JPS5995440A - Method and device for optical measurement - Google Patents

Method and device for optical measurement

Info

Publication number
JPS5995440A
JPS5995440A JP20635482A JP20635482A JPS5995440A JP S5995440 A JPS5995440 A JP S5995440A JP 20635482 A JP20635482 A JP 20635482A JP 20635482 A JP20635482 A JP 20635482A JP S5995440 A JPS5995440 A JP S5995440A
Authority
JP
Japan
Prior art keywords
sample
light
nozzle
gap
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20635482A
Other languages
Japanese (ja)
Other versions
JPH0249460B2 (en
Inventor
Haruhiko Machida
町田 晴彦
Yuzaburo Nanba
難波 祐三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai Co Ltd
Machida Endoscope Co Ltd
Original Assignee
Eisai Co Ltd
Machida Endoscope Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai Co Ltd, Machida Endoscope Co Ltd filed Critical Eisai Co Ltd
Priority to JP20635482A priority Critical patent/JPS5995440A/en
Publication of JPS5995440A publication Critical patent/JPS5995440A/en
Publication of JPH0249460B2 publication Critical patent/JPH0249460B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To perform measurement of absorbance of liq. samples e.g. antibody, antigen, serum, etc. with no need at all for vessels and cells, etc. for contg. sample and without influence of the material quality and uneven shape of the cell, etc. by measuring the spherical liquid drop of the sample liquid formed in a space. CONSTITUTION:A cruciform chamber 14 for measuring a sample is formed in a device. An upper pipe holder 12 and a lower pipe holder 13 are bolted to the body at the top and bottom of the hole in the perpendicular direction of said chamber. A sample dropping nozzle 15 and a sample rest 16 are supported respectively on the holders 12, 13. Both are disposed in an electrically insulated state apart from each other at a specified space (a) so that the nozzle and the rest can be electrically charged with each other. The nozzle 15 is preferably constituted of a pipe having a water repellent inside surface, for which, for example, ''Teflon'', PE, etc. are used. The pipe having about 0.3mm. inside diameter and 0.5-0.6mm. outside diameter is preferred. The space (a) between the nozzle 15 and the rest 16 is satisfactory if it is within the range of the size at which the drop of the sample liquid to be formed is unaffected by gravity.

Description

【発明の詳細な説明】 ある。[Detailed description of the invention] be.

一般に抗体、抗原、血液凝固物、血清、反応液などの液
状試料の吸光度値を測定するには第1図に示すような装
置を用いて行なわれている。
Generally, absorbance values of liquid samples such as antibodies, antigens, blood coagulates, serum, and reaction solutions are measured using an apparatus as shown in FIG.

すなわち、透明ガラスからなる光学測定用セル(1)に
液状試料(2)を入れ、一万・馴の光源(3)から特定
の波長金もった光(4)を発射し、スリッド板(5)を
通して試料(2)にあてる。
That is, a liquid sample (2) is placed in an optical measurement cell (1) made of transparent glass, a light source (3) of 10,000 meters emits light (4) with a specific wavelength, and a slide plate (5) is placed in the liquid sample (2). ) and apply it to sample (2).

そしてこの試料(2)による光(4)の吸収率を他方側
の光電管などの検出器(6)によって検出する。
The absorption rate of light (4) by this sample (2) is detected by a detector (6) such as a phototube on the other side.

従来このような光学測定装置において、試料を測定する
収容セル□として一般的には第1図に示すような角筒状
をなし、その光束の通過する長さである光路長(6)が
10zzであるものが標準的に用いられている。
Conventionally, in such an optical measurement device, the storage cell □ for measuring the sample generally has a rectangular tube shape as shown in Fig. 1, and the optical path length (6), which is the length through which the light beam passes, is 10zz. is used as standard.

ところが前述のような抗体その他の液状試料(2)の光
学測定をするにはこの標準セル(1)では試    □
料収納部分(7)の容積が大きすぎて余分な量の試料を
必要とし、又濃度の濃い試料では光が透過しづらいため
予め希釈してから測定をしなければならないという欠点
があった。
However, in order to optically measure antibodies and other liquid samples (2) as mentioned above, this standard cell (1) is difficult to use.
The volume of the sample storage portion (7) is too large, requiring an extra amount of sample, and since it is difficult for light to pass through a highly concentrated sample, the sample must be diluted before measurement.

そこで試料収納部分の容積を小さくしたり光路長を短か
くした第2図に示すようなものが使用されている。
Therefore, a device as shown in FIG. 2 is used in which the volume of the sample storage portion is reduced and the optical path length is shortened.

この第2図に示すものは外形は第1図の標準セル(1)
と同様角柱状をなしているが内部の光路長■を例えば2
〜0.5需とし、この挟間を試料収納部分(7)とした
ものである。このようにすると前述のような欠点が解決
できる。
The external shape of the one shown in Figure 2 is the standard cell (1) in Figure 1.
It has a prismatic shape similar to , but the internal optical path length is, for example, 2
~0.5 demand, and this gap is used as the sample storage part (7). In this way, the above-mentioned drawbacks can be solved.

ところが単に試料収納部分を狭くしただけでは一旦投入
された試料の排出と、セルの内部の洗浄とが困難である
However, simply narrowing the sample storage portion makes it difficult to discharge the sample once placed and to clean the inside of the cell.

そのため前の試料によってセル内部が汚染され、正確な
測定値が得られないという欠点があった。又、セルをき
れいに洗浄するためlこは測定機器の測光路から外し、
再びセットするという作業を測定の度毎に行なわなけれ
ばならず、したがって多数の検体を次々と効率よく測定
することは不可能であるか困難であった。
As a result, the interior of the cell was contaminated by the previous sample, making it impossible to obtain accurate measured values. Also, to clean the cell, remove it from the photometry path of the measuring device.
The work of resetting must be performed every time a measurement is performed, and therefore it has been impossible or difficult to efficiently measure a large number of specimens one after another.

また、連続的な反応で得られる試料や、クロマトグラフ
ィー等で得られる連続的分画物のように連続的に流出す
る試料を分析するためには、第1図や瀉2図のような形
状のセルでは目的が充分に達成されないのである。この
ような場合、あるいは多数個の検体試料を連続的に吸引
して効率よく吸光度を測定する場合には、第4図に示す
ような試料の流入口(a)と流出口(Q)を有する貝流
通型セル(フローセル)(b)を用い、試料を(a)よ
り(b)中に流入させ、(b)中を通過する試料の吸光
度を測定する方法がとられている。
In addition, in order to analyze samples that flow out continuously, such as samples obtained by continuous reactions or continuous fractions obtained by chromatography, it is necessary to use the shapes shown in Figures 1 and 2. The purpose is not fully achieved with these cells. In such cases, or when a large number of specimen samples are to be continuously aspirated and the absorbance measured efficiently, a sample inlet (a) and an outlet (Q) as shown in Fig. 4 should be provided. A method is used in which a shellfish flow cell (flow cell) (b) is used, a sample is caused to flow into (b) from (a), and the absorbance of the sample passing through (b) is measured.

−万、第5図や第6図のように、試料反応容器がそのt
ま光学的測定用セルになるように、特殊な加工をして作
られたガラス、プラスチック製の培養用、反応用容器を
用い、光源と受光部あるいは前記容器を順次移動して光
を透過させてつぎつぎに測定する等種々の工夫がされて
来た。
- 10,000, as shown in Figures 5 and 6, the sample reaction vessel
In order to create an optical measurement cell, a culture or reaction container made of glass or plastic that has been specially processed is used, and the light source and light receiving part or the container are sequentially moved to transmit light. Various efforts have been made, such as making measurements one after another.

しかしながらこれらの手法にもそれぞれ欠点があり、目
的を充分に満していないのである。
However, these methods each have their own drawbacks and do not fully meet their objectives.

即ち第4図のフローセルの場合にはセル内に残存してい
る前のサンプルによる汚染を次の検体試料で洗浄するた
め、汚染を防ぎ正確な測定を得るためにはセル内を満す
に足りる3〜4倍量の試料を必要とし結局1.5〜2m
lの試料量を要するのである。故に0,1器程度の微量
試料の測定時には希釈等の操作を加えて、液量を増加さ
せる測定しなければならない口 また第5図、第6図の場合には反応容器として用いる性
質上、容器径を小さくするのに限界があり、その結果、
光路長を短くできないため、容器内の被検物質が高濃度
の場合、吸光度が大きくなり受光部で検出できなくなる
。また容器の材質ムラ、寸法ムラ等が影響し測定精度が
悪くなる等の欠点があった。
In other words, in the case of the flow cell shown in Figure 4, contamination from the previous sample remaining in the cell is washed away with the next sample, so the cell must be filled with enough water to prevent contamination and obtain accurate measurements. 3 to 4 times the amount of sample is required, resulting in a length of 1.5 to 2 m.
1 sample amount is required. Therefore, when measuring a small amount of sample of about 0.1 vessel, operations such as dilution must be added to increase the liquid volume. There is a limit to reducing the container diameter, and as a result,
Since the optical path length cannot be shortened, if the analyte in the container is highly concentrated, the absorbance increases and the light receiving section cannot detect it. In addition, there were drawbacks such as poor measurement accuracy due to unevenness in the material and dimensions of the container.

本発明はこれら従来の方法における欠点や難点tS決し
、しかも次のような従来の方法では得られない特徴を有
するものである0 すなわち、本発明は空間中に形成された試料液の真球状
の液滴を測定することにより、容器や試料収容のための
セル等を全く必要としないもので、従ってこのため、セ
ルへの試料の収容操作やセルの洗浄、交換の手間を省く
ことができ、しかもセル等の材質、形状ムラの影響がな
くなり、前の試料による汚染も発生しない等の多くの効
果が生じる。
The present invention overcomes these drawbacks and difficulties in the conventional methods, and has the following features that cannot be obtained with the conventional methods.In other words, the present invention solves the problems of the sample liquid formed in the space in a true spherical shape. By measuring droplets, there is no need for containers or cells for storing samples, and therefore, it is possible to save the labor of storing samples in cells and cleaning and replacing cells. Furthermore, there are many effects such as the influence of unevenness in the material and shape of cells, etc., and no contamination caused by previous samples.

更に、非常に微量な試料で測定できることと、かつその
ために同試料での複数回の測定ができることにより、被
測定試料の広範囲適用化と測定精度アップ化が計れる。
Furthermore, by being able to perform measurements with a very small amount of sample and, therefore, being able to perform multiple measurements on the same sample, it is possible to apply the method to a wide range of samples to be measured and to improve measurement accuracy.

また、連続的に測定できるため、多数の検体を次々と効
率よく測定することができるきわめて小型な測定装置を
得ることができ、しかもノズル径と、その間隙を調整す
ることにより数分のl mmから4器までの球部が作成
できるために高濃度のサンプルでも希釈せずにそのまま
連続測定することができるのである。
In addition, since it is possible to measure continuously, it is possible to obtain an extremely compact measuring device that can efficiently measure a large number of samples one after another, and by adjusting the nozzle diameter and the gap between them, Since up to four spheres can be created, even highly concentrated samples can be continuously measured without dilution.

そのために本発明は次のような構成を採用した。先ず方
法としては、一定の間隙をおいて試料点滴ノズルと試料
受けと金設け、試料点滴ノズルから試料を前記間隙内に
点滴せしめてその間隙内に点滴せしめてその間隙内に形
成された球状の試料筒に向って一側方から特定の波長を
もった光を投光し、試料によるその光の吸収−率を他側
の検出器によって検出し、記録することからなる光学測
定方法である。
For this purpose, the present invention employs the following configuration. First, the method involves installing a sample dripping nozzle, a sample receiver, and a metal plate with a certain gap between them, and dripping the sample from the sample dripping nozzle into the gap to form a spherical droplet formed in the gap. This is an optical measurement method that involves projecting light with a specific wavelength toward a sample cylinder from one side, and detecting and recording the absorption rate of the light by the sample using a detector on the other side.

以上のような方法を実施する装置としては次の如くであ
る◎ 試料点滴ノズル々試料受けとを一定の間隙をおいて配置
し、この間隙と直交する方向の一側に光源からの光を絞
りを経て間隙内に形成された球状の試料筒に向けて投光
するレンズを設け、かつこの透過光を集光する受光レン
ズを他側に配置し、更に受光レンズからの光を検出し、
記録する検出器を設けてなる光学測定装置である。
The apparatus for carrying out the above method is as follows: ◎ The sample dripping nozzle and the sample receiver are arranged with a certain gap between them, and the light from the light source is focused on one side in the direction perpendicular to this gap. A lens is provided that emits light toward a spherical sample cylinder formed in the gap through a lens, and a light-receiving lens that condenses the transmitted light is arranged on the other side, and the light from the light-receiving lens is further detected.
This is an optical measuring device equipped with a recording detector.

以下図面に示す実施例について説明する。The embodiments shown in the drawings will be described below.

第1図において(1)は本体であって十字形の試料測定
室(14)が形成されている。
In FIG. 1, (1) is the main body, in which a cross-shaped sample measurement chamber (14) is formed.

その垂直方向の孔の上下には上部パイプホルダー04と
下部パイプホルダー(13)とがボルトで本体に締請さ
れている。
Above and below the vertical hole, an upper pipe holder 04 and a lower pipe holder (13) are fastened to the main body with bolts.

又ホルダーaac’3)にはそれぞれ試料点滴ノズルa
51と試料受け(!!IIが支持され、両者は一定の間
隙(a)をおいて電気的に絶縁された状態で配置され、
互に荷電できるようになっている。
In addition, each holder aac'3) has a sample drip nozzle a.
51 and the sample receiver (!!
They can charge each other.

水平方向の孔の−・1則には投光レンズ(5)を支持す
るレンズホルダー(5a)が調整フラン’) (3) 
t−介して取付けられ、調整フランジ(3)Iこは更に
電球ホルダー(4a)が取付けられ、電球ホルダー(4
a)に引続いて接点ホルダー(8)が橡付けられている
The lens holder (5a) that supports the projection lens (5) is attached to the adjustment flange (3) in the horizontal hole.
The light bulb holder (4a) is further attached to the adjusting flange (3).
Following a), a contact holder (8) is fitted.

(4)は電球ホルダー(4a)に支持された電球であり
、これには接点ホルダー(8)に対して移動自在に取付
けられた接点スライドaωの接点19)が当接するよう
になっている。
(4) is a light bulb supported by a light bulb holder (4a), and contacts 19) of a contact slide aω movably attached to the contact holder (8) come into contact with this light bulb.

次に(7)は絶縁体であってこれを介して接点が接点ス
ライド(10)に取付けられている。又(6)は調整7
ランジ(3)中にあってレンズホルダー(5a)と電球
(4)との間に介装された絞りである。
Next, (7) is an insulator through which the contact is attached to the contact slide (10). Also, (6) is adjustment 7
This is a diaphragm located in the lunge (3) and interposed between the lens holder (5a) and the light bulb (4).

以上のように発光装置は本体(1)の−側に配設されて
おり、この光を受光するレンズaυが水平孔の一側に配
設されており、(lla)はソルンズホルダーを示す。
As mentioned above, the light emitting device is arranged on the - side of the main body (1), and the lens aυ that receives this light is arranged on one side of the horizontal hole, and (lla) indicates the Solns holder. .

(2a)はホトダイオードカバーであって、ホトダイオ
ード(2)管支持している。
(2a) is a photodiode cover that supports the photodiode (2) tube.

以上述べた装置のうち試料点滴ノズルQ51はパイプ内
面が撥水性のもので構成されることが好ましく、例えば
テフロン、ポリエチレン等が用いられる。そして内径が
0,3π弄、外径0,5〜0145 am位のものがよ
い。そして試料点滴ノズルα1と試料受け(16)との
間の間隙(a)は作成する試料液滴が重力の影響を受け
ない大きさの範囲であれば良く、これは液の表面張力の
大きさが大きい程、大きな直径の球部を安定に作ること
ができるもので、具体的には0,4〜2 mrn程度が
よい。
Among the devices described above, the sample dripping nozzle Q51 is preferably constructed of a water-repellent pipe inner surface, for example, Teflon, polyethylene, etc. are used. Preferably, the inner diameter is about 0.3π and the outer diameter is about 0.5 to 0145 am. The gap (a) between the sample dripping nozzle α1 and the sample receiver (16) may be within a size range where the sample droplet to be created is not affected by gravity, and this is determined by the size of the surface tension of the liquid. The larger the diameter, the more stable a sphere with a larger diameter can be made, and specifically, about 0.4 to 2 mrn is preferable.

又電球はハロゲンランプで20ワット程度、投光レンズ
(5)は投光光線が試料球部の中心に収束するような焦
点を持つもので、例えば直径4闘で焦点距離がF5のも
の、又あるいは非球面レンズのような平行光も球面収差
を−なくして補正したレンズ、例えば双曲線カーブを有
するレンズ等を用い、受光レンズは直径6關で焦点距離
が同じF5のものが用いられる。
The light bulb is a halogen lamp of about 20 watts, and the projection lens (5) has a focal point that allows the projection light to converge on the center of the sample sphere.For example, it has a diameter of 4 mm and a focal length of F5, or Alternatively, a lens such as an aspherical lens which corrects parallel light by eliminating spherical aberration, such as a lens having a hyperbolic curve, is used, and the light receiving lens has a diameter of 6 mm and a focal length of the same F5.

さて、試料受はチューブを吸引装置に接続し、試料測定
室0り内を除圧にし試料点滴ノズル(151から試料を
入れるきその出口上試料受けaωとの間の間隙(a)に
真球状の試料筒が形成される。
Now, for the sample receiver, connect the tube to the suction device, depressurize the inside of the sample measurement chamber, and insert the sample into the sample drip nozzle (151). A sample cylinder is formed.

一方光源(4)からの光は絞り(6)を経てレンズ(5
)に到り、球状の試料筒に向って光が投光される〇そし
て試料を透過した光はレンズaυで受光され、検出器の
ホトダイオード(2)に受は止められている。
On the other hand, the light from the light source (4) passes through the aperture (6) and the lens (5).
), the light is projected toward the spherical sample tube.The light that has passed through the sample is received by the lens aυ, and is stopped by the photodiode (2) of the detector.

しかるに、試料点滴ノズルき試料受けとの間隔は、試料
液が真球状の球部ζこ成長した時の直径に該尚する一定
値になっているので、真球状の球部が形成されると、こ
の試料液の球部を介して点滴ノズルと試料受けとの間は
導通状態となり、この導通になった指令を受けて、その
時の、即ち最大球に成長した時の球部を透過した光の吸
光度値の信号のみを電気的に記録し、表示することによ
って被検体の一定光路長lこおける吸光値を測定するの
である。
However, since the distance between the sample dripping nozzle and the sample receiver is a constant value that corresponds to the diameter when the sample liquid grows into a true spherical part, when a true spherical part is formed, , the drip nozzle and the sample receiver become electrically connected through the sample liquid bulb, and in response to this command, the light that passes through the bulb at that time, that is, when the bulb grows to its maximum size, is By electrically recording and displaying only the signal of the absorbance value of the sample, the absorbance value of the subject at a constant optical path length l is measured.

その後球部は試料受は中に吸引されてa滲より排出され
る。
Thereafter, the bulb is sucked into the sample holder and discharged from the a leak.

かかる電気回路を第8図に示し、この動作を第9図にも
とづいて説明する〇 液滴が真球状の球部となって試料点滴ノズル(151と
試料受け(L6)に保持されたとき、走電圧電源αηに
より電球(4)は一定光度の光を液滴に照射し、この透
過光がホトダイオード(2)に受光されて電気信号に変
換される。これがアンプII!lで増幅され、ここから
第9図(イ)に示す信号がサンプルホールド回路(2G
に対して出力される。
Such an electric circuit is shown in FIG. 8, and its operation will be explained based on FIG. 9. When a droplet becomes a perfectly spherical part and is held in the sample dripping nozzle (151) and the sample receiver (L6), The light bulb (4) irradiates the droplet with light of a constant luminous intensity using the running voltage power source αη, and this transmitted light is received by the photodiode (2) and converted into an electrical signal.This is amplified by the amplifier II! The signal shown in Fig. 9 (a) from
Output for.

一方、液滴により試料点滴ノズル(1つと試料受けαQ
は導通され、これにもとづく信号がコンパレータ(25
)により基準電圧VREFと比較される@この出力が第
9図りに示され、この拡大したものが同図(ハ)に示さ
れている。コンパレータ(251からの出力信号により
モノマルチ(2υはこの信号が入力されている間第9図
に)に示すようなパルスを発生し、このパルスによりサ
ンプルホールド回路e7Gはサンプリングを行い、パル
スの立下がりまでに一定出力を生じ、これを保持する。
On the other hand, the sample drip nozzle (one and sample receiver αQ)
is conductive, and the signal based on this is sent to the comparator (25
) is compared with the reference voltage VREF @This output is shown in Figure 9, and an enlarged version of this is shown in Figure 9 (C). The output signal from the comparator (251) generates a pulse as shown in the monomulti (2υ is shown in Figure 9 while this signal is being input), and this pulse causes the sample and hold circuit e7G to perform sampling, and the pulse rises. A constant output is generated and maintained until the drop.

このパルスの立下りにより、A/D変換if(ハ)は動
作を開始し、クロックジェネレータ(2りにより発生さ
れた第9図(へ)に示すパルスにしたがって第9図(ト
)に示すようなタイミングにより最上位ピット(MSB
)から最下位ビット(LSB)まで14ビツトのディジ
タル信号に変換する。そして最下位ビット(LSB)の
値が出力されたとき、A/D変換は終了し、以後データ
として有効となる。この状態は図示省略したマイクロコ
ンピュータに通知される。このデータはバッファ(24
Iに保持され、これがマイクロコンピュータから第9図
(ト)に示すイネーブル信号を入力されることによりマ
イクロコンピュータに出力されるコトになる。なお、コ
ンパレータc!51の出力信号はマイクロコンビ二−タ
に出力され、液滴が試料受けu印に接触したことを通知
する。
With the fall of this pulse, the A/D conversion if (c) starts operating, and according to the pulse shown in FIG. 9 (g) generated by the clock generator (2), the Depending on the timing, the top pit (MSB)
) to the least significant bit (LSB) into a 14-bit digital signal. When the value of the least significant bit (LSB) is output, the A/D conversion ends and the data becomes valid from now on. This state is notified to a microcomputer (not shown). This data is stored in a buffer (24
This is held at I and is output to the microcomputer by inputting the enable signal shown in FIG. 9(g) from the microcomputer. In addition, comparator c! The output signal 51 is outputted to the microcombinator to notify that the droplet has contacted the sample receiver U mark.

一般に間隙(a)に出来た球状の液滴は揺れるので前述
した如く、受光側のレンズaυの径は投光側のレンズ(
5)の径より大きい方がよいO又、間隙(a)に液滴を
形成するといっても一部は試料受はチューブの奥面に沿
って流れるので下方に受皿を開催しておくとよい。受皿
に向って液滴を誘導するために試料受はチューブの外面
に縦長の溝を複数形成しておくのもよい。
Generally, the spherical droplet formed in the gap (a) sways, so as mentioned above, the diameter of the light-receiving lens aυ is the diameter of the light-emitting lens (
It is better to have a diameter larger than 5). Also, even though droplets are formed in the gap (a), some of the sample holder will flow along the inner surface of the tube, so it is better to hold the holder below. . In order to guide the droplets toward the receiver, the sample receiver may preferably have a plurality of longitudinal grooves formed on the outer surface of the tube.

以上の如く液滴を形成して吸光度値を測定できるのでセ
ルに比べて試料の体積が少なくて済み、したがってセル
の被検体量と対比すれば本発明のものは数滴検査できる
のでその平均値をとれば誤差のない吸光度値を得ること
ができる0本発明のものは以上の如く、セルに比べて誤
差のない吸光度値をうろことができるばかりでなく試料
点滴ノズルが撥水性のものであると、洗浄の必要がなく
吸引ポンプで試料測定室を除圧にして試料点滴ノズル側
より試料を吸引し、試料球部にすればノズル内の試料は
全部が測定に供することが可能となり、従って前の試料
の残存量はほぼなくなり前試料により汚染される危険性
はほとんどない。
Since absorbance values can be measured by forming droplets as described above, the volume of the sample is smaller than that of a cell. Therefore, compared to the amount of analyte in a cell, the present invention can test several drops, so the average value As described above, the present invention not only allows absorbance values to be obtained without error compared to cells, but also has a water-repellent sample dripping nozzle. Then, there is no need for cleaning, and by depressurizing the sample measurement chamber with a suction pump and suctioning the sample from the sample drip nozzle side, and making it into the sample sphere, the entire sample inside the nozzle can be used for measurement. The remaining amount of the previous sample is almost gone and there is almost no risk of contamination by the previous sample.

゛ 又本発明のものによれば、幾2.13.1のものの
被検体試料を多数の整列された小容器に配置し、本発明
測定装發を動かしながら連続に効率よく測定できる@ 以上の実施例では光源として電球を直接用いたがグラス
ファイバーを利用して光t−9導してもよく、絞りを与
える場合には絞り径t−0,1〜0.2閂とするがよい
゛ Also, according to the present invention, it is possible to arrange the analyte samples of 2.13.1 in a large number of arranged small containers and continuously and efficiently measure them while moving the measuring device of the present invention. In the embodiment, a light bulb was directly used as a light source, but a glass fiber may be used to guide the light t-9, and if an aperture is provided, the aperture diameter should be t-0.1 to 0.2 bars.

又、以上の実施例では試料点滴ノズルと試料受けとの間
が導通状態となったとき、検出器の記憶回路に記録され
るようになっているが、その代りに測定光と直交する方
向に別な波長の平行光を試料の液滴に与え、これを透過
した光をリニアレーで受光して検知し、試料径が所定の
径になったとき受光器から出力された吸光度値を記憶す
るようにしてもよい。
Furthermore, in the above embodiment, when conduction occurs between the sample dripping nozzle and the sample receiver, it is recorded in the memory circuit of the detector. Parallel light of a different wavelength is applied to the sample droplet, the light that passes through it is received and detected by a linear array, and when the sample diameter reaches a predetermined diameter, the absorbance value output from the photodetector is memorized. You can also do this.

この場合試料点滴ノズルと試料受けとを荷電状態にする
必要がない。
In this case, there is no need to charge the sample dripping nozzle and the sample receiver.

【図面の簡単な説明】 M1図は従来のセルによる光学測定装置の説四回。 第2図、第3図は第1図の改良されたセルによる光学測
定装置の説明図とセルの斜面因〇第4.5.6図は従来
の他の光学測定説明図。 第7図は本発明光学測定装置の切断面図。 第8.9図は本発明電気回路図と動作図である。 (2)・・・・・・・・・・・・検出器(5)・・・・
・・・・・・・・投光レンズαυ・・・・・・・・・・
・・受光レンズa51・・・・・・・・・・・・試料点
滴ノズルαe・・・・・・・・・・・・試料受は特許出
預人 エーザイ株式会社 第 一り− 揶 2 月 1図 第3図 、L
[Brief explanation of the drawings] Figure M1 is a four-part illustration of a conventional optical measuring device using a cell. 2 and 3 are explanatory diagrams of an optical measuring device using the improved cell of FIG. 1, and the slope factor of the cell. FIG. 4.5.6 is an explanatory diagram of another conventional optical measurement device. FIG. 7 is a cross-sectional view of the optical measuring device of the present invention. Figure 8.9 is an electrical circuit diagram and an operational diagram of the present invention. (2)・・・・・・・・・Detector (5)・・・
・・・・・・・・・Light projection lens αυ・・・・・・・・・
・・Light receiving lens a51・・・・Sample drip nozzle αe・・・Sample receiver is patent depositor Eisai Co., Ltd. Figure 1 Figure 3, L

Claims (2)

【特許請求の範囲】[Claims] (1)  一定の間隙をおいて試料点滴ノズルと、試料
受けとを設け、試料点滴ノズルから試料を前記間隙内に
点滴せしめて、その間隙内に形成された球状の試料滴に
向って一側方から特定の波長をもった光を投光し、試料
によるその光の吸収率を他方側の検出器によって検出し
、記録することからなる光学測定方法。
(1) A sample dripping nozzle and a sample receiver are provided with a certain gap between them, and the sample is dripped from the sample dripping nozzle into the gap, and the sample is placed on one side toward the spherical sample droplet formed in the gap. An optical measurement method that consists of emitting light with a specific wavelength from one side, and detecting and recording the absorption rate of that light by the sample using a detector on the other side.
(2)試料点滴ノズルと試料受けとを一定の間隙をおい
て配置し、この間隙と直交する方向の一側に光源からの
光を絞りを経て間隙内に形成された球状の試料滴に向け
て投光するレンズを設け、かつこの透過光を集光する受
光レンズを他側に配置し、更に受光レンズからの光を検
出し記録する検出器を設けてなる光学測定装置。
(2) The sample drip nozzle and the sample receiver are arranged with a certain gap between them, and the light from the light source is directed to one side in the direction orthogonal to the gap, through the aperture, to the spherical sample droplet formed in the gap. An optical measuring device comprising: a lens that emits light; a light receiving lens that collects the transmitted light; and a detector that detects and records the light from the light receiving lens.
JP20635482A 1982-11-25 1982-11-25 Method and device for optical measurement Granted JPS5995440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20635482A JPS5995440A (en) 1982-11-25 1982-11-25 Method and device for optical measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20635482A JPS5995440A (en) 1982-11-25 1982-11-25 Method and device for optical measurement

Publications (2)

Publication Number Publication Date
JPS5995440A true JPS5995440A (en) 1984-06-01
JPH0249460B2 JPH0249460B2 (en) 1990-10-30

Family

ID=16521922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20635482A Granted JPS5995440A (en) 1982-11-25 1982-11-25 Method and device for optical measurement

Country Status (1)

Country Link
JP (1) JPS5995440A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874292A (en) * 1971-12-23 1973-10-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874292A (en) * 1971-12-23 1973-10-06

Also Published As

Publication number Publication date
JPH0249460B2 (en) 1990-10-30

Similar Documents

Publication Publication Date Title
EP0250671B1 (en) Quantitative dispenser for a liquid
US9194793B2 (en) Sample analysis device
US3573470A (en) Plural output optimetric sample cell and analysis system
US11635443B2 (en) Automatic analyzer and method for carrying out chemical, biochemical, and/or immunochemical analyses
JPS61251724A (en) Spectrophotometer
JPH11511562A (en) Plate holder
JP4704532B2 (en) Equipment for simultaneously monitoring reactions in multiple reaction vessels
NO324828B1 (en) Capillary array and apparatus for performing photometric analysis and application thereof.
US6007778A (en) Hermetic reaction tube for spectroscopy
US4291981A (en) Reference scatter for use in the correction of scattering photometers
EP1101097A1 (en) Method of and apparatus for performing vertical photometry with fixed optical pathlength
JP2003527592A (en) Method and apparatus for measuring liquid level in a liquid sample container
US8614792B2 (en) Particle characterization
US20110157586A1 (en) Multi-sample scattering measurements
US4254223A (en) Apparatus for colorimetric determination
CN113008786A (en) Blood cell analyzer
US4641965A (en) Immersion refractometer with angle prism
JPS5995440A (en) Method and device for optical measurement
JPH0972843A (en) Well plate
JP4950947B2 (en) Analysis tool for near-infrared spectroscopy and method for near-infrared spectroscopy
McMillan et al. Preliminary investigation into the analytical potential of a multiwavelength fiber drop analyzer with special reference to applications in medical diagnostics
JP2011064702A (en) Specimen optical information recognizing device and method of recognizing the same
JPH0140947B2 (en)
CN204495421U (en) For the equipment of tracer liquid volume
JP7425428B2 (en) Sample holder for optical measuring instruments and optical measuring instruments