーは付着しないか、(Vb)以」二の電位
部分では(Vb)と(Vl)間の赤色画像部に赤に着色
されたトナーが付着する。尚、厳密にはトナーは(Vb
)より数10ボルト高い電位から付着し始める。一方、
バイアス電圧(Vb)を基準さしてトナーが付着する電
位上は逆方向の電位部分に対しては一定値の(VC)!
、で高抵抗磁性キャリアが付着しないことは前述した通
りである。
To explain this specifically, as mentioned in connection with FIG. Red toner adheres to the red image area between Vb) and (Vl). Strictly speaking, the toner is (Vb
), it begins to adhere at a potential several tens of volts higher. on the other hand,
With respect to the potential where toner adheres relative to the bias voltage (Vb), a constant value (VC) is applied to the potential part in the opposite direction!
As mentioned above, high-resistance magnetic carriers do not adhere in .

これは第3図(e)において(Vb) 、!= (vo
)の問・          −4−の電位 に相当し、この閾値型、位(vc)を境にそれ以上の電
位部分、即ち(VC)と黒色画像部電位(V2)との間
に黒色の高抵抗磁性キャリアが付着する。こうして赤黒
原稿に忠実に2色現像される。尚、上述の説明ではトナ
ーとキャリアを夫々正と負に摩擦帯電され赤さ黒に着色
されたものを用いると説明したが、逆の関係にあっても
よい。この場合、バイアス電圧(Vb)は(V3)より
幾分高い負極電位ではなく正極の低い電圧に設定する。
This is (Vb),! in Figure 3(e). = (vo
) Corresponds to the potential of -4-, and there is a high resistance of black color between (VC) and the black image area potential (V2), which corresponds to the potential of -4-. Magnetic carriers adhere. In this way, two-color development is performed faithfully to the red and black original. In the above description, it has been explained that the toner and the carrier are frictionally charged positively and negatively, respectively, and colored red and black, but the relationship may be reversed. In this case, the bias voltage (Vb) is set not to a negative electrode potential that is somewhat higher than (V3) but to a lower positive electrode voltage.

丑だ、前述した通り、高抵抗磁性キャリアは(Vb)を
基準として一定範囲の電位、具体的には約200ボルト
程付着しないので、この意味でギヤリアが付着すべき電
位は少なくとも(Vb)K対し絶対値で200ボルトよ
り充分差のある電位でなければならない。更に2色複写
を必要としない場合はトナー吉キャリアは同色でもよい
As mentioned above, high-resistance magnetic carriers do not adhere to potentials within a certain range of (Vb), specifically about 200 volts, so in this sense, the potential that the gear should adhere to is at least (Vb)K. On the other hand, the potential must be sufficiently different from the absolute value of 200 volts. Furthermore, if two-color copying is not required, the toner carriers may be of the same color.

こうして感光体ドラム(1)上に2色現像された像は、
次に前荷電用コロナチャージャ(11)により負極また
は正極帯電される。これは高抵抗磁性キャリアの極性を
トナーと同極に揃えることを目的とする。但し、転写が
圧力や熱による場合14)Kより分離され、定着装置(
21)によって定着されて最終複写物となる。一方、感
光体ドラム(1)は残留現像剤がグレードクリーナ(1
5)により除去され、続いて残留電荷がイレーザランプ
(16)により除電されて、次の複写を行う。
The two-color image developed on the photoreceptor drum (1) in this way is
Next, it is negatively or positively charged by a pre-charging corona charger (11). The purpose of this is to align the polarity of the high-resistance magnetic carrier to the same polarity as that of the toner. However, if the transfer is done by pressure or heat, it will be separated from 14) K and the fixing device (
21) to become the final copy. On the other hand, the residual developer on the photoreceptor drum (1) is removed by grade cleaner (1).
5), and then the residual charge is removed by an eraser lamp (16) to perform the next copy.

第4図は、本発明に係る2色画(像形成方法が実施可能
な転写型複写機の別実施例を示し、第2図のもの七同一
部材については同一番号を付してその説明に替える。図
中、(22)は2色原稿が載置される固定の原稿台で、
その下方には駆動ローラを含む複数のローラ(23)、
(24)、(25)により回転可能に支持された感光体
ベルト(26)が設けられている。この感光体ベルト(
26)と原稿台(22)間には往復動可能で一体的に移
動可能な光学系ユニット(27)が設けられており、該
ユニットには感光体ベルト面を第1の極性に均を遂次投
影するためのセルフォックの如き第1集束性光伝送体(
30)、第2の極性に帯電するだめの第2コロナチヤー
ジヤ(31)並びに第2露光ランプ(32)によりカッ
トフィルター(33)を介して電光される原稿像を投影
するだめのセルフォックの如き第2集束性光伝送体(3
4)から構成されている。
FIG. 4 shows another embodiment of a transfer type copying machine capable of carrying out the two-color image forming method according to the present invention. In the figure, (22) is a fixed document table on which a two-color document is placed.
Below that, a plurality of rollers (23) including a drive roller,
A photoreceptor belt (26) rotatably supported by (24) and (25) is provided. This photoreceptor belt (
An optical system unit (27) that can reciprocate and move integrally is provided between the document platen (22) and the document platen (22), and the unit has an optical system unit (27) that can evenly align the surface of the photoreceptor belt with the first polarity. A first focusing light transmitter such as Selfoc for subsequent projection (
30), a second corona charger (31) which is charged to a second polarity, and a second corona charger (31), such as a selfoc, which projects an original image illuminated by a second exposure lamp (32) through a cut filter (33). Focusing light transmitter (3
4).

蓚写に際しては感光体ベルト(26)は静止の状態で上
記光学系ユニット(27)を図示する方向に往動させる
。これにより感光体ベルト面は捷ず第1コロナチヤージ
ヤ(28)により例えば正極性に第3図(a)で示した
ように均一帯電されを介して遂次雷光され第3図(b)
で示しだ通りの1次静電潜像が形成されていく。この1
次静電潜像は順次形成されるとともに負極性の第2コロ
ナチヤージヤ(31)Kより帯電され第3図(c)に示
す電位パターンとなり、更に同一原稿が第2露光ランプ
(32)、カントフィルター(33)及び第2集束性光
伝送体(34)を介して投影され、原稿台(22)と対
面する感光体ベルトの平面部分には最終的に第3図(d
)に示した通りの2次静電潜像か形成される。
During photographing, the optical system unit (27) is moved forward in the direction shown in the figure while the photoreceptor belt (26) remains stationary. As a result, the surface of the photoreceptor belt is uniformly charged to positive polarity by the first corona charger (28) as shown in FIG. 3(a) without being separated, and is successively exposed to lightning as shown in FIG. 3(b).
A primary electrostatic latent image is formed as shown in . This one
The next electrostatic latent image is sequentially formed and charged by the second corona charger (31) K of negative polarity to form the potential pattern shown in FIG. 3(c). (33) and the second convergent light transmitting member (34), and the planar portion of the photoreceptor belt facing the document table (22) is finally shown in FIG. 3(d).
) A secondary electrostatic latent image is formed as shown in FIG.

2次静電潜像が形成されると、感光体−ベルト(26)
は回動し始め、磁気ブラシ現像装置(10)によりバイ
アス電圧(vb)印加の下に第3図(e)の如く2色現
像される。現像された像は次に前荷電用コロナチャージ
ャ(11)により帯電された後、転写紙(13)に転写
されヒートローラ(21)により定着される。
Once the secondary electrostatic latent image is formed, the photoreceptor-belt (26)
begins to rotate, and two-color development is carried out as shown in FIG. 3(e) under the application of a bias voltage (vb) by the magnetic brush developing device (10). The developed image is then charged by a pre-charging corona charger (11), transferred to transfer paper (13), and fixed by a heat roller (21).

以上、第2図及び第4図で示しだ構成の複写機では感光
体として両極性に光感度を有するものを用い2回の画像
露光により最終的に現像されるべき潜像を形成するもの
であるが、前述した特開昭55−117155号公報に
示される感光体を用いれば1回の画像電光で2色画像の
形成が可能で且つカットフィルターも必要としない。具
体的にこの感光体は第5図に示す通りで導電性基板(4
0a)上に第1光導電層(40b)、中間層(4,Oc
 :’及び第2光導電層(40d )を順次積層して構
成され、第1光導電層(40b)は第1の極性に帯電可
能で例えば赤色光以外の光に対し感度を有する一方、第
2光導電層(40d)は第2の極性に帯電可能で赤色光
に光感度を有するものである。
As described above, in the copying machine having the configuration shown in Figs. 2 and 4, a photoreceptor having photosensitivity to both polarities is used to form a latent image to be finally developed by two image exposures. However, if the photoreceptor disclosed in the above-mentioned Japanese Patent Application Laid-open No. 55-117155 is used, a two-color image can be formed with one image flash, and a cut filter is not required. Specifically, this photoreceptor is as shown in FIG.
0a), a first photoconductive layer (40b), an intermediate layer (4,Oc
:' and a second photoconductive layer (40d) are sequentially laminated, and the first photoconductive layer (40b) is chargeable to a first polarity and is sensitive to light other than red light, while the first photoconductive layer (40b) is The two-photoconductive layer (40d) can be charged to the second polarity and has photosensitivity to red light.

第6図は上記感光体(40)を採用し2色画像を得るだ
めの複写機の概略構成を示し、感光体(40)はまずラ
ンプ(41)と第1コロナチヤージヤ(42)が一体構
成されたユニットにより赤色光が光照射されるとともに
正極性の1次帯電が行われる。これにより第2光導電@
(40d)は導電化され、第2光導電層(40d )と
中間層(40c)との境界には正電荷が、基板(40a
)と第1光導電層(4,Ob )間には負電荷が誘起分
布される。次に感光体(40)I/″i第2コロナチャ
ージャ(43)により1次帯電よりは小さい負極性の2
次帯電が行われ第2光導電層(40d)表面の電゛位は
負極性に反転される。これにより第1及び第2光導電層
(40b)、(40d )に電気2重層が形成される。
FIG. 6 shows a schematic configuration of a copying machine that uses the above-mentioned photoreceptor (40) to obtain a two-color image. The unit irradiates the device with red light and performs positive primary charging. This allows the second photoconductive @
(40d) is made conductive, and the boundary between the second photoconductive layer (40d) and the intermediate layer (40c) has a positive charge.
) and the first photoconductive layer (4, Ob), negative charges are induced and distributed. Next, the photoreceptor (40) I/''i is charged with a negative polarity smaller than the primary charge by the second corona charger (43).
Next charging is performed, and the potential on the surface of the second photoconductive layer (40d) is reversed to negative polarity. As a result, an electric double layer is formed in the first and second photoconductive layers (40b) and (40d).

続いて感光体(40)には往復動可能な原稿台(44)
上に載置された2色原稿か露光ランプ(45)により露
光されレンズ(46)を介して遂次投影される。この画
像露光により白地部に対応する感光体部分の電位け0と
なる一方、赤色部は第2光導電層(40d)のみか導電
化して電気2重層が消失し表面電位は正極性に反転する
。尚、黒色部の電位は負極性のままである。こうして形
成された静電潜像は次に磁気ブラシ現像装置(10)に
より2色現像されるが、その詳細は前述した通りである
。尚、この際、バイアス電圧(Vb)は非磁性絶縁トナ
ーを付着したい極性の電位側に設定す、FLばよい。尚
、その余の構成は第2図と同じであるので同一番号を付
して鮮明に替える。また2色原稿に対応する静電潜像を
形成するまでの工程並びに感光体は上記に限らず、例え
ば特開昭54−112634号、特開昭55−7306
2にJ−公報等に示される方法を採用することができ、
要は第1色と第2色に対応する電位が逆様の関係になる
ように潜像が形成されるのであればその方法は任意であ
る。
Next to the photoconductor (40) is a reciprocating document table (44).
The two-color original placed above is exposed by an exposure lamp (45) and sequentially projected through a lens (46). Due to this image exposure, the potential of the photoreceptor part corresponding to the white area becomes 0, while in the red area, only the second photoconductive layer (40d) becomes conductive, the electric double layer disappears, and the surface potential is reversed to positive polarity. . Note that the potential of the black portion remains negative. The electrostatic latent image thus formed is then developed in two colors by a magnetic brush developing device (10), the details of which are as described above. At this time, the bias voltage (Vb) may be set to the potential side of the polarity to which the non-magnetic insulating toner is desired to be attached. The rest of the structure is the same as in FIG. 2, so the same numbers are given to make it clear. Further, the process and photoreceptor for forming an electrostatic latent image corresponding to a two-color original are not limited to those described above, but are disclosed in Japanese Patent Application Laid-open No. 54-112634, Japanese Patent Laid-Open No. 55-7306, etc.
2, the method shown in J-publication etc. can be adopted,
In short, any method may be used as long as the latent image is formed so that the potentials corresponding to the first color and the second color have an inverse relationship.

以下実験例について述べる。An experimental example will be described below.

実施例 まずバイアス電圧(Vb)とそれを基準として付着する
非磁性絶縁トナーと高抵抗磁性キャリアの反射濃度との
関係を測定した。第2図に示した複写機を用い、感光体
ドラム(1)としては直径80肪のアルミニウムドラム
上にCd511nCdCO3光導電性微粉末を熱硬化性
アクリル樹脂に溶剤とともに分散させてなる厚さ30ミ
クロンの光導電層と、その上に厚さ0.5ミクロン以下
のアクリル樹脂からなる絶縁性保護層を順次積層してな
るものを用いた。また現像剤は非磁性絶縁トナーとして
は抵抗値が10+5Ω・鋼重上で平均粒径が14ミクロ
ンの赤色に着色され正極性に摩擦帯電されるものを、高
抵抗磁性キャリアとしては抵抗値が1014Ω・礪でス
チレンアクリル重合体にカーボンブラック及びマグネタ
イトを含有してなる黒色に着色され平均粒径が20Eク
ロン、磁性微粉末(マグネタイト)が樹脂に対して60
重量%含有され負極性に摩擦帯電されるものを用いた。
EXAMPLE First, the relationship between the bias voltage (Vb) and the reflection density of the attached non-magnetic insulating toner and high-resistance magnetic carrier was measured using the bias voltage (Vb) as a reference. Using the copying machine shown in Fig. 2, the photoreceptor drum (1) is 30 microns thick and is made by dispersing Cd511nCdCO3 photoconductive fine powder in a thermosetting acrylic resin together with a solvent on an aluminum drum with a diameter of 80 mm. A photoconductive layer was used, and an insulating protective layer made of acrylic resin having a thickness of 0.5 microns or less was sequentially laminated thereon. In addition, the developer is a non-magnetic insulating toner with a resistance value of 10 + 5 Ω, an average particle size of 14 microns on a steel plate, colored red and tribo-electrified to a positive polarity, and a high-resistance magnetic carrier with a resistance value of 1014 Ω.・It is colored black by containing carbon black and magnetite in a styrene acrylic polymer, and has an average particle size of 20E Cron, and the magnetic fine powder (magnetite) is 60% compared to the resin.
% by weight and was triboelectrically charged to negative polarity.

尚、トナーとキャリアの混合比は1:9、帯電量は11
.6μC/gr Cある。
The mixing ratio of toner and carrier is 1:9, and the amount of charge is 11.
.. There is 6μC/grC.

更に感光体ドラムの回転速度を110mm1 sec。Furthermore, the rotational speed of the photoreceptor drum was set to 110 mm/sec.

マ キグネノトローラ(18)及びスリーブローラ(19)
の回転数を夫々1300rpmと3Orpm に、また
直流電圧源(20)からスリープローラ(19)に印加
されるバイアス電圧(Vb)は−50Vに、第1コロナ
チヤージヤ(2)Kよる帯電電位を十800VK設定し
た。
Makigno roller (18) and sleeve roller (19)
The rotational speed of the rollers was set to 1300 rpm and 3 Orpm respectively, the bias voltage (Vb) applied from the DC voltage source (20) to the sleep roller (19) was set to -50V, and the charging potential by the first corona charger (2) K was set to 1800 VK. Set.

以上の条件の下に原稿として白地部、赤色部、黒色部に
3等分されたものを用い、また複写毎に第2コロナチヤ
ージヤ(6)の印加電圧を可変とし最終的に得られる潜
像の(Vl)と(V2)の電位(第3図(d)参照)を
変化させていった。そして2色現像してバイアス電圧(
Vb)と赤色画像部電位(vl)間における非磁性絶縁
トナーの付着によるマクベス反射濃度を、また(Vb)
と黒色画像部電位(V2)間における高抵抗磁性キャリ
アの付着によるマクベス反射濃度を測定した。
Under the above conditions, the original was divided into three parts: white, red, and black, and the voltage applied to the second corona charger (6) was varied for each copy. The potentials of (Vl) and (V2) (see FIG. 3(d)) were changed. Then, develop two colors and apply bias voltage (
The Macbeth reflection density due to the adhesion of non-magnetic insulating toner between (Vb) and red image area potential (vl) is
The Macbeth reflection density due to the adhesion of high-resistance magnetic carriers between the black image area potential (V2) and the black image area potential (V2) was measured.

それらの結果は第7図(a)、(b)K示す通りで、第
7図(a)において非磁性絶縁トナーはバイアス電圧(
Vb)より幾分でも(Vl)側に高い電位に対して付着
し濃度も電位差が大きくなるほど高くなる。具体的にv
、−Vbが一60V(つ1すVlが一110V)では反
射濃度は03、−120Vで0.5、−150Vで0.
76、−200Vで0.95となる。
The results are as shown in FIGS. 7(a) and (b)K. In FIG. 7(a), the non-magnetic insulating toner is
It adheres to a potential that is somewhat higher than Vb) on the (Vl) side, and the concentration increases as the potential difference increases. Specifically v
, -Vb is -60V (Vl -1110V), the reflection density is 0.3, -120V is 0.5, and -150V is 0.
76, it becomes 0.95 at -200V.

このことは第3図(e)で述べた通り(Vb)&(V、
)の間にトナーが付着することを意味している。
As mentioned in Figure 3(e), this is true for (Vb) & (V,
) means that the toner adheres to the space between the two.

一方、高抵抗磁性キャリアは第7図(b)K示す如く、
バイアス電圧(Vb)より約200Vの範囲では付着せ
ずそれ以上の電位差より付着し始める。
On the other hand, as shown in Fig. 7(b)K, the high-resistance magnetic carrier is
It does not adhere within a range of approximately 200V from the bias voltage (Vb), but begins to adhere at a potential difference greater than that.

ツ”まりv2−vbが0.80.170Vでは反射濃度
は0に等しくキャリアは付着しない。これはバイアス電
圧(Vb)を基準として(Vl)とは逆方向の閾値電位
(VC)tでの一定範囲の電位に対しては付着せず、第
3図(e)において(Vb)と(vc)との間には付着
しないことを裏付けている。しかしV2−Vb  が2
00vとなるとキャリアは付着し始め、反射濃度も26
0vで0.2.370vで0.45.440vで0.6
4.470Vで07となる。つtす(V2)と(vc)
の間にキャリアが付着する。尚、第7図(a)、(b)
において各曲線の立ち上がり、傾きはある程度、現像条
件やトナーとキャリアの物性値て制御可能で、特にキャ
リアの付着は(Vb)と200V程度の差があれば付着
し始める。また、上記の如くして得られた中で2色現像
されたものは濃度差はあるがカプリがなく良好であった
When the threshold voltage v2-vb is 0.80.170V, the reflection density is equal to 0 and no carriers are attached. It does not adhere to a certain range of potential, and it is confirmed that it does not adhere between (Vb) and (vc) in Fig. 3(e).However, when V2-Vb is 2
At 00V, carriers start to adhere and the reflection density also becomes 26
0v at 0.2, 370v at 0.45, 440v at 0.6
07 at 4.470V. (V2) and (vc)
A carrier is attached between the two. In addition, Fig. 7 (a), (b)
The rise and slope of each curve can be controlled to some extent by the development conditions and the physical property values of toner and carrier, and in particular, carrier adhesion starts when there is a difference of about 200V from (Vb). Further, among the two-color developed products obtained as described above, there was no capri, although there was a difference in density, and the results were good.

効  果 以上の説明から明らかなように、本発明に係る2色画像
形成方法は、極めて容易な条件設定の下に単一の現像装
置でカプリのない鮮明な2色画像を得ることができる。
Effects As is clear from the above explanation, the two-color image forming method according to the present invention can obtain a clear two-color image without capri with a single developing device under extremely easy condition settings.

更に構成自体も簡素である等、優れた効果を有する。Furthermore, the structure itself is simple and has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いられる非磁性絶縁トナ−と高抵抗
磁性キャリアの付着量とバイアス電圧を基準とした電位
の関係を示す図、第2図は本発明に係る2色画像形成方
法が実施可能な複写機の概略構成図、第3図(a)乃至
(e)は2色画像の作像工程を示す図、第4図は本発明
の方法が実施可能な複写機の別実施例を示す図、第5図
は本発明に利用可能な感光体を示す図、第6図は第5図
の感光体を採用した複写機の概略構成を示す図、第7図
(a)、(b)はバイアス電圧と画像部電位を変化させ
た場合における非磁性絶縁トナーと高抵抗磁性キャリア
の付着による反射濃変との関係を示す図である。 (1)・・・感光体ドラム、(2)(28)・・・第1
コロナチヤージヤ、(6)(31)・・・第2コロナチ
ヤージヤ、(10)・・磁気ブラシ現像装置、(20)
・・・直流電圧源、(Vb)・・・バイアス電圧、(V
C)・・・閾値電位、(vl)・・・第1色画像部電圧
、(V2)・・・第2色画像部電位。 出願人 ミノルタカメラ株式会社 第1図 第2図 第3図 (α) o− d二 Z− (e) 第仝図 第6図 第7図(α) 電イ立傍九(V+−Vb) 第7図でI)) ta  *   (Vz−Vb  )
FIG. 1 is a diagram showing the relationship between the adhesion amount of the non-magnetic insulating toner and high-resistance magnetic carrier used in the present invention and the potential based on the bias voltage, and FIG. A schematic configuration diagram of a copying machine that can be implemented, FIGS. 3(a) to 3(e) are diagrams showing a two-color image creation process, and FIG. 4 is another embodiment of a copying machine that can implement the method of the present invention. , FIG. 5 is a diagram showing a photoreceptor that can be used in the present invention, FIG. 6 is a diagram showing a schematic configuration of a copying machine employing the photoreceptor shown in FIG. 5, and FIGS. b) is a diagram showing the relationship between the reflection density change due to the adhesion of non-magnetic insulating toner and high-resistance magnetic carrier when the bias voltage and image area potential are changed. (1)...Photosensitive drum, (2)(28)...First
Corona charger, (6) (31)...Second corona charger, (10)...Magnetic brush developing device, (20)
...DC voltage source, (Vb) ...bias voltage, (V
C)...threshold potential, (vl)...first color image portion voltage, (V2)...second color image portion potential. Applicant: Minolta Camera Co., Ltd. Figure 1 Figure 2 Figure 3 (α) In Figure 7 I)) ta * (Vz-Vb)

Claims (1)

【特許請求の範囲】[Claims] (1)感光体」二に2色画像に対応して第1色画像部電
位と第2色画像部電位が逆様の関係となる静電潜像を形
成する第1工程と、 第1の極性に摩擦帯電される第1色の非磁性絶縁トナー
さ、第2の極性に摩擦帯電され絶縁性樹脂アとからなる
現像剤を用い、磁気ブラシ現像方法により現像電極に前
記静電潜像の非画像部電位近辺に設定されるバイアス電
圧を印加しつつ第1色画像部には非磁性絶縁トナーを、
第2色画像部には高抵抗磁性キャリアを付着させること
により現像する第2工程と、 をもった画像部に付着することを特徴とする特許請求の
範囲第1項記載の2色両像形成方法。
(1) photoreceptor; second, a first step of forming an electrostatic latent image in which a first color image area potential and a second color image area potential have an inverse relationship corresponding to a two-color image; Using a developer consisting of a non-magnetic insulating toner of a first color that is tribo-charged to a polarity and an insulating resin that is tribo-charged to a second polarity, the electrostatic latent image is applied to a developing electrode by a magnetic brush development method. While applying a bias voltage set near the potential of the non-image area, non-magnetic insulating toner is applied to the first color image area.
A second step of developing by attaching a high-resistance magnetic carrier to the second color image area, and forming a two-color dual image according to claim 1, characterized in that the second color image area is attached to the image area with the following steps: Method.
JP57207334A 1982-09-28 1982-11-25 Two-color picture forming method Pending JPS5995545A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57207334A JPS5995545A (en) 1982-11-25 1982-11-25 Two-color picture forming method
US06/534,144 US4562129A (en) 1982-09-28 1983-09-21 Method of forming monochromatic or dichromatic copy images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207334A JPS5995545A (en) 1982-11-25 1982-11-25 Two-color picture forming method

Publications (1)

Publication Number Publication Date
JPS5995545A true JPS5995545A (en) 1984-06-01

Family

ID=16538022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207334A Pending JPS5995545A (en) 1982-09-28 1982-11-25 Two-color picture forming method

Country Status (1)

Country Link
JP (1) JPS5995545A (en)

Similar Documents

Publication Publication Date Title
US4562129A (en) Method of forming monochromatic or dichromatic copy images
JPS59101657A (en) Two-color image forming method
US4525447A (en) Image forming method using three component developer
US5066989A (en) Cleaning method for use in copy apparatus and toner used therefor
WO1990004810A1 (en) Color electrophotographic method and apparatus
JPS63237078A (en) Recorder
JPS6139067A (en) Formation device of two-color picture
US4640883A (en) Method of forming composite or dichromatic images
US4594302A (en) Developing process for two-colored electrophotography
JPS5995545A (en) Two-color picture forming method
JPS5872158A (en) Formation of two-color toner image forming method
JPS59136750A (en) Formation of two color image
JPS5958442A (en) Composite image copying method
JPS63172286A (en) Color electrophotographic device
JPS6159361A (en) Formation of negative and positive image by electrophotography
JPS5875159A (en) Electrophotographic method
JPH01287581A (en) Method and device for forming image
JPS59113449A (en) Normal-reverse copying method
JPS6118972A (en) Recording method using photoconductive toner
JPS6410828B2 (en)
JPS6018067B2 (en) Developing method and developer for electrostatic latent images
JPS59109064A (en) Composite image copying method
JPS6256503B2 (en)
JPS58217945A (en) Magnetic toner
JPS6017464A (en) Two-color image formation method