JPS5994936A - Vector quantizing method - Google Patents
Vector quantizing methodInfo
- Publication number
- JPS5994936A JPS5994936A JP57204849A JP20484982A JPS5994936A JP S5994936 A JPS5994936 A JP S5994936A JP 57204849 A JP57204849 A JP 57204849A JP 20484982 A JP20484982 A JP 20484982A JP S5994936 A JPS5994936 A JP S5994936A
- Authority
- JP
- Japan
- Prior art keywords
- vector
- quantization
- distortion
- dictionary
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013598 vector Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000013139 quantization Methods 0.000 claims abstract description 45
- 239000006185 dispersion Substances 0.000 abstract description 10
- 230000005484 gravity Effects 0.000 abstract description 6
- 238000009826 distribution Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/032—Quantisation or dequantisation of spectral components
- G10L19/038—Vector quantisation, e.g. TwinVQ audio
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
- Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
- Image Processing (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は一つのベクトルあたりの量子化情報量が大き
い場合に適するベクトル量子化法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vector quantization method suitable for cases where the amount of quantization information per vector is large.
〈従来技術〉
一般にベクトル量子化はサンプル値を複数個ごとにベク
トルEx ” (”11 e12− ・・・etp )
、E2=(e+1e211 =−e!Ip ) 0°1
°°−En = (ent ensoo“0′。<Prior art> In general, vector quantization converts each sample value into a vector Ex"("11 e12-...etp)
, E2=(e+1e211 =-e!Ip) 0°1
°°−En = (ent ensoo“0′.
enp)とし、その各ベクトルごとに予め求めておいた
代表ベクトルF1=(ft□f1□・・・・・・flp
) 、F2” (f’1fzg −”・fgp )
”・・・・・Fm=(’mt ’mz ・・・・・・f
mp )の辞書から歪が最小となるもの、即ち最も近い
ものを選び、その番号を符号とするものである。このよ
うに一つのベクトルを一つの代表値例えば番号で符号化
するものであるから、一つのベクトル要素の数が少ない
場合に効率のよい符号化が可能であり、特に一つのベク
トルあたりの符号化の情報量をB(ビット)とすると、
2B個の代表ベクトルから成る辞書を学習サンプルから
データの統計的分布を反映するように作っておけば、特
異な分布や偏りのある分布を持つデータをも能率よく符
号化できる。そして符号化による平均歪はベクトルの次
元なPとする時、2−(2B/P)K比例して小さくす
ることができる。enp), and the representative vector F1=(ft□f1□・・・flp
), F2"(f'1fzg-"・fgp)
”...Fm=('mt'mz...f
The one with the minimum distortion, that is, the closest one, is selected from the dictionary of mp), and that number is used as the code. In this way, since one vector is encoded using one representative value, such as a number, efficient encoding is possible when the number of one vector element is small, and especially the encoding per one vector is possible. If the amount of information in is B (bit), then
If a dictionary consisting of 2B representative vectors is created to reflect the statistical distribution of data from learning samples, it is possible to efficiently encode data that has an unusual or biased distribution. The average distortion due to encoding can be reduced in proportion to 2-(2B/P)K, where P is the vector dimension.
しかし与えられた情報量Bに対して2B個のベクトルの
辞書とその10倍以上の学習サンプルが必要であり、辞
書作製に要する記憶容量や計算量を考慮すれば情報量B
は10以下が現実的である。However, for a given amount of information B, a dictionary of 2B vectors and more than 10 times as many learning samples are required.
is realistically 10 or less.
例えばB≧20の場合には現存のいかなる電子計算機を
もってしても辞書の作製は不可能と言ってよい。即ち一
般のベクトル量子化においてはlベクトルあたりの情報
量Bの制約により、符号化に伴う平均歪を小さくするこ
とには限界があった。For example, if B≧20, it can be said that it is impossible to create a dictionary even with any existing electronic computer. That is, in general vector quantization, there is a limit to reducing the average distortion associated with encoding due to the restriction on the amount of information B per l vector.
またBが異なる場合にはBの値毎に別の辞書を作ってお
く必要があった。Furthermore, when B is different, it is necessary to create a separate dictionary for each value of B.
この発明は分布に偏りがあるデータでも能率よく量子化
できるというベクトル量子化の利点をそのまま生かし、
かつ符号化情報量Bが20以上の場合でも歪をそれに応
じて小さくできるようにしたベクトル量子化法を提供す
るものである。This invention takes advantage of the advantage of vector quantization, which allows efficient quantization of data even if the distribution is biased,
Moreover, the present invention provides a vector quantization method that can reduce distortion accordingly even when the encoded information amount B is 20 or more.
〈実施例〉
第1図はこの発明のベクトル量子化法を適用した情報伝
送系の例を示す。符号器11は通信路12を介して復号
器13と接続され、符号器11及び復号器13にはそれ
ぞれ辞書14及び15が接続されている。辞書14には
代表値を表す重心ベクトルが記憶された重心ベクトル部
16と、各重心に対する集落の分散を示す分散ベクトル
が記憶された分散ベクトル部17とを具備する。復号器
側の辞書15は符号器側の辞書14と全く同一の構成で
あって、重心ベクトル部18及び分散ベクトル部19を
備えている。符号器11は重心ベクトル部16及び分散
ベクトル部17をそれぞれ使うベクトル量子化部21及
びスカラ量子化部22より成る。<Embodiment> FIG. 1 shows an example of an information transmission system to which the vector quantization method of the present invention is applied. The encoder 11 is connected to a decoder 13 via a communication path 12, and dictionaries 14 and 15 are connected to the encoder 11 and the decoder 13, respectively. The dictionary 14 includes a centroid vector section 16 in which centroid vectors representing representative values are stored, and a dispersion vector section 17 in which dispersion vectors indicating the distribution of villages with respect to each centroid are stored. The dictionary 15 on the decoder side has exactly the same configuration as the dictionary 14 on the encoder side, and includes a centroid vector section 18 and a dispersion vector section 19. The encoder 11 includes a vector quantizer 21 and a scalar quantizer 22, each using a centroid vector section 16 and a variance vector section 17.
第2図に示す分布をもつ2次元(n=2)のデータを例
にとってこの発明のベクトル量子化法を説明する。第2
図において閉曲線23で囲まれた領域内にデータが分布
しているとする。通常のXl。The vector quantization method of the present invention will be explained using two-dimensional (n=2) data having the distribution shown in FIG. 2 as an example. Second
Assume that data is distributed within a region surrounded by a closed curve 23 in the figure. Normal XL.
X2座標独立の量子化や座標変換後の量子化ではスカラ
量子化である限り、各データごとに量子化を行う限り、
一定の情報量に対する歪は大きくなってしまう。As long as X2 coordinate independent quantization or quantization after coordinate transformation is scalar quantization, as long as quantization is performed for each data,
Distortion increases for a given amount of information.
しかしこの発明では二段階でベクトル量子化を行う。サ
ンプル値系列がブロックごとにそのサンプル値を要素と
するベクトルとされた入力データは入力端子24よりベ
クトル量子化部21に入力されて、Bo=2でベクトル
量子化される。即ち領域23の先験的分布に合うように
全体が20個の領域25a〜25dに分割され、その各
ブロック即ち各集落25a〜25dの重心点C1〜C4
が辞書として作製されている。ベクトル量子化部21で
は入力のベクトルが2B (1個のどの集落258〜2
5dに属するかが決められる。例えば入力ベクトルSは
重心点C0の集落25aに属するとする。However, in this invention, vector quantization is performed in two stages. Input data in which a sample value series is made into a vector whose elements are the sample values for each block is input to the vector quantization unit 21 from the input terminal 24, and is vector quantized with Bo=2. That is, the entire area is divided into 20 areas 25a to 25d in accordance with the a priori distribution of the area 23, and the center of gravity C1 to C4 of each block, that is, each village 25a to 25d.
has been created as a dictionary. In the vector quantization unit 21, the input vector is 2B (one village 258 to 2
It is determined whether it belongs to 5d. For example, it is assumed that the input vector S belongs to the village 25a at the center of gravity C0.
集落25aの分散ベクトルはその重心C1を示す重心ベ
クトルで代表される。この分散ベクトルを利用して作ら
れた(B−Be)ピットで表現される各座標独立の格子
点26から歪が最小となるものを選択する。図の例では
B−B、=4で各座標x1゜x2あたり2ビツトで計1
6個の格子点26を重心C1のまわりに設けである。B
0ビットを使って集落25の番号を伝え、(BBo)ピ
ットを使って格子点260番号を符号器11の出力とし
て端子27゜28より復号器13へ伝送する。The dispersion vector of the village 25a is represented by a centroid vector indicating its centroid C1. The one with the minimum distortion is selected from the coordinate-independent grid points 26 expressed by (B-Be) pits created using this dispersion vector. In the example in the figure, B-B = 4 and 2 bits per each coordinate x1°x2, totaling 1
Six lattice points 26 are provided around the center of gravity C1. B
The 0 bit is used to convey the number of the village 25, and the (BBo) pit is used to transmit the lattice point 260 number as the output of the encoder 11 to the decoder 13 from the terminal 27°28.
復号器13では送られたBビットの符号中のB。In the decoder 13, B in the sent B-bit code.
ピットの集落番号及びB −B0ピットの格子点番号に
よりそれぞれ重心ベクトル部18及び分散ペクト、ル部
19を参照して、この例では入力ベクトルSに近い格子
点26Hのベクトル介を復号して端子31へ出力する。The center of gravity vector part 18 and the distributed vector part 19 are referred to using the pit village number and the grid point number of the B-B0 pit, respectively, and in this example, the vector of the grid point 26H near the input vector S is decoded and the terminal Output to 31.
第1段階のベクトル量子化の際に複数の集落を候補とし
て選んでおいて、各候補ごとに歪が最小となる格子点を
選び、最終的に歪が最小となるものの組合せを送るよう
にすれば同じ情報量でさらに平均の歪を小さくできる。During the first stage of vector quantization, multiple villages are selected as candidates, and for each candidate, the grid point with the minimum distortion is selected, and finally the combination of the ones with the minimum distortion is sent. In other words, the average distortion can be further reduced with the same amount of information.
また分散ベクトル部17.19は各重心点ごとに各座標
ごとに値を持っているが、それぞれ平均値におきかえて
も全体の歪はあまり大きくならないので分散ベクトルの
辞書を必要に応じて簡単なものにすることが可能である
。In addition, the dispersion vector section 17.19 has a value for each coordinate for each centroid point, but even if each is replaced with an average value, the overall distortion will not become very large, so a dictionary of dispersion vectors can be easily used as needed. It is possible to make it into something.
〈効 果〉
以上述べたようにこの発明によれば2BOX 2個のベ
クトル辞書を用いた2段階の量子化法により、同じ情報
量でスカラ量子化より平均歪を小さくできる。音声のサ
ンプル値の場合の比較例を第3図に示す。横軸はサンプ
ル当りのビット数Bを、縦軸はSN比を示し、曲線32
は1次元最適量子化の場合(従来の場合)、曲線33は
6次元ベクトル及びガウス量子化の場合、曲線34は1
2次元ベクトル及び力゛ウス量子化の場合である。これ
よりピット数が多くなるとベクトル量子化は困難に女る
が、この発明ではベクトル量子化ができ、しかもSN比
もよいものとなる。特異な分布をもつデータについては
さらに差が大きく力る。そしてこの発明の量子化法によ
れば歪は2B個のベクトル辞書を使ったベクトル量子化
の歪と同程度となることが期待される。符号化情報量B
が20以上では、2B個の辞書が非現実的であることか
ら、Bが20以上の場合の量子化ではこの発明のベクト
ル量子化法がきわめて有効となる。<Effects> As described above, according to the present invention, the two-stage quantization method using two 2BOX vector dictionaries allows the average distortion to be smaller than that of scalar quantization with the same amount of information. A comparative example in the case of audio sample values is shown in FIG. The horizontal axis shows the number of bits per sample B, the vertical axis shows the S/N ratio, and the curve 32
is for one-dimensional optimal quantization (conventional case), curve 33 is for six-dimensional vector and Gaussian quantization, and curve 34 is for one-dimensional optimal quantization (conventional case).
This is the case for two-dimensional vectors and force-force quantization. If the number of pits is larger than this, vector quantization becomes difficult, but with the present invention, vector quantization is possible and the S/N ratio is also good. The difference is even more significant for data with unique distributions. According to the quantization method of the present invention, it is expected that the distortion will be on the same level as the distortion of vector quantization using 2B vector dictionaries. Encoding information amount B
When B is 20 or more, a 2B dictionary is unrealistic, so the vector quantization method of the present invention is extremely effective for quantization when B is 20 or more.
さらにBが変化する場合に、この発明のベクトル量子化
法では格子点の設定の規則を定めておけば辞書を変更す
る必要がなく、サンプル値あたりの情報量(B/P )
は細かく制御できる。通常のスカラ量子化ではサンプル
値あたりの情報量は基本的に整数値に限定されるし、通
常のベクトル量子化においてはBの変化ごとに別の辞書
を用意しなければならない。Furthermore, when B changes, the vector quantization method of this invention eliminates the need to change the dictionary as long as the rules for setting grid points are determined, and the amount of information per sample value (B/P)
can be precisely controlled. In normal scalar quantization, the amount of information per sample value is basically limited to an integer value, and in normal vector quantization, a separate dictionary must be prepared for each change in B.
第1図はこの発明のベクトル量子化法を適用した入力デ
ータを符号化して伝送する情報伝送系の例を示すブロッ
ク図、第2図は2次元で偏りのある分布を持つデータの
量子化例を示す図、第3図は音声の周波数領域でのサン
プル値を使ったスカラ量子化法との比較例を示す図であ
る。
ll:符号器、12:通信路、13:復号器、14.1
5:辞書、16.18:重心ベクトル部、17 、19
:分散ベクトル部、21:ベクトル量子化部、22ニ
ス力ラ量子化部。
特許出願人 日本電信電話公社
代理人 草野 卓
205Figure 1 is a block diagram showing an example of an information transmission system that encodes and transmits input data to which the vector quantization method of the present invention is applied, and Figure 2 is an example of quantization of data with a two-dimensional biased distribution. FIG. 3 is a diagram showing an example of comparison with a scalar quantization method using sample values in the audio frequency domain. ll: encoder, 12: communication path, 13: decoder, 14.1
5: Dictionary, 16.18: Centroid vector section, 17, 19
: Dispersion vector section, 21: Vector quantization section, 22 NIS force quantization section. Patent applicant: Taku Kusano 205, agent of Nippon Telegraph and Telephone Public Corporation
Claims (1)
量子化を行うベクトル量子化法において、各ベクトルに
割当てられる量子化ビット数Bの一部B。 (B>Bo、BlBoは整数)を使って2 B 6個の
サンプルから成る辞書の中から歪が小さい順にN個の候
補ベクトルを選択する第1量子化段と、前記候補の各ベ
クトルに対応する分散ベクトルの辞書または平均的分散
値をもとに(B−Be)ビットを使って各候補ベクトル
を中心に座標軸独立に量子化する第2量子化段とにより
、全体としてBピットの情報を使って歪が最小となるベ
クトルを決定することを特徴とするベクトル量子化法。(1) Part B of the number of quantization bits B allocated to each vector in a vector quantization method in which a sequence of sample values is quantized block by block. (B > Bo, BlBo is an integer) to select N candidate vectors from a dictionary consisting of 2 B 6 samples in descending order of distortion; The second quantization stage quantizes each candidate vector independently on the coordinate axes using (B-Be) bits based on the dictionary of variance vectors or the average variance value. A vector quantization method characterized by determining the vector with the minimum distortion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57204849A JPS5994936A (en) | 1982-11-22 | 1982-11-22 | Vector quantizing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57204849A JPS5994936A (en) | 1982-11-22 | 1982-11-22 | Vector quantizing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5994936A true JPS5994936A (en) | 1984-05-31 |
JPH0367375B2 JPH0367375B2 (en) | 1991-10-22 |
Family
ID=16497408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57204849A Granted JPS5994936A (en) | 1982-11-22 | 1982-11-22 | Vector quantizing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5994936A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6472200A (en) * | 1987-09-11 | 1989-03-17 | Nippon Telegraph & Telephone | Voice encoding |
FR2754127A1 (en) * | 1996-09-21 | 1998-04-03 | Samsung Electronics Co Ltd | Video coder and decoder using adaptive lattice quantiser |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5282064A (en) * | 1975-12-27 | 1977-07-08 | Fujitsu Ltd | Analog-to-digital converter |
-
1982
- 1982-11-22 JP JP57204849A patent/JPS5994936A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5282064A (en) * | 1975-12-27 | 1977-07-08 | Fujitsu Ltd | Analog-to-digital converter |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6472200A (en) * | 1987-09-11 | 1989-03-17 | Nippon Telegraph & Telephone | Voice encoding |
FR2754127A1 (en) * | 1996-09-21 | 1998-04-03 | Samsung Electronics Co Ltd | Video coder and decoder using adaptive lattice quantiser |
Also Published As
Publication number | Publication date |
---|---|
JPH0367375B2 (en) | 1991-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kassam | Optimum quantization for signal detection | |
Hsieh et al. | Lossless compression of VQ index with search-order coding | |
AU575280B2 (en) | Method of transmitting information, encoding and decoding device | |
US6198412B1 (en) | Method and apparatus for reduced complexity entropy coding | |
EP1209917A3 (en) | System and method for encoding/decoding data using multi-stage vector quantisation | |
CN114492316B (en) | Data exchange coding and decoding method and system | |
JPS5994936A (en) | Vector quantizing method | |
CA1154539A (en) | Code converter for polarity-insensitive transmission systems | |
Chan et al. | Enhanced multistage vector quantization with constrained storage | |
US4021799A (en) | Non-linear coding system | |
Thakur et al. | An improved symbol reduction technique based Huffman coder for efficient entropy coding in the transform coders | |
JPS6054581A (en) | Difference encoding device | |
JPS6232785A (en) | Adaptive vector quantization system | |
Hussain et al. | Variable-rate finite-state vector quantization of images | |
JPH03145887A (en) | Prediction coder | |
Memon et al. | Differential lossless encoding of images using non-linear predictive techniques | |
Foster et al. | Adaptive vector quantization for waveform coding | |
JPS6474883A (en) | System for quantizing gain/shape vector | |
Andrews et al. | A mean-removed variation of weighted universal vector quantization for image coding | |
JPH031724A (en) | Coding quantization system and decoding quantization system | |
CN117544176A (en) | Radar data lossy compression method and system, computer equipment and medium | |
Hwang et al. | Storage-and entropy-constrained multi-stage vector quantization and its applications to progressive image transmission | |
Östman | Video Coding Based on the Kantorovich Distance | |
JPH01277300A (en) | Learning type vector quantizer | |
Freeman | The generalized chain code for map data encoding and processing |