JPS599509A - Active type distance measuring device - Google Patents

Active type distance measuring device

Info

Publication number
JPS599509A
JPS599509A JP11811082A JP11811082A JPS599509A JP S599509 A JPS599509 A JP S599509A JP 11811082 A JP11811082 A JP 11811082A JP 11811082 A JP11811082 A JP 11811082A JP S599509 A JPS599509 A JP S599509A
Authority
JP
Japan
Prior art keywords
light
output
projecting element
light projecting
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11811082A
Other languages
Japanese (ja)
Inventor
Naoya Kaneda
直也 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11811082A priority Critical patent/JPS599509A/en
Publication of JPS599509A publication Critical patent/JPS599509A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication

Abstract

PURPOSE:To save power consumption, by detecting a light beam, which is directed to the vicinity of a light projecting element, among the reflected light beams from a body whose distance is to be measured, and controlling the light output of the light projecting element when the detected output is a specified level or more. CONSTITUTION:An object 1, a human eye 2, which looks light projecting element 4 at the very close distance, a light projecting lens 3, the light projecting element 4, and a ring shaped optical sensors 5, which are arranged around the light projecting element 4, are provided. A light receiving lens 13 is provided so that the image of the reflected light of the projected light spot is formed on optical sensors 11 and 12, which are light receiving elements. The optical sensors 11 and 12, can be moved up and down at the rack part of a holder 14. The rack part is moved by a gear 15 and a focal point adjusting gear 16. A lens group 17 and its holder 18, which are related to the focal point adjustment, are provided in an image pickup lens system. Moving power is transmitted to the holder 18 from the gear 16. The holder 18 is moved in the axial direction of the image pickup lens system, and the focal point adjustment is performed.

Description

【発明の詳細な説明】 この出願の発明は、能動型測距装置、とくに自動焦点調
節装置における能動型611]距装置に関し、被測距物
体の距離に応じて投光部の出力を制御する手段を課題と
する。
DETAILED DESCRIPTION OF THE INVENTION The invention of this application relates to an active distance measuring device, particularly an active type 611 distance measuring device in an automatic focusing device, which controls the output of a light projecting unit according to the distance of an object to be measured. The problem is the means.

背景技術について 三角測距法の原理に基づく測距装置V1すでに数多く提
案され、またカメラ等で実用されているが、大別すると
被写体のコントラストパターンを検知して被写体距離を
知る受動型と、被写体へ向けて光線を発射してその反射
光の結像位置により被写体距離を知る能動型とに分類さ
れる。この出願の発明は後者の能動型に関するものであ
る。
Background technology A number of distance measuring devices V1 based on the principle of triangulation have already been proposed and are in practical use in cameras, etc., but they can be roughly divided into passive types that detect the contrast pattern of the subject and determine the distance to the subject, and It is classified as an active type, in which the distance to the subject is determined by emitting a beam of light toward the subject and determining the imaging position of the reflected light. The invention of this application relates to the latter active type.

第1図は三角測距法の原理を簡略化して示すもので、周
知のように基線長をL1被測距物体までの距離をRとす
ると、R= L −tanθ となる。したがって能動
型測距装置では、投光素子から発射された光線の到達距
離を十分にとることと、測距の分解能を上げるために基
線長りを長くとることが必要となる。ところで従来の能
動型測距装置、とくに能動型自動焦点調節装置は、例え
ば近赤外光発光素子IREDを用いれば、35ミリカメ
ラ等については、必要十分な測距を行なうことができた
が、8ミリカメラやビデオカメラに使用するには、前記
の到達距離を十分とれるだけの発光出力が得られないた
めに、十分に目的を達成しえなかった。
FIG. 1 shows the principle of triangulation in a simplified manner. As is well known, when the base line length is L1 and the distance to the object to be measured is R, R=L-tanθ. Therefore, in an active distance measuring device, it is necessary to ensure that the light beam emitted from the light projecting element reaches a sufficient distance, and to increase the length of the base line in order to improve the resolution of distance measurement. By the way, conventional active distance measuring devices, especially active automatic focusing devices, can perform necessary and sufficient distance measurement for 35 mm cameras etc. by using, for example, a near-infrared light emitting device IRED. When used in an 8 mm camera or a video camera, the purpose could not be fully achieved because the light emitting output was not sufficient to achieve the above-mentioned distance.

そこで発光光源として単色性、干渉性及び集束性がより
すぐれているレーザ光を用いることが考えられ、半導体
レーザの使用が試みられている。ところでビデオディス
クや測定器に用いられるレーザ光は可視域の発光波長を
用いているのに対し、自動焦点調節装置に用いる場合に
は、その性質上、発光波長が赤外域にあることが望まし
い。したがってレーザ光の位置を目で見て認識すること
ができず、レーザ光が直接目に入つ−Cも、その出力か
らみて失明等の大きな事故を伴なうこと01ないものの
、不快感を与えるお十ノ’Lがあり、そのためこの点に
ついて明確な対箪をgMにないで半導体レーザをカメラ
等の自動焦点―節装置に使用することは適切で々い。
Therefore, it has been considered to use laser light, which has better monochromaticity, coherence, and focusability, as a light emitting source, and attempts have been made to use semiconductor lasers. By the way, while laser beams used in video discs and measuring instruments use emission wavelengths in the visible range, when used in automatic focusing devices, it is desirable that the emission wavelengths be in the infrared range due to their nature. Therefore, the position of the laser beam cannot be visually recognized, and the laser beam directly enters the eye. Considering the output, it does not cause any major accidents such as blindness, but it does cause discomfort. Therefore, it is inappropriate to use a semiconductor laser in an automatic focusing device such as a camera without a clear countermeasure in this regard.

この出願の発明は、半導体レーザに限らず、発光出力の
大きい投光素子、又は投光光線が使用者に不快感を与え
るような投光素子を使用する場合に好適な投光素子の発
光出方の制御手段を課題とするものである。
The invention of this application is applicable not only to semiconductor lasers, but also to light emitting elements suitable for use when using a light emitting element with a large light emitting output or a light emitting element whose emitted light rays cause discomfort to the user. The subject of this study is the means for controlling this.

この出願の発明の目的 したがって、この出願の発明は、被写体距離に応じて投
光素子の発光出方を制御し、′成カ消費の節約をはかり
、安全措置を講することができる能動型測距装置を提供
することを目的とする。
Purpose of the invention of this application Therefore, the invention of this application is an active measurement system capable of controlling the light output of a light emitting element according to the subject distance, saving power consumption, and taking safety measures. The purpose is to provide a range device.

さらに、この出願の発明は、極至近に位置する物体が検
出可能である能動型測距装置を提供することを目的とす
る。
A further object of the invention of this application is to provide an active distance measuring device that can detect objects located extremely close to the object.

この出願の発明の構成 この出願の第1の発明は、投光素子と;この投光素子か
ら基線長離れだ位置に配置された受光素子と;被測距物
体からの反射光のうち前記投光素子の近傍へ向うものを
検出する検出手段(例えば第2図の具体例では光センサ
5)と;この検出手段の検出出力が所定レベル以上であ
るとき前記投光素子の発光出力を制御する制御手段(同
じく出力制御回路7)と;を具える能動型測距装置を特
徴とする。
Structure of the invention of this application A first invention of this application includes: a light projecting element; a light receiving element disposed at a position apart from the light projecting element by a baseline length; a detection means (for example, the optical sensor 5 in the specific example of FIG. 2) that detects an object moving toward the vicinity of the optical element; and when the detection output of this detection means is equal to or higher than a predetermined level, the light emission output of the light projecting element is controlled. The present invention is characterized by an active distance measuring device comprising a control means (also an output control circuit 7);

この出願の第2の発明は、第1の発明における制御手段
に代えて、前記検出手段の検出出力が第1の所定レベル
以上であり、かつ受光素子の受光出力が第2の所定レベ
ル以下であるとき前記投光素子の発光出力を制御する制
御手段を特徴とする。
In a second invention of this application, in place of the control means in the first invention, the detection output of the detection means is equal to or higher than a first predetermined level, and the light reception output of the light receiving element is equal to or lower than a second predetermined level. It is characterized by a control means for controlling the light emission output of the light projecting element at certain times.

上記において後述の図示の具体例の引用はなんらこの出
願の発明の範囲を限定するものではなく、この出願の発
明は前記特許請求の範囲の記載内において適宜変更でき
るものである。
In the above, the reference to specific examples illustrated later does not limit the scope of the invention of this application in any way, and the invention of this application can be modified as appropriate within the scope of the claims.

この出願の発明の能動型測距装置の具体例について(第
2図) 以下第2図を参照してこの出願の発明の能動型測距装置
を自動焦点調節装置に適用した具体例について説明する
。第2図は受光素子が差動出力を検出する型であって、
受光素子と撮影レンズ系の合焦レンズとが連動して制御
される場合の例である。図において、xVi被写体、2
は極至近距離で投光素子を覗いている人間の目を示す。
Regarding a specific example of the active distance measuring device according to the invention of this application (Fig. 2) Hereinafter, with reference to Fig. 2, a specific example in which the active type distance measuring device according to the invention of this application is applied to an automatic focus adjustment device will be explained. . Figure 2 shows a type in which the light receiving element detects differential output,
This is an example in which a light receiving element and a focusing lens of a photographing lens system are controlled in conjunction with each other. In the figure, xVi subject, 2
shows a human eye looking into the light emitting element at very close range.

3は投光レンズで、被写体−Lに投光スポット像を形成
する。4は投光素子で、この例ではレーザダイオードよ
りなる。SFi光センサであって、投光素子4のまわり
に配置されたリング状素子、又は投光素子4をとり囲む
円周上に配置された複数個の素子で構成される。6は加
算器、7は出力制御回路、8は駆動回路、9は差動増幅
器、10はモータである。
3 is a light projecting lens which forms a light projecting spot image on the subject -L. 4 is a light projecting element, which in this example is a laser diode. The SFi optical sensor is composed of a ring-shaped element arranged around the light projecting element 4 or a plurality of elements arranged on a circumference surrounding the light projecting element 4. 6 is an adder, 7 is an output control circuit, 8 is a drive circuit, 9 is a differential amplifier, and 10 is a motor.

11及び12けこの出願の発明の受光素子のA体fll
である光センサであって、この例では近接して配置され
た2つの素子で構成されているが、2つの領域に分割さ
れ、それぞれの領域から出力をとり出すことができる素
子であってもよい。13は光センサ11,12に投光ス
ポット像の反射光を結像させるだめの受光レンズ、14
は光センサ11,12のホルダーで、一体にラック部を
有し、図で上下方向に移動可能になっている。15は上
記ラック部を移動させるギア、16H合焦用ギア、17
は撮影レンズ系のうち合焦動作に関与するレンズ群、1
8はレンズ群17のホルダーである。ホルダー18はギ
ア16から動力を伝達され、撮影レンズ系の軸方向に移
動して合焦動作を行なう。19は至近端スイッチで、合
焦動作に関与するレンズ群17が最繰り出し位置にある
とき動作する。なおギア15及び16けモータ10によ
り連動して駆動される。
11 and 12 Body A of the light receiving element of the invention of this application
This is an optical sensor that is composed of two elements placed close to each other in this example, but even if the element is divided into two regions and output can be taken from each region. good. 13 is a light-receiving lens for forming the reflected light of the projected light spot image on the optical sensors 11 and 12; 14;
1 is a holder for the optical sensors 11 and 12, which has an integral rack part and is movable in the vertical direction in the figure. 15 is a gear for moving the rack section, 16H is a focusing gear, 17
is the lens group involved in focusing operation in the photographic lens system, 1
8 is a holder for the lens group 17. The holder 18 receives power from the gear 16, moves in the axial direction of the photographic lens system, and performs a focusing operation. Reference numeral 19 denotes a close end switch, which operates when the lens group 17 involved in focusing operation is at its most extended position. Note that they are driven in conjunction with gears 15 and 16 motors 10.

第2図の装置の作用を説明すると、通常の焦点調節動作
では投光素子4から発射されたレーザ光は被写体1に当
たって乱反射し、受光レンズ13を介して受光素子で受
光される。なお図では素子12で受光された状態を示し
ている。
To explain the operation of the apparatus shown in FIG. 2, in a normal focus adjustment operation, the laser light emitted from the light projecting element 4 hits the subject 1, is diffusely reflected, and is received by the light receiving element via the light receiving lens 13. Note that the figure shows a state in which light is received by the element 12.

ここで差動増幅器9が素子11及び12の出力の差を算
出し、その結果に基づいてモータlOを駆動する。この
制#は差動増幅器9の出力がゼロとなるように行なうも
ので、不図示のカム並びにギア15.16及びホルダー
14.17のラック部を介して、光センサ11,12の
図で上下方向の移動と合焦動作に関与するレンズ群17
の図で左右方向の移動とが連動し、正しい合焦状態を保
つようにする。
Here, the differential amplifier 9 calculates the difference between the outputs of the elements 11 and 12, and drives the motor 10 based on the result. This control is performed so that the output of the differential amplifier 9 becomes zero, and the optical sensors 11 and 12 are controlled vertically in the diagram through a cam (not shown), a gear 15, 16, and a rack part of the holder 14, 17. Lens group 17 involved in directional movement and focusing operation
In the figure above, the movement in the left and right direction is linked to maintain correct focus.

加算器6は光センサ11,12の出力を加算し、その加
算出力に応じ出力制御回路7及び駆動回路8によって投
光素f4の発光出力の制御を行なってbる。この発光出
力は、光センサ11゜12における受光量が必要最小限
の量であれば足りるのであるから、その出力制御は第1
に電力節約の目的で行なうものである。第2の目的は被
写体が無限遠等遠距離にある場合、あるいは被写体の反
射率が低い場合の安全対策である。
The adder 6 adds the outputs of the optical sensors 11 and 12, and according to the added output, the output control circuit 7 and the drive circuit 8 control the light emission output of the light projecting element f4. This light emission output is sufficient as long as the amount of light received by the optical sensors 11 and 12 is the minimum necessary amount, so the output control is performed in the first step.
This is done for the purpose of saving power. The second purpose is a safety measure when the subject is at a distance such as infinity or when the reflectance of the subject is low.

前述のように投光素子40発光出力制御は、受光素子1
1,121cおける検出を可能にするに必要で十分な範
囲内に収めようとするのであるから、被写体が遠いほど
、あるいは被写体反射率が低いほど発光出力が大きくな
る。そしてレーf光はコヒレント光であって、空気中の
伝搬において、一般の光に比べて減衰が少なく、広がり
角も小さいので、この装置1では投光レンズ3である程
度の広がり角をもたせることを可とし、これにより最も
発光出力が大きいときでも、その発光出力に相当する距
離で投光素子4(レーザダイオード)を直視してもなん
ら目に異常がないよう構成する。
As mentioned above, the light emitting output control of the light emitting element 40 is performed by controlling the light emitting element 1
Since the aim is to keep the light within a necessary and sufficient range to enable detection at 1,121c, the farther the subject is or the lower the reflectance of the subject, the greater the light emission output. Since the laser f light is coherent light and has less attenuation and a smaller spread angle than ordinary light when propagating through the air, in this device 1, the projecting lens 3 is designed to have a certain spread angle. As a result, even when the light emitting output is the highest, the light emitting element 4 (laser diode) can be viewed directly at a distance corresponding to the light emitting output without causing any abnormality to the eyes.

このように発光出力制御によって安全対策をとり、かつ
遠距離被写体でも測距可能なように構成してもなお不十
分な面がある。ここに第3の目的である光センサ11,
12に反射光が戻らない場合の対策が必要となる。例え
ば受光レンズ13の前面がなんらかの理由で覆われたと
すると、被写体が近距離にあっても、光センサ11.1
2からはともに出力が得られない。そうすると、前述の
制御系は被写体が無限遠にあると判断して動作し、投光
素子4の出力が最大となるので、この状態で投光素子を
覗くと危険である。また被写体が無限遠にある状態で不
意にカメラの直前から投光素子を覗いたときも、顔面と
カメラとの距離が近すぎて反射光が受光素子に戻らない
(反射光が受光素子領域の外側へはずれる。)ことにな
り、この際も自動焦点調節装置は被写体が無限遠にある
と判断して、投光素子4は大きな出力で発光することと
なる。
Even if safety measures are taken by controlling the light emission output in this way, and the camera is configured to be able to measure distances even for distant objects, there are still some aspects that are insufficient. Here, the third purpose is the optical sensor 11,
Countermeasures are required in case the reflected light does not return to 12. For example, if the front surface of the light receiving lens 13 is covered for some reason, even if the subject is close, the light sensor 11.
No output can be obtained from 2. In this case, the above-mentioned control system operates by determining that the subject is at an infinite distance, and the output of the light projecting element 4 becomes maximum, so it is dangerous to look into the light projecting element in this state. Also, if you suddenly look into the light emitting element from directly in front of the camera when the subject is at infinity, the distance between the face and the camera is too close and the reflected light does not return to the light receiving element (reflected light does not return to the light receiving element area). ), and in this case too, the automatic focus adjustment device determines that the subject is at infinity, and the light projecting element 4 emits light with a large output.

これらの場合娯測距が起る原因は、受光素子に反射光が
戻らないことである。
The reason why recreational distance measurement occurs in these cases is that reflected light does not return to the light receiving element.

この出願の第1の発明では、投光素子4の近傍に設けた
前述の検出手段、すなわち光センサ5によって、上記の
誤動作を防止している。この光センサ5は、投光素子4
の近傍に向う反射光の有無、強弱を検出する。被写体が
現実に無限遠にある場合には、光センサ11及び12並
びに5のhずれにも受光出力が得られないのに対して、
前述のような場合には、光センサ11及び12には反射
光による出力がなく、−力先センサ5にはかなり高いレ
ベルの受光出力が得られる。したがって光センサ5の受
光出力についてあらかじめ特定のレベルを定め、このレ
ベルを超えた受光出力が得られたときは、投光素記のよ
うに受光レンズ13の前面がなんらかの理由で蔽われた
り、あるいは不意にカメラの前面から投光素子を覗いた
りしたために、受光素子11.12に出力が得られない
状態であるから、その出力差もゼロ(正確にはあるしき
い値以下)であるので、その位置で停止する。あるいは
光センサ5の出力が前記の所定レベル以上であることを
検出して出力制御回路7が強制的にモータ10を停止さ
せるよう制御することもできる。第2図の装置の通常の
焦点調節動作においては被写体距離に応じて出力制御回
路7が働らき、1.たがって同回路の制装置は合焦レン
ズ群17の1e [に対応するわけであるが、上記の場
合のみは光センサ5の出力によって投光素子4tま最小
の出力に抑えられる。そしてこの状態は、光センサ5の
受光出力が例えば前記の所定レベル以下になったとき解
除され、以後は前述の通常の焦点調節動作が行なわれる
In the first invention of this application, the above-mentioned detection means, that is, the optical sensor 5 provided near the light projecting element 4 prevents the above-mentioned malfunction. This optical sensor 5 includes a light emitting element 4
Detects the presence and strength of reflected light toward the vicinity. If the subject is actually at infinity, no light reception output will be obtained even if the optical sensors 11 and 12 and 5 are shifted by h.
In the above-mentioned case, the optical sensors 11 and 12 have no output due to the reflected light, and the force tip sensor 5 has a considerably high level of light reception output. Therefore, a specific level is determined in advance for the light receiving output of the optical sensor 5, and when a light receiving output exceeding this level is obtained, the front surface of the light receiving lens 13 is blocked for some reason, or Because the light emitting element was unexpectedly looked into from the front of the camera, the light receiving elements 11 and 12 were unable to receive any output, so the output difference was also zero (more precisely, below a certain threshold). Stop at that position. Alternatively, the output control circuit 7 can be controlled to forcibly stop the motor 10 by detecting that the output of the optical sensor 5 is equal to or higher than the predetermined level. In the normal focus adjustment operation of the apparatus shown in FIG. 2, the output control circuit 7 operates according to the subject distance.1. Therefore, the control device of the same circuit corresponds to 1e of the focusing lens group 17, but only in the above case, the output of the light emitting element 4t is suppressed to the minimum output by the output of the optical sensor 5. This state is canceled when the light receiving output of the optical sensor 5 becomes, for example, below the predetermined level, and thereafter the normal focus adjustment operation described above is performed.

この出願の第2の発明は、前述の状態のもとで、光セン
サ11及び12に反射光による出力が得られず(正確に
はノイズを考慮してあらかじめ定めたあるしきい値以下
になる。)、かつ光センサ5に所定レベル以上の出力が
得られたとき、なんらかの理由により自動焦点W+4節
装置が至近距離に存在してhる被写体を検知しえなかっ
たと判断して出力制御回路7は投光素子40発光出力が
最小になるよう駆動回路8を制御する。一方合焦レンズ
群17は、第1の発明におけると同様にその位置で停止
する。そしてこの状態は、光センサ11又は12の一方
又は双方にあるレベルの受光出力を生じたときに解除さ
れ、あるいは光センサ5の受光出力があるレベル以下に
なったときに解除される。そして解除後は前述の通常の
焦点調節動作が行なわれる。
The second invention of this application is that under the above-mentioned condition, the optical sensors 11 and 12 do not receive an output due to the reflected light (more precisely, the output falls below a certain threshold predetermined in consideration of noise). ), and when an output of a predetermined level or higher is obtained from the optical sensor 5, it is determined that for some reason the autofocus W+4 unit was not able to detect the object that was present at a close distance, and the output control circuit 7 controls the drive circuit 8 so that the light emitting output of the light projecting element 40 is minimized. On the other hand, the focusing lens group 17 stops at that position as in the first invention. This state is canceled when one or both of the optical sensors 11 and 12 produces a certain level of light reception output, or when the light reception output of the optical sensor 5 falls below a certain level. After the release, the normal focus adjustment operation described above is performed.

さらに前述の特殊な状態において投光素子4の発光出力
を最小に迎えたときに、合焦レンズ群17をその位置で
停止させる代わりに最繰りこみ位置へ移動するよう駆動
することもできる。
Furthermore, when the light emitting output of the light projecting element 4 reaches the minimum in the above-mentioned special state, the focusing lens group 17 can be driven to the most retracted position instead of being stopped at that position.

すなわち第1及び第2の発明を通じて、光センサ5の出
力が所定レベル以上であること、また第2の発明では、
このほかに、光センサ11゜12に受光出力がないこと
を検知して出力制御回路7がモータlOを、合焦レンズ
群17が最繰りこみ位置へ移動するように、制御すれば
よい。また至近端スイッチ19i1:、合焦レンズ群1
7が最繰り出し位置に繰り出されたときに動作し、モー
タlO及び出力制御回路7を制御して、合焦レンズ群1
7の位置及びレーザダイオード40発光出力をその状態
で保持するだめのものである。
That is, through the first and second inventions, the output of the optical sensor 5 is equal to or higher than a predetermined level, and in the second invention,
In addition, the output control circuit 7 may detect that the optical sensors 11 and 12 have no light receiving output and control the motor IO so that the focusing lens group 17 moves to the most retracted position. Also, close end switch 19i1:, focusing lens group 1
7 is extended to the maximum extended position, the motor IO and the output control circuit 7 are controlled, and the focusing lens group 1
This is to maintain the position of 7 and the light emitting output of the laser diode 40 in that state.

第2図の自動焦点調節装置の変形例について第2図の装
置は、受光素子が近接して配置された光センサ11及び
12、あるいは2つの領域に分割され、それぞれの領域
から出力をとり出すことができる光センサで構成され、
それらの出力の差VCより距離情報を得る差動型のもの
であったが、この出願の発明は受光素子のピーク出力に
より距離情報を得るもの、あるいはフォトセンサアレイ
を形成する素子のうちどの素子にピーク出力が得られる
かにより距離情報を得る他の測距方式にも適用される。
Regarding a modification of the automatic focus adjustment device shown in FIG. 2, the device shown in FIG. 2 has optical sensors 11 and 12 in which light-receiving elements are arranged close to each other, or is divided into two regions, and output is taken out from each region. Consists of a light sensor that can
The invention of this application is a differential type that obtains distance information from the difference VC between these outputs, but the invention of this application is a method that obtains distance information from the peak output of a light receiving element, or a method that obtains distance information from the peak output of a light receiving element, or which element among the elements forming a photosensor array. It can also be applied to other ranging methods that obtain distance information based on whether a peak output is obtained.

次に第2図では、合焦レンズ群17は受光素子11.1
2と連動して制御されたが、受光素子の代わりに投光素
子を移動させてもよく、また両者をともに移動させても
よい。なお投光素子又は受光素子自体を移動させずに、
投光系又は受光系に含まれるレンズ、反射鏡又はプリズ
ム等の光学素子を回動又は移動させて投受光素子を移動
させ2 るのと同じ効果を奏する手段でもあってもよい。
Next, in FIG. 2, the focusing lens group 17 is connected to the light receiving element 11.1.
Although the control is performed in conjunction with 2, the light emitting element may be moved instead of the light receiving element, or both may be moved together. Note that without moving the light emitting element or the light receiving element itself,
It may also be a means that achieves the same effect as moving the light emitting/receiving element by rotating or moving an optical element such as a lens, a reflecting mirror, or a prism included in the light emitting system or the light receiving system.

さらに投光レンズ3又は受光レンズ13は、投光素子又
は受光素子が鮮鋭なスポット像を発射し又は受光できる
ものであれば必ずし7も不可欠でなく、1だ受光レンズ
は撮影レンズが兼ねることができる。さらにこの出願の
発明は、内部測距型の装置にもその結像レンズの光軸に
対して垂直な中心断面上にこの出願の発明における投光
素子及び受光素子にそれぞれ相当する仮想の投光素子及
び受光素子が存在するとみなして、適用することができ
る。
Further, as for the light emitting lens 3 or the light receiving lens 13, if the light emitting element or the light receiving element can emit or receive a sharp spot image, 7 is not necessarily essential, and the light receiving lens 1 may also serve as the photographing lens. Can be done. Furthermore, the invention of this application also provides for an internal distance measuring device to have a virtual light emitting element corresponding to the light emitting element and the light receiving element in the invention of this application, respectively, on the central cross section perpendicular to the optical axis of the imaging lens. It can be applied assuming that the element and the light receiving element exist.

最後に第2図の装置では投光素子であるレーザダイオー
ド4の近傍に光センサ5を設けたが、代案として半導体
レーザの戻り効果を利用し、直接半導体レーザに戻る反
射光による半導体レーザの電気抵抗変化を検出して前述
の制御を行なうこともできる。
Finally, in the device shown in Fig. 2, an optical sensor 5 is installed near the laser diode 4, which is a light emitting element, but as an alternative, the return effect of the semiconductor laser can be used to generate electricity from the semiconductor laser by the reflected light that returns directly to the semiconductor laser. The above-mentioned control can also be performed by detecting resistance changes.

この出願の発明の効果 この出願の発明は前述の構成及び作用に基づき、被測距
物体の距離に応じて被測距物体からの反射光のうち投光
素子の近傍へ向うものを検出する手段の出力が所定レベ
ル以上であるとき、あるいはこの検出手段の出力が第1
の所定レベル以上であり、かつ受光素子の受光出力が第
2の所定レベル以下であるとき投光素子の発光出力を制
御するようにしたので電力消費の節約をはかり、投光素
子の直前から覗いた場合等に対する安全措置を講するこ
とができ、さらに極至近に位置する物体も検出可能であ
るという効果を奏する。
Effects of the invention of this application The invention of this application is based on the above-mentioned configuration and operation, and is a means for detecting reflected light from a distance-measuring object toward the vicinity of a light projecting element according to the distance of the distance-measuring object. When the output of this detection means is above a predetermined level, or the output of this detection means is the first
The light emission output of the light emitting element is controlled when the light receiving output of the light receiving element is above a second predetermined level and the light receiving output of the light receiving element is below a second predetermined level. This has the advantage that safety measures can be taken against such situations, and objects that are located very close to each other can also be detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は三角測距法の原理の説明図、第2図はこの出願
の発明の能動型測距装置の具体例の構成図である。 図中4は投光素子、5は光センサ、7は出力制御回路、
8ii駆動回路、11.12は受光素子を構成する光セ
ンサを示す。
FIG. 1 is an explanatory diagram of the principle of triangulation, and FIG. 2 is a block diagram of a specific example of an active distance measuring device according to the invention of this application. In the figure, 4 is a light emitting element, 5 is a light sensor, 7 is an output control circuit,
8ii drive circuit, 11.12 indicates a light sensor forming a light receiving element.

Claims (4)

【特許請求の範囲】[Claims] (1)投光素子と、 この投光素子から基線長離れた位置に配置された受光素
子と、 被測距物体からの反射光のうち前記投光素子の近傍へ向
うものを検出する検出手段と、この検出手段の検出出力
が所定レベル以上であるとき前記投光素子の発光出力を
制御する制御手段と、 を具える能動型測距装置。
(1) A light projecting element, a light receiving element disposed at a position separated by a baseline length from the light projecting element, and a detection means for detecting reflected light from the object to be ranged toward the vicinity of the light projecting element. and a control means for controlling the light emission output of the light projecting element when the detection output of the detection means is equal to or higher than a predetermined level.
(2)  前記検出手段が前記投光素子の近傍に設けら
れた光センサである特許請求の範囲(1)記載の能動型
測距装置。
(2) The active distance measuring device according to claim (1), wherein the detection means is an optical sensor provided near the light projecting element.
(3)前記制御手段は、前記検出手段の検出出力が前記
所定レベル以上であるとき前記投光素子の発光出力を最
小に制御する特許請求の範囲(1)記載の能動型測距装
置。
(3) The active distance measuring device according to claim (1), wherein the control means controls the light emission output of the light projecting element to a minimum when the detection output of the detection means is equal to or higher than the predetermined level.
(4)投光素子と、 この投光素子から基線長離れた位置に配置された受光素
子と、 被測距物体からの反射光のうち前記投光素子の近傍へ向
うものを検出する検出手段と、この検出手段の検出出力
が第1の所定レベル以上であり、かつ前記受光素子の受
光出力が第2の所定レベル以下であるとき前記投光素子
の発光出力を制御する制御手段と、を具える能動型測距
装置。
(4) a light projecting element; a light receiving element disposed at a baseline distance from the light projecting element; and a detection means for detecting reflected light from the object to be ranged toward the vicinity of the light projecting element. and a control means for controlling the light emission output of the light emitting element when the detection output of the detection means is above a first predetermined level and the light reception output of the light receiving element is below a second predetermined level. Active ranging device.
JP11811082A 1982-07-07 1982-07-07 Active type distance measuring device Pending JPS599509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11811082A JPS599509A (en) 1982-07-07 1982-07-07 Active type distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11811082A JPS599509A (en) 1982-07-07 1982-07-07 Active type distance measuring device

Publications (1)

Publication Number Publication Date
JPS599509A true JPS599509A (en) 1984-01-18

Family

ID=14728265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11811082A Pending JPS599509A (en) 1982-07-07 1982-07-07 Active type distance measuring device

Country Status (1)

Country Link
JP (1) JPS599509A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117407A (en) * 1984-11-13 1986-06-04 Kyocera Corp Automatic range measuring circuit
JPS61241616A (en) * 1985-04-16 1986-10-27 エルイン シツク ゲゼルシヤフト ミツト ベシユレンクテル ハフツング オプテイ−ク−エレクトロニク Photosensor
JPS6281521A (en) * 1985-10-04 1987-04-15 Mitsubishi Electric Corp Range finder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117407A (en) * 1984-11-13 1986-06-04 Kyocera Corp Automatic range measuring circuit
JPS61241616A (en) * 1985-04-16 1986-10-27 エルイン シツク ゲゼルシヤフト ミツト ベシユレンクテル ハフツング オプテイ−ク−エレクトロニク Photosensor
JPS6281521A (en) * 1985-10-04 1987-04-15 Mitsubishi Electric Corp Range finder

Similar Documents

Publication Publication Date Title
US5288987A (en) Autofocusing arrangement for a stereomicroscope which permits automatic focusing on objects on which reflections occur
CA2354614C (en) Autofocus sensor
JPH11257917A (en) Reflection type optical sensor
JPS6220522B2 (en)
JPS599509A (en) Active type distance measuring device
JP3381233B2 (en) Autofocus device and focus adjustment method
JPH0346507A (en) Distance measuring instrument
US5121153A (en) Automatic focusing device
JPH041885B2 (en)
JPH11201718A (en) Sensor device and distance measuring equipment
JPS62929A (en) Automatic focus adjusting device for camera
KR102206236B1 (en) Apparatus for emitting laser for lidar and lens for emitting uniform energy density
JP2989593B1 (en) Distance measuring device
JPS6332508A (en) Projecting system for automatic focus detection
JPH04169887A (en) Laser visual sensor device
JP3035370B2 (en) Distance measuring device
JPS63266410A (en) Distance measuring device for camera
JPS6342761B2 (en)
JP2632175B2 (en) Auxiliary light emitting device for focus detection
KR102092827B1 (en) Apparatus for emitting laser whose energy density is adjusted according to projection angle and lens for controling energy density
JPH1096851A (en) Range finder for camera
JP2950759B2 (en) Optical equipment having a line-of-sight detection device
JP3074504B2 (en) Distance measuring device and camera using the same
JPS59121011A (en) Focusing position detector
JPS60151507A (en) Distance measuring instrument