JPS5995422A - Detector of rotary displacement - Google Patents

Detector of rotary displacement

Info

Publication number
JPS5995422A
JPS5995422A JP57205804A JP20580482A JPS5995422A JP S5995422 A JPS5995422 A JP S5995422A JP 57205804 A JP57205804 A JP 57205804A JP 20580482 A JP20580482 A JP 20580482A JP S5995422 A JPS5995422 A JP S5995422A
Authority
JP
Japan
Prior art keywords
electrodes
stator
stators
conductor
pasted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57205804A
Other languages
Japanese (ja)
Other versions
JPH0130411B2 (en
Inventor
Tatsuro Koike
達郎 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP57205804A priority Critical patent/JPS5995422A/en
Publication of JPS5995422A publication Critical patent/JPS5995422A/en
Publication of JPH0130411B2 publication Critical patent/JPH0130411B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap

Abstract

PURPOSE:To obtain an output which is stable with a change in temp. without disturbing a system to be measured by providing the 1st and the 2nd immobile stators and a rotor, connecting a power source to both electrodes of the 1st stator and connecting an output detector to both electrodes of the 2nd stator. CONSTITUTION:The 1st and the 2nd stators 1, 2 consisting of an insulating material are fixed in parallel apart an insulating distance from each other. Two sheets of electrodes 4, 5 each of which is formed of a conductor having a semicircular shape and which are connected to an AC voltage power source are pasted on the inside surface of the 1st stator 1 in such a way that the mutual chord parts 4a, 5a face to each other in parallel apart an insulating distance. On the other hand, two sheets of electrodes 7, 8 each of which is formed of a conductor having a semicircular shape and which are positioned across a load impedance 6 are pasted on the inside surface of the 2nd stator 2 in such a way that the mutual chord parts 7a, 8a face to each other in parallel apart from an insulating distance. The 1st and the 2nd stators are fixed with a deviation in phase by 90 deg. so that the electrodes pasted on the inside surfaces of both stators face to each other and that the respctive chord parts 4a, 7a (or 5a, 8a) are right angled to each other.

Description

【発明の詳細な説明】 な回転変位検出装置に関する。[Detailed description of the invention] The present invention relates to a rotational displacement detection device.

回転変位検出装置には、回転部と固定部間に摺動部を有
する接触型と、摺動部を有さない無接触型とがあるが、
このうち無接触型は回転に要するトルクが小さいことと
、摺動による磨耗かないことから有利な場合が多い。
There are two types of rotational displacement detection devices: a contact type that has a sliding part between a rotating part and a fixed part, and a non-contact type that does not have a sliding part.
Among these, the non-contact type is often advantageous because the torque required for rotation is small and there is no wear due to sliding.

現在、無接触型としては磁気的な方式が広く用いられて
おり、これには磁気抵抗素子を用いた方式と磁気平衡方
式とがある。前者は直接範囲が限定され、また出力の温
度ドリフトが大きく、補償が困難である。後者は回転部
と固定部間は無接触であるが、可動磁石と固定された可
飽和鉄心間に回転変位に伴なう磁力が生じ、ために軽ト
ルクで回転変位を検出しようとする場合には被測定系に
外乱を与えることとなって好ましくない。
Currently, magnetic methods are widely used as non-contact types, and these include methods using magnetoresistive elements and magnetic equilibrium methods. The former has a limited direct range and a large temperature drift in the output, making compensation difficult. In the latter case, there is no contact between the rotating part and the fixed part, but a magnetic force is generated between the movable magnet and the fixed saturable core due to rotational displacement, which makes it difficult to detect rotational displacement with light torque. is undesirable because it causes disturbance to the system under test.

本発明の目的は、直線範囲が広く、無接触にして軽トル
クで、−被測定系に外乱を与えることな(、しかも温度
変化に対して安定した出力が得られる静電容量式の回転
変位検出装置な捺供することにある。
The purpose of the present invention is to provide a capacitive rotary displacement system that has a wide linear range, is non-contact, has a light torque, does not cause any disturbance to the system under test (and can provide stable output against temperature changes). The purpose is to provide a detection device.

以下本発明を実施例図に基いて詳述する。The present invention will be explained in detail below based on embodiment figures.

第1図は本発明に係る回転変位検出装置の概略図であっ
て、図中1,2は各々円形状にして絶縁性材質よりなる
第1,第2のステータで、互いに絶縁距離をおいて平行
に固定されている。
FIG. 1 is a schematic diagram of a rotational displacement detecting device according to the present invention, in which reference numerals 1 and 2 indicate first and second stators each having a circular shape and made of an insulating material, and are spaced apart from each other by an insulating distance. fixed in parallel.

第1のステータ1の内面には、交流電圧電源3が接続さ
れた2枚の半円形の導体製電極4,5が、長いの弧部4
a、5aを絶縁距装置いて平行に向き合うようにして貼
られている。一方第2のテーク2の内面には、負荷イン
ピーダンス6を跨がる2枚の半円形導体製電極7,8が
、互いの弧部7a、8aを絶縁距離Ifいて平行に向き
合うようにして貼られている。またこれら第1.第2の
ステータは両ステータの内面に貼られた電極が互℃・に
向き合い、かつそれぞれの弧部4a、7a (あるいは
5a、8a )がたがいに直角をなすよつ90度位相を
ずらして固定されている。
On the inner surface of the first stator 1, two semicircular conductor electrodes 4 and 5 connected to an AC voltage power source 3 are arranged at a long arc portion 4.
A and 5a are attached with insulation distance devices so that they face parallel to each other. On the other hand, on the inner surface of the second take 2, two semicircular conductor electrodes 7 and 8 spanning the load impedance 6 are pasted so that their arc parts 7a and 8a face each other in parallel with an insulation distance If. It is being Also, these first. The second stator is fixed so that the electrodes attached to the inner surfaces of both stators face each other and are 90 degrees out of phase so that the arc parts 4a and 7a (or 5a and 8a) are at right angles to each other. has been done.

9は円形状のロータであって、中心の絶縁部11aが回
転軸10に固着され、かつ円周方向に4分割されて、対
称をなすそれぞれ2枚ずつの扇形をなす絶縁性部材11
.11と、導体12.13が交互に形成されている。な
おロータ9は第1図の実施例以外に、第2,3図に示す
ように、中心部11aに回転軸10が固着される円形状
絶縁性部材11を挾んで、該部材110両面に相対向し
て扇形の導体箔12a、12bおよび13a、13bを
貼り付け、該導体箔12a。
Reference numeral 9 denotes a circular rotor, the central insulating part 11a of which is fixed to the rotating shaft 10, and divided into four parts in the circumferential direction, each having two symmetrical fan-shaped insulating members 11.
.. 11 and conductors 12 and 13 are alternately formed. In addition to the embodiment shown in FIG. 1, as shown in FIGS. 2 and 3, the rotor 9 has a circular insulating member 11 to which a rotating shaft 10 is fixed to the central portion 11a, and a circular insulating member 11 is mounted on both sides of the member 110. Fan-shaped conductor foils 12a, 12b and 13a, 13b are pasted facing the conductor foil 12a.

12b同士および13a、13b同士にそれぞれ結線2
1および22を施すなどして両者を一体化した構造のも
のでもよい。
Connection 2 between 12b and between 13a and 13b
1 and 22 may be applied to integrate the two.

また前記回転軸10はステータと電極よりなる円板の中
心にあけた中心孔14.15を貫通しており、前記回転
軸10の回転に伴ない、ロータ9が前記ステータ1,2
の中間位置でステータと平行に回転できる構造とlヨっ
ている。なお前記回転軸10は図示せぬ液面計や流量計
等の浮子の変位で回転させられる。
Further, the rotating shaft 10 passes through a center hole 14.15 made in the center of a disc made up of a stator and electrodes, and as the rotating shaft 10 rotates, the rotor 9 moves between the stators 1 and 2.
It has a structure that allows it to rotate parallel to the stator at an intermediate position. The rotating shaft 10 is rotated by displacement of a float such as a liquid level gauge or a flow meter (not shown).

また、前記負荷インピーダンスの両端に生ずる電圧は、
出力電圧Voutとして後述の差動増幅回路等へ出力さ
れる。
In addition, the voltage generated across the load impedance is
It is output as an output voltage Vout to a differential amplifier circuit, etc., which will be described later.

第1図の結線の理解を容易にするために、第1図の結線
方法を回路図にまとめたものが第4図である。
In order to facilitate understanding of the wiring connections shown in FIG. 1, FIG. 4 is a circuit diagram summarizing the wiring connection method shown in FIG. 1.

第5図は本発明に係る回転変位検出装置に実際に使用さ
れる回路構成の一例を示すものでありて、これによって
前記電極4,5間に安定した電圧が供給されることにな
る。
FIG. 5 shows an example of a circuit configuration actually used in the rotational displacement detecting device according to the present invention, whereby a stable voltage is supplied between the electrodes 4 and 5.

なお、図中16は安定化電圧源、17は発振回路、18
は差動増幅回路、19は平滑回路、20はスイッチング
素子である。
In the figure, 16 is a stabilized voltage source, 17 is an oscillation circuit, and 18 is a stabilized voltage source.
1 is a differential amplifier circuit, 19 is a smoothing circuit, and 20 is a switching element.

以上本発明の構造を述べてきたが、次にその作用効果を
述べる。
The structure of the present invention has been described above, and its effects will now be described.

いま扇形導体12,13の中心角を200 とし、はじ
め各導体は第6図の破線位置にあったものが、その後、
角度θだけ矢印方向へ回転して、第6図の仮想線位置に
きたものとすると、電極4と扇形導体12との重なりに
より構成されるコンデンサーの静電容量C1は、 =亙(R”−r”)(仏 −θ)、、、、、、 (1)
d となる。
Let us now assume that the central angle of the sector-shaped conductors 12 and 13 is 200 degrees. Initially, each conductor was at the position of the broken line in Fig. 6, but after that,
If it is rotated by an angle θ in the direction of the arrow and comes to the position of the imaginary line in FIG. r”) (French -θ),,,,,, (1)
d.

ここで、Sは電極と導体間の物質の誘電率、dは各電極
と導体間の距離、Rは外径、rは内径である。
Here, S is the dielectric constant of the material between the electrode and the conductor, d is the distance between each electrode and the conductor, R is the outer diameter, and r is the inner diameter.

扇形導体12と電極5との重なりにより構成されるコン
デンサーの静電容量C2は、 となる。
The capacitance C2 of the capacitor formed by the overlapping of the sector-shaped conductor 12 and the electrode 5 is as follows.

電極5と扇形導体13との重なりにより構成されるコン
デンサーの静電容量C3、扇形導体13と電極4との重
なりにより構成されるコンデンサーの静電容量C4は、
対称性によりそれぞれCI=03.Cえ=C4L であり、 となる。
The capacitance C3 of the capacitor formed by the overlap between the electrode 5 and the sector conductor 13, and the capacitance C4 of the capacitor formed by the overlap between the sector conductor 13 and the electrode 4 are as follows.
Due to symmetry, CI=03. C=C4L, and it becomes.

扇形導体12と電極7どの重なりにより構成されるコン
デンサーの静電容量Cり、扇形導体13と電極8との重
なりにより構成されるコンデンサーの静電容量C6は、
回転軸100回転角度範囲を適当に選べば、重り合い部
分の面積を一定とすることができることから、 C5= C6= Cs とおける。
The capacitance C of the capacitor formed by the overlap between the sector conductor 12 and the electrode 7, and the capacitance C6 of the capacitor formed by the overlap between the sector conductor 13 and the electrode 8 are:
If the rotation angle range of the rotation axis 100 is appropriately selected, the area of the overlapping portion can be made constant, so it can be set as C5=C6=Cs.

式(1) (2バ3) (4) Kおい、て、とおくと
、 C+ = C3= Co −re   、 y、 、 
、、 (7)C:z = C4= Co +  r a
    、 、 −0,−(8)となる。しかして式(
7) (8)においてCo、rは定数であるから、静電
容量C1〜C4は回転角θの1次関数で与えられる。
Equation (1) (2bar3) (4) If we set K, then C+ = C3= Co -re, y, ,
,, (7) C:z = C4= Co + r a
, , -0,-(8). However, the formula (
7) In (8), since Co and r are constants, the capacitances C1 to C4 are given by linear functions of the rotation angle θ.

ところで第4図の等価回路に示すように、電極4,5間
に角周波数ω、振幅Eの交流電圧を印加すると、インピ
ーダンスZLなる負荷6の両端に生ずる出力電圧Vnu
tは、 の関係が得られる。ここで5は虚数単位を示す。
By the way, as shown in the equivalent circuit of FIG. 4, when an AC voltage of angular frequency ω and amplitude E is applied between the electrodes 4 and 5, the output voltage Vnu generated across the load 6 with impedance ZL is
For t, the following relationship is obtained. Here, 5 indicates an imaginary unit.

式(6)は式(5) (6)より となる。式(6)は振幅Eを一定とすればVoutは、
ε、d、cAJ等に全く依存せず、Oのみに比例するこ
とを示している。なお一定な振幅Eの実現は第5図に示
す回路構成でなされる。
Equation (6) is derived from Equations (5) and (6). In equation (6), if the amplitude E is constant, Vout is
This shows that it does not depend on ε, d, cAJ, etc. at all, and is proportional only to O. Note that a constant amplitude E can be realized by the circuit configuration shown in FIG.

このようにして本発明に係る回転変位検出装置は、回転
角θに対してIJ エアな出力電圧Voutを取り出す
ことができ、また検出部に磁石などを使用していないの
で、無接触にして軽トルクで、被測定系に外乱を与える
ことなく、しかも温度変化に対して安定な出力が得られ
るのである。
In this way, the rotational displacement detection device according to the present invention can extract the IJ air output voltage Vout with respect to the rotation angle θ, and since a magnet or the like is not used in the detection section, it is contactless and lightweight. Torque does not cause any disturbance to the system being measured, and it is possible to obtain a stable output against temperature changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る回転変位検出装置の概略図、第2
図はロータの他実施例図、第3図は第2図のIII −
III線縦線面断面図4図は第1図の等価回路図、第5
図は本発明に実際に使用される回路の一例を示す構成図
、第6図は電極と導体の位置関係を示す図である。 図中 1 第1のステータ   2 第2のステータ3 交流
電源    4,5,7.8 電 極6 負 荷   
  9 ロータ 10  回転軸     11  絶縁性部材12.1
3  扇形導体   14,15  孔16  安定化
電圧源  17  発振回路18  差動増幅回路  
19  平滑回路20   スイッチング素子  21
.22  結線部員願人 東京計装株式会社 代理人  弁理士 前 1)清 美
FIG. 1 is a schematic diagram of a rotational displacement detection device according to the present invention, and FIG.
The figure is a diagram of another embodiment of the rotor, and Figure 3 is III- of Figure 2.
Figure 4 is an equivalent circuit diagram of Figure 1,
The figure is a block diagram showing an example of a circuit actually used in the present invention, and FIG. 6 is a diagram showing the positional relationship between electrodes and conductors. In the figure 1 First stator 2 Second stator 3 AC power supply 4, 5, 7.8 Electrode 6 Load
9 Rotor 10 Rotating shaft 11 Insulating member 12.1
3 Sector-shaped conductor 14, 15 Hole 16 Stabilized voltage source 17 Oscillator circuit 18 Differential amplifier circuit
19 Smoothing circuit 20 Switching element 21
.. 22 Wiring Department Member Applicant Tokyo Keiso Co., Ltd. Agent Patent Attorney 1) Kiyomi

Claims (1)

【特許請求の範囲】[Claims] 2分割された電極が対向面にそれぞれ設けられ、かつ対
向する電極どうし公成る位相にて配せられた不動な第1
ステータおよび第2ステータと、少なくとも一方のステ
ータを貫通する回転軸に中心部が取り付けられて、前記
第1,2のステータ間に位置し、かつ円周方向へ電極と
絶縁部が交互に連設されているロータとを備え、第1ス
テータの両電極には電源を接続し、第2ステータの両電
極には出力検知器を接続したことを特徴とする回転変位
検出装置。
An immovable first electrode, in which two divided electrodes are respectively provided on opposing surfaces, and the opposing electrodes are arranged in common phase with each other.
A stator, a second stator, and a center portion attached to a rotating shaft passing through at least one of the stators, located between the first and second stators, and electrodes and an insulating portion alternately arranged in a circumferential direction. What is claimed is: 1. A rotational displacement detection device, comprising: a rotor, wherein a power source is connected to both electrodes of the first stator, and an output detector is connected to both electrodes of the second stator.
JP57205804A 1982-11-22 1982-11-22 Detector of rotary displacement Granted JPS5995422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57205804A JPS5995422A (en) 1982-11-22 1982-11-22 Detector of rotary displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57205804A JPS5995422A (en) 1982-11-22 1982-11-22 Detector of rotary displacement

Publications (2)

Publication Number Publication Date
JPS5995422A true JPS5995422A (en) 1984-06-01
JPH0130411B2 JPH0130411B2 (en) 1989-06-20

Family

ID=16512956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57205804A Granted JPS5995422A (en) 1982-11-22 1982-11-22 Detector of rotary displacement

Country Status (1)

Country Link
JP (1) JPS5995422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105421A (en) * 1984-10-29 1986-05-23 Mitsutoyo Mfg Co Ltd Electrostatic capacity type encoder
JPS62156519A (en) * 1985-12-27 1987-07-11 Mitsutoyo Mfg Corp Electrostatic capacity type encoder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889754A (en) * 1972-02-09 1973-11-22
JPS55106312A (en) * 1979-02-09 1980-08-15 Westinghouse Electric Corp Capacitanceetype angular displacement converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889754A (en) * 1972-02-09 1973-11-22
JPS55106312A (en) * 1979-02-09 1980-08-15 Westinghouse Electric Corp Capacitanceetype angular displacement converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105421A (en) * 1984-10-29 1986-05-23 Mitsutoyo Mfg Co Ltd Electrostatic capacity type encoder
JPH0477846B2 (en) * 1984-10-29 1992-12-09 Mitutoyo Corp
JPS62156519A (en) * 1985-12-27 1987-07-11 Mitsutoyo Mfg Corp Electrostatic capacity type encoder
JPH0460530B2 (en) * 1985-12-27 1992-09-28 Mitutoyo Corp

Also Published As

Publication number Publication date
JPH0130411B2 (en) 1989-06-20

Similar Documents

Publication Publication Date Title
JPS5919285B2 (en) transducer
CA1105088A (en) Electrode or pole piece array for creating prescribed electric or magnetic fields
US5598153A (en) Capacitive angular displacement transducer
JP6821288B2 (en) Absolute type time grating angular displacement sensor based on alternating electric field
US5028875A (en) Linear rotary differential capacitance transducer
US5939878A (en) Angular displacement transducer having flux-directing target and multi-sectored pole piece
JPS5995422A (en) Detector of rotary displacement
US4217787A (en) Gyroscopic apparatus
US4799386A (en) Electrostatic accelerometer with dual electrical connection to its test mass
JPH0155803B2 (en)
US7583090B2 (en) Electromagnetic apparatus for measuring angular position
JPS5995421A (en) Detector of rotary displacement
JPH10122809A (en) Spherical actuator
JPH0260121B2 (en)
JPH05172571A (en) Slope angle sensor
JP2000230874A (en) Torque detecting apparatus
CN109708791A (en) A kind of capacitor torque sensor and its method for measuring torque
JPH059603Y2 (en)
JP2008051633A (en) Differential capacitance type resolver
RU1838755C (en) Angular displacement differential capacitive converter
JPH0467883B2 (en)
JPH04172218A (en) Rotating angle sensor
JPH11271092A (en) Electrostatic capacitance type encoder
JPS59602A (en) Angle detector for rotating body
JPS63204111A (en) Angle-of-inclination sensor