JPS5994515A - Method for controlling outer diameter in seizer - Google Patents

Method for controlling outer diameter in seizer

Info

Publication number
JPS5994515A
JPS5994515A JP57202081A JP20208182A JPS5994515A JP S5994515 A JPS5994515 A JP S5994515A JP 57202081 A JP57202081 A JP 57202081A JP 20208182 A JP20208182 A JP 20208182A JP S5994515 A JPS5994515 A JP S5994515A
Authority
JP
Japan
Prior art keywords
outer diameter
stands
sizer
influence coefficient
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57202081A
Other languages
Japanese (ja)
Inventor
Toshio Imae
今江 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57202081A priority Critical patent/JPS5994515A/en
Publication of JPS5994515A publication Critical patent/JPS5994515A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/78Control of tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/06Rolling hollow basic material, e.g. Assel mills
    • B21B19/10Finishing, e.g. smoothing, sizing, reeling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To improve the outer diam. controlling accuracy of a product steel pipe, by setting respectively the extents of control with respect to the reference set values of respective distances between the bottoms of roll grooves of at least the final stands of respective stands in odd and even numbers to the specified values, in a final seizing stage for manufacturing a seamless steel pipe from a cylindrical billet. CONSTITUTION:After heating a cylindrical billet 1 by a heating furnace 2, the billet 1 is formed into a sizer blank pipe 10 by a piercer 3, an elongator 5, a plug mill 7 and a reeler 9, and a finished pipe 13 is manufactured by finishing the pipe 10 by means of a sizer 12 after heating the pipe 10 by a reheating furnace 11. In this case; the sizer 12 is formed by arranging continuously plural roll stands consisting respectively of a pair of groove rolls of which arrangement is mutually changed by 90 deg., and the extents of control with respect to the reference set values of respective distances between the bottoms of roll grooves of at least the final stands of respective stands in odd and even numbers are respectively set to the specified values; then the outer diam. controlling accuracy of a finished pipe 13 at the normal temperature is stabilized.

Description

【発明の詳細な説明】 本発明は、各一対の孔形ロールよりなる複数のロールス
タンドを互いに90度づつ配列を変えて連続配置してな
るサイザーにおける外径制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the outer diameter of a sizer in which a plurality of roll stands, each consisting of a pair of grooved rolls, are successively arranged with their arrangement changed by 90 degrees from each other.

第1図は一般的な継目無鋼管の製造工程を示す工程図で
あり、丸ビレット1は回転炉床式加熱炉2において所定
の温度に加熱された後、第1穿孔圧延機としてのピアサ
3によって穿孔されて短い中窒状の厚肉ホローピース4
となる。厚肉ホローピース4は第2穿孔圧延機としての
エロンゲータ5で肉厚を減じられるとともに長さを伸ば
されプラグミル素管6となる。プラグミル素管6はさら
に延伸圧延機としてのプラグミルTで減肉延伸されリー
ラ素管8となる。リーラ素管8は摩管機としてのリーラ
9で内外面を平滑に仕上げられ、サイザー素管10とな
ってウオーキングビーム式再加熱炉11で再加熱されて
から、最慢にサイザー12において所要の外形に精度良
く成形され、仕上がり管13となる。
FIG. 1 is a process diagram showing the manufacturing process of a general seamless steel pipe, in which a round billet 1 is heated to a predetermined temperature in a rotary hearth type heating furnace 2, and then a piercer 3 as a first piercing rolling mill A short hollow piece with a hollow hole 4
becomes. The thick-walled hollow piece 4 is reduced in wall thickness and lengthened by an elongator 5 serving as a second piercing rolling mill, and becomes a plug mill blank tube 6. The plug mill raw tube 6 is further stretched to reduce its thickness by a plug mill T serving as an elongation rolling mill, and becomes a reeler tube 8. The inner and outer surfaces of the reeler tube 8 are smoothed by a reeler 9, which is a polishing machine, and the sizer tube 10 is reheated in a walking beam reheating furnace 11. The finished tube 13 is formed into an external shape with high accuracy.

ここで、上記サイザー12は、−スれそれ一対の孔形ロ
ールよりなる複数のロールスタンドを互いに90度づつ
配列を変えて5基ないし8基連続配置された多段圧延機
であり、仕上がり管13の外径はサイザー素管10のB
0チ以上とされている。
Here, the sizer 12 is a multi-stage rolling mill in which 5 to 8 roll stands each consisting of a pair of slotted rolls are successively arranged at 90 degrees with each other. The outer diameter of the sizer tube 10 is B
It is said to be more than 0chi.

この種の20一ル式サイザー12においては、例えば奇
数番最終スタンドのロール溝底刑隔七該方向の仕上がり
管13の外径は一般に一致せず、偶数番最終スタンドの
、ロール溝底間隔と該方向の仕上がり管13の外径も一
致しない。これは管材の変形過程において、一方の外径
を縮めると、それと90度方向の外径が広がる扁平現象
を生ずることに基づく。したがって、奇数番および偶数
番それぞれの最終スタンドにおける溝底間隔を目標仕上
がり管外径に等しく設定しても、所要の仕上がり管外径
および真円度を有する製品を得ることができない。
In this type of 20-hole sizer 12, for example, the outer diameter of the finished tube 13 in the direction of the roll groove bottom spacing of the odd-numbered final stand generally does not match, and the roll groove bottom spacing of the even-numbered final stand does not match. The outer diameters of the finished tubes 13 in this direction also do not match. This is based on the fact that during the deformation process of the tube material, when one outer diameter is reduced, a flattening phenomenon occurs in which the outer diameter in the 90 degree direction expands. Therefore, even if the groove bottom spacing in the final stands of odd and even numbers is set equal to the target finished tube outer diameter, it is not possible to obtain a product having the desired finished tube outer diameter and roundness.

そこで従来、20一ル式サイザーによって圧延される仕
上がり管外径を目標値とする外径制御方法が種々提案さ
れている。肴に、特開昭57−44411号に係る「管
の定型機における外径制御方法」においては、最終2ス
タンドのロール溝底間隔とこれに対応する二方向の出側
管材外径とを圧延中に測定し、該二方向のロール溝底間
隔が出側管材外径に及ぼす影響係数を求め、この影響係
数を用いて最終2スタンドのロール溝底間隔を制御して
いる。
Therefore, various methods of controlling the outer diameter have been proposed in which the outer diameter of the finished tube rolled by the 20-inch sizer is set as a target value. As a side note, in the "Outer diameter control method in a pipe forming machine" according to Japanese Patent Application Laid-Open No. 57-44411, the distance between the roll groove bottoms of the final two stands and the corresponding outer diameters of the exit side pipe material in two directions are determined by rolling. The influence coefficient of the roll groove bottom spacing in the two directions on the outlet tube material outer diameter is determined, and this influence coefficient is used to control the roll groove bottom spacing of the final two stands.

しかしながら、上記従来例に係る外径制御方法において
は、管材の変形過程で生ずる扁平現象の影響のみが考慮
されており、出側管材外径に及ぼす入側管材外径変動の
影響が何ら考慮されていないことから、仕上がり管の外
径制御精度の安定化を図ることができない。
However, in the conventional outside diameter control method described above, only the influence of the flattening phenomenon that occurs during the deformation process of the tube material is taken into account, and the influence of fluctuations in the outside diameter of the entry side tube material on the outside diameter of the exit side tube material is not considered at all. Therefore, it is not possible to stabilize the accuracy of controlling the outer diameter of the finished pipe.

本発明は、仕上がり管の外径制御精度を安定化すること
ができるサイザーにおける外径制御方法を提供すること
を目的とする。
An object of the present invention is to provide an outer diameter control method in a sizer that can stabilize the outer diameter control accuracy of a finished pipe.

上記目的を達成するために、本発明に係るサイザーにお
ける外径制御方法は奇数番の少なくとも最終スタンドの
溝抵間隔(B1)が出側管材の該方向の外径(C2)に
及ぼす影響係数(C1)および出側管材の核方向と直交
する方向の外径(C2)に及ぼす影響係数(C2)、偶
数番の少なくとも最終スタンドのロール溝底間隔(B2
)が出側管材の該方向と直交する方向の外径(C1)に
及ぼす影響係数(β1)および出側管材の該方向の外径
(C2)#ζ及+Zす影響係数(A2)、奇数番スタン
ドのロール溝底方向における入側管材の外径(A1)が
出側管材の該方向の外径(C8)に及ぼす影響係数(γ
1)、偶数番スタンドのロール溝底方向における入側管
材の外径(A2)が出伸管材の該方向の外径(C2)に
及ぼす影響係数(r2)をそれぞれ予め求め、上記各影
4係数(al 1 C2?β1tβz t rx + 
rz )、IIJ御対象材の上記二方向における入側外
径(A1.Az )の−基準値に対する偏差値(ΔA1
.ΔA2)、制御対象材と同一ロットである先行材の上
記二方向における出側外径(Cユ、C2)の目標値に対
する偏差値(ΔC8,ΔCz)に基づいて、制御対象材
の上記二方向における出側外径(C1,C7)を目標値
とする、奇数番および偶数番の少なくとも最終スタンド
のロール溝底間隔(Bs 、Bz )の基準設定値−こ
対する制御量(ΔBよ、ΔB、)を、 によって定めるようにしたものである。
In order to achieve the above object, the outer diameter control method for the sizer according to the present invention provides an influence coefficient ( C1) and the influence coefficient (C2) on the outer diameter (C2) in the direction perpendicular to the core direction of the exit pipe material, and the roll groove bottom interval (B2) of at least the final stand of even numbers.
) on the outer diameter (C1) of the outlet pipe material in the direction orthogonal to the direction (β1) and the influence coefficient (A2) on the outer diameter (C2) of the outlet pipe material in the direction (C2) #ζ and +Z, odd numbers The influence coefficient (γ
1) The influence coefficient (r2) of the outer diameter (A2) of the inlet pipe material in the direction of the bottom of the roll groove of the even-numbered stands on the outer diameter (C2) of the exit pipe material in that direction is determined in advance, and each of the above-mentioned shadows 4 Coefficient (al 1 C2?β1tβz t rx +
rz ), the deviation value (ΔA1
.. ΔA2), the deviation value (ΔC8, ΔCz) of the exit side outer diameter (Cyu, C2) in the above two directions of the preceding material that is the same lot as the material to be controlled (ΔC8, ΔCz), The reference set value of the roll groove bottom spacing (Bs, Bz) of at least the last stand of odd and even numbers, with the exit outside diameter (C1, C7) as the target value - the corresponding control amount (ΔB, ΔB, ) is defined by .

以下、本発明の原理について説明する。The principle of the present invention will be explained below.

サイザーにおける奇数番の少なくとも最終スタンドにお
けるロール溝底間隔をBl、上記ロール溝底間隔B1の
基準設定値B1oに対する制御量をΔBIs偶数番の少
なくとも最終スタンドにおけるロール溝底間隔をB2、
上記ロール溝底間114B2の基準設定値B20に対す
る制御量をΔB2、奇数番スタンドのロール溝底方向(
偶数番スタンドのロール溝底方向に直交する方向)にお
ける出側管材の外径を”1s 上記出側管材の外径C1
の目標値C□0に対する偏差値をΔC1、偶数番スタン
ドのロール溝底力向(奇数番スタンドのロール溝底力向
に直交する方向)における出側管材の外径を02、上記
出側管材の外径C2の目標値C2oに対する偏差値をΔ
C2、奇数番スタンドのロール溝底方向における入側管
材の外径をA□、上記入側管材の外径A1の基準値AI
(1に対する偏差値をΔA1、偶数番スタンドのロール
溝底方向における入側管材の外径をA2、上記入側管材
の外径A2の基準値A20に対する偏差値をΔA2とす
る場合に、上記ロール溝底間隔B1が上記出側管材の外
径C1に及ぼす影響係数をC1、上記ロール溝底間隔B
□か上記出側管材の外径C2に及ぼす影響係数をC2、
上記ロール溝底間隔B2が上記出側管材の外径C1に及
ぼす影響係数をβl、上記ロール溝底間隔B2が上記出
側管材の外径C2に及ぼす影響係数をA2、上記入側管
材の外径へ〇が上記出側管材の外径C1に及ぼす影響係
数をr8、上記入側管材の外径A2が上記出側管材の外
径C2に及ぼす影響係数をr2とすれば、下記(1)式
および(2)式が成立する。
Bl is the roll groove bottom interval in at least the last stand of the odd number in the sizer, ΔBIs is the control amount for the reference setting value B1o of the roll groove bottom interval B1, B2 is the roll groove bottom interval in at least the last stand of the even number,
The control amount for the reference setting value B20 of the roll groove bottom distance 114B2 is set to ΔB2, and the roll groove bottom direction of the odd numbered stands (
The outer diameter of the outlet tube material in the direction perpendicular to the roll groove bottom direction of the even numbered stands is 1s.The outer diameter C1 of the outlet tube material is 1s.
ΔC1 is the deviation value from the target value C The deviation value of the diameter C2 from the target value C2o is Δ
C2, the outer diameter of the entry side tube material in the bottom direction of the roll groove of the odd numbered stand is A□, the reference value AI of the outer diameter A1 of the above entry side tube material
(If the deviation value from 1 is ΔA1, the outer diameter of the entry side tube material in the direction of the bottom of the roll groove of the even-numbered stand is A2, and the deviation value of the outer diameter A2 of the entry side pipe material from the reference value A20 is ΔA2, the above roll The influence coefficient of the groove bottom interval B1 on the outer diameter C1 of the outlet pipe material is C1, and the roll groove bottom interval B is
□The influence coefficient on the outer diameter C2 of the above outlet pipe material is C2,
βl is the influence coefficient of the roll groove bottom interval B2 on the outer diameter C1 of the outlet pipe material, A2 is the influence coefficient of the roll groove bottom interval B2 on the outer diameter C2 of the outlet pipe material, If the influence coefficient of 〇 to the diameter on the outer diameter C1 of the outlet pipe material is r8, and the influence coefficient of the outer diameter A2 of the inlet pipe material on the outer diameter C2 of the outlet pipe material is r2, then the following (1) is obtained. Equation and Equation (2) hold true.

ΔC1=α1ΔB、+β1ΔB2+ r1ΔA1−  
(1)ΔC2=α2ΔB8+β2ΔB2+r2ΔA2・
・+21したかって、同一ロットの圧延実績から得られ
る各3組のΔA1.ΔA2.ΔB1.ΔB2.ΔC1t
ΔC2に基づいて、各3個の(1)式および(2)式を
作成し、それらの全6式を連立方程式として解けは、上
記各影響係数α1.C2,β1.A2 + ’11γ2
を予め定めることが可能となる。
ΔC1=α1ΔB, +β1ΔB2+ r1ΔA1−
(1) ΔC2=α2ΔB8+β2ΔB2+r2ΔA2・
・+21, and ΔA1 for each of the three sets obtained from the rolling results of the same lot. ΔA2. ΔB1. ΔB2. ΔC1t
Create three equations (1) and (2) based on ΔC2, and solve all six equations as simultaneous equations using the above-mentioned influence coefficients α1. C2, β1. A2 + '11γ2
can be determined in advance.

そこで、上記各影響係数α1.C2,β1.β2゛。Therefore, each of the above influence coefficients α1. C2, β1. β2゛.

’1+r2、制御対象材の上記二方向における入側外径
A、 、 A2の上記偏差値ΔA3.ΔA2、制御対象
材と同一ロットである先行材の上記二方向における出側
外径CI + 02の上記偏差値ΔC1,ΔC2を用い
れば、上記(1)式および(2)式の変形式である下記
(3)式および(4)式によって、制御対象材の上記二
方向における出側外径C1,C2を目標値とする、奇数
番および偶数番の少なくとも最終スタンドのロール溝底
間隔B1.B2の基準設定値に対する上記制御量ΔB1
.ΔB2を求めることが可能となる。
'1+r2, the above deviation value ΔA3 of the entry side outer diameter A of the material to be controlled in the above two directions, , A2. By using ΔA2 and the deviation values ΔC1 and ΔC2 of the exit outside diameter CI + 02 in the two directions of the preceding material that is the same lot as the material to be controlled, the above equations (1) and (2) can be transformed. According to the following equations (3) and (4), the roll groove bottom interval B1. The above control amount ΔB1 with respect to the reference setting value of B2
.. It becomes possible to obtain ΔB2.

( に 第2図は本発明の実施に′用いられるサイザーを示す制
御系統図である。このサイザー12は、5基のロールス
タンドからなり、隣接するロールスタンドは互いに90
度づつ配列を変えて連続配置されている。
(Figure 2 is a control system diagram showing a sizer used in the implementation of the present invention. This sizer 12 consists of five roll stands, and adjacent roll stands are 90 degrees apart from each other.
They are arranged consecutively, changing the arrangement every time.

サイザー12の出側には、第3図に示すような第1出側
外径測定装置21Aおよび第2出側外径測定装置21B
からなる出側外径測定装置21が配設されている。第1
出側外径測定装置21Aは奇数番スタンドのロール溝底
方向(偶数番スタンドのロール溝底力向に直交する方向
)における出側管材の外径C1を測定可能としている。
On the outlet side of the sizer 12, there are a first outlet outer diameter measuring device 21A and a second outlet outer diameter measuring device 21B as shown in FIG.
An outlet outer diameter measuring device 21 consisting of the following is provided. 1st
The exit outer diameter measuring device 21A is capable of measuring the outer diameter C1 of the exit pipe material in the roll groove bottom direction of the odd numbered stands (direction perpendicular to the roll groove bottom force direction of the even numbered stands).

また、第2出側外径測定装置21Bは、偶数番スタンド
のロール溝底力向(奇数番スタンドのロール溝底方向に
直交する方向)における出側管材の外径C2を測定可能
としている。
Further, the second outlet outer diameter measuring device 21B is capable of measuring the outer diameter C2 of the outlet tube material in the roll groove bottom force direction of the even numbered stands (direction perpendicular to the roll groove bottom direction of the odd numbered stands).

また、サイザー12の入側には入側外径測定装3)置2
2が配設されている。入側外径測定装置22は、奇数番
スタンドのロール溝底方向における入4)側管材の外径
A8、偶数番スタンドのロー/L、溝底方向における入
側管材の外径A2を測定可能としている。
Also, on the entry side of the sizer 12, there is an entry side outer diameter measuring device 3) device 2.
2 are arranged. The entry side outer diameter measuring device 22 can measure the outer diameter A8 of the entry side tube material in the direction of the roll groove bottom of odd numbered stands, the low/L of even numbered stands, and the outer diameter A2 of the entry side tube material in the direction of the groove bottom. It is said that

上記出側外径測定装置21および入側外径測定装置22
の各測定結果は演算装置23に伝達可能とされている。
The above-mentioned outlet outer diameter measuring device 21 and inlet outer diameter measuring device 22
Each measurement result can be transmitted to the arithmetic unit 23.

演算装置23は、予め制御対象材と同一ロットの圧延実
績に基づいて、該ロットの圧延材に対する前記各影響係
数α1.C2,β1゜A2 + r、 l r2を前記
(1)式および(2)式に基づいて算定している。そこ
で、演算装置23は、前記各外径測定装置21.22の
測定結果に基づき、出側管材の各外径C1,C2の目標
値C1o、C2oに対する偏差値ΔC1+ΔC2を算出
するときもに、入1則管材の各外径A1. A2の基準
値AIo、 A2oに対する偏差値ΔA1.ΔA2を算
出する。さらに、演算装置23は、上記各影響係数α1
.C2,β1.A2゜rl T 12、各偏差値ΔA1
.ΔA2.ΔC3,ΔC2に基づいて、前記(3)式お
よび(4)式により、奇数番および偶数番の少なくとも
最終スタンドのロール溝底間隔B1. B2の基準設定
値B101 B20に対する制御量ΔB1+ΔB2を算
出し、その算出結果を制御装置24に伝達する。
The arithmetic unit 23 calculates each of the influence coefficients α1. C2, β1°A2 + r, l r2 is calculated based on the above equations (1) and (2). Therefore, the calculation device 23 calculates the deviation values ΔC1+ΔC2 of the respective outer diameters C1 and C2 of the outlet pipe material from the target values C1o and C2o based on the measurement results of the respective outer diameter measuring devices 21 and 22. Rule 1 Each outer diameter of the pipe material A1. Reference value AIo of A2, deviation value ΔA1 from A2o. Calculate ΔA2. Furthermore, the arithmetic unit 23 calculates each of the above influence coefficients α1
.. C2, β1. A2゜rl T 12, each deviation value ΔA1
.. ΔA2. Based on ΔC3 and ΔC2, the roll groove bottom interval B1. The control amount ΔB1+ΔB2 for the reference setting values B101 to B20 of B2 is calculated, and the calculation result is transmitted to the control device 24.

制御装置24は、奇数番の最終スタンドすなわち第5ス
タンド12 (5)の圧下位置をその基準設定値nso
から上記ΔB1だけ変化させるとともに、偶数番の最終
スタンドすなわち第4スタンド12(4)の圧下位置を
基準設定値B20から上記ΔB2だけ変化させる。なお
、制御装置24は、少なくさも第5スタンド12(5)
の圧下位置を上記ΔB8だけ変化させるものであれば、
他の奇数番スタンド12(1)12(3)についてもそ
れらの圧下位置を上記ΔB1だけ変化′させるものであ
っても良く、また少なくとも第4スタンド12(4)の
圧下位置を−F記ΔB2だけ変化させるものであれは、
他の偶数番スタンド12(2)についてもその圧下位置
を上記ΔB2だけ変化させるものであっても良い。
The control device 24 sets the lowering position of the odd-numbered last stand, that is, the fifth stand 12 (5) to its reference setting value nso.
At the same time, the lowering position of the even-numbered final stand, that is, the fourth stand 12 (4) is changed by the above-mentioned ΔB2 from the reference set value B20. Note that the control device 24 controls at least the fifth stand 12 (5).
If the rolling position is changed by the above ΔB8,
The other odd-numbered stands 12(1), 12(3) may also have their lowered positions changed by the above ΔB1, and at least the lowered position of the fourth stand 12(4) may be changed by -F notation ΔB2. Anything that changes only
The lowered position of the other even-numbered stands 12(2) may also be changed by the above-mentioned ΔB2.

上記実施例によれば、出側管材の外径変動鴬に及ぼすロ
ール間隔の影響と入側素管外径の影響の両方を同時に考
慮することが可能となり、従来例に比して、実操業にお
ける出側管材の外径ばらつき量を大巾に減少することが
可能となる。
According to the above embodiment, it is possible to simultaneously consider both the influence of the roll interval on the outer diameter variation of the outlet pipe material and the influence of the outer diameter of the inlet pipe material, and compared to the conventional example, it is possible to It becomes possible to greatly reduce the amount of variation in the outer diameter of the outlet tube material.

次に、本発明を適用した場合の具体的効果を、従来方法
に比較して示せば第4図の通りとなる。
Next, the specific effects obtained when the present invention is applied are shown in FIG. 4 in comparison with the conventional method.

すなわち、第4図は、縦軸に出側管制の目標値に対する
偏差値ΔCをとり、横軸に制御開始からの圧延本数nを
とり、冷間目標外径244.5 m 1肉厚11.99
 wmの管材を7スタンド仕上げで圧延した場合におけ
る、従来の制御方法に基づく出側管材外径の変動と、本
発明の制御方法に基づく出側管材外径の変動を比較して
示す線図である。ここで、圧下設定値は予め手動設定に
て基準設定状態からずらしておき、自動制御に切換えて
から4本目に故意に素管外径が基準値より大なる管材を
圧延したものである。この第4図によれば、従来方法に
おいては入側管材の外径が及ぼす影響を考慮していない
ことから入側管材の外径変動がそのまま出側管材の外径
に反映することが認められるものの、本発明に係る制御
方法による場合には入側管材の外径変動をも考慮して出
側管材の外径を目橡状態に制御可能となることが認めら
れる。
That is, in FIG. 4, the vertical axis shows the deviation value ΔC from the target value of the exit side control, the horizontal axis shows the rolling number n from the start of the control, and the cold target outer diameter is 244.5 m, the wall thickness is 11. 99
This is a diagram showing a comparison of the variation in the outer diameter of the outlet tube material based on the conventional control method and the variation in the outer diameter of the outlet tube material based on the control method of the present invention when rolling the Wm tube material with a 7-stand finish. be. Here, the rolling reduction set value was manually set in advance to deviate from the standard setting state, and after switching to automatic control, a fourth pipe material whose outside diameter was larger than the standard value was intentionally rolled. According to Fig. 4, the conventional method does not take into account the influence of the outer diameter of the inlet pipe, so it is recognized that changes in the outer diameter of the inlet pipe are directly reflected in the outer diameter of the outlet pipe. However, in the case of the control method according to the present invention, it is recognized that it is possible to control the outer diameter of the outlet pipe material to a target state by taking into account the change in the outer diameter of the inlet pipe material.

以上のように、本発明に係るサイザーにおける外径制御
方法によれば、仕上がり管の外径制御精度を安定化する
ことか可能となる。
As described above, according to the method for controlling the outer diameter of a sizer according to the present invention, it is possible to stabilize the accuracy of controlling the outer diameter of a finished pipe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な継目無鋼管の製造過程を示す工程図、
第2図は本発明の実施に用いられるサイザーを示す制御
系統図、第3図はサイザーの出側における管材の外径測
定状態を示す正面図、第4図は本発明に止る制御結果と
従来例による制御結果を比較して示す線図である。 12・・・サイザー、 13・・・仕上かり管、21・
・・出側外径測定装置、 22・・・入側外径測定装置、 23・・・演算装置、
24・・・制御装置、 25・・・圧下モーターO代理
人 弁理士 塩 川 修 治
Figure 1 is a process diagram showing the manufacturing process of general seamless steel pipes.
Fig. 2 is a control system diagram showing the sizer used to carry out the present invention, Fig. 3 is a front view showing the outside diameter measurement state of the pipe material on the exit side of the sizer, and Fig. 4 shows the control results according to the present invention and the conventional method. FIG. 3 is a diagram comparing and illustrating control results according to examples. 12... Sizer, 13... Finished tube, 21.
...Outside outer diameter measuring device, 22...Inlet outer diameter measuring device, 23...Arithmetic device,
24...Control device, 25...Downward motor O agent Patent attorney Osamu Shiokawa

Claims (1)

【特許請求の範囲】[Claims] (1)各一対の孔形ロールよりなる複数のロールスタン
ドを互いに90度づつ配列を変えて連続配置してなるサ
イザーにおける外径制御方法において、奇数番の少なく
とも最終スタンドの溝底間隔(B1)が出側管材の該方
向の外径(C1)に及ぼす影響係数(α、)および出側
管材の該方向と直交する方向の外径(C2)に及ぼす影
響係数(C2)、偶数番の少なくとも最終スタンドのロ
ール溝底間隔(B2)が出側管材の該方向と直交する方
向の外径(C8)に及ぼす影響係数(β□)および出側
管材の該方向の外径(C2)に及ぼす影響係数(β2〕
、奇数番スタンドのロール溝底方向における入側管材の
外径(Al)が出側管材の該方向の外径(C1)に及ぼ
す影響係数Cr*〕、偶数番スタンドのロール溝底力向
における入側管材の外径(A2)が出側管材の該方向の
外径(C2)に及ぼす影響係数(r2)をそれぞれ予め
求め、上記各影響係数(C1,C2,A0.A2゜γ1
1r2)%制御対象材の上記二方向における入側外径(
A□、A2)の基準値に対す・る偏差値(ΔA1゜ΔA
2)、制御対象材と同一ロットである先行材の上記二方
向における出側外径(C1,C2)の目標値に対する偏
差値(ΔC1,ΔC2)に基づいて、制御対象材の上記
二方向における出側外径(C□。 ”2 )を目標値とする、−数番および偶数番の少なく
とも最終スタンドのロール溝底間隔(B□。 B2 )の基準設定値に対する制御量(ΔB!+ΔBz
)を、 によって定めることを41[きするサイザーにおける外
径制御方法。
(1) In a method for controlling the outer diameter of a sizer in which a plurality of roll stands each consisting of a pair of hole-shaped rolls are successively arranged at 90 degrees from each other, the groove bottom spacing (B1) of at least the last stand of an odd number The influence coefficient (α, ) exerted on the outer diameter (C1) of the outlet pipe material in the direction, and the influence coefficient (C2) exerted on the outer diameter (C2) of the outlet pipe material in the direction orthogonal to the direction, the even-numbered at least The influence coefficient (β□) of the roll groove bottom spacing (B2) of the final stand on the outer diameter (C8) of the outlet tube in the direction perpendicular to the direction, and the influence on the outer diameter (C2) of the outlet tube in the direction Influence coefficient (β2)
, the influence coefficient Cr*] of the outer diameter (Al) of the inlet tube in the direction of the bottom of the roll groove of odd-numbered stands on the outer diameter (C1) of the outlet tube in that direction; The influence coefficient (r2) that the outer diameter (A2) of the side tube material has on the outer diameter (C2) of the outlet tube material in this direction is determined in advance, and each influence coefficient (C1, C2, A0.A2゜γ1) is determined in advance.
1r2)% Entry side outer diameter of the material to be controlled in the above two directions (
The deviation value (ΔA1゜ΔA) from the reference value of A□, A2)
2) Based on the deviation values (ΔC1, ΔC2) from the target values of the outlet outer diameter (C1, C2) in the two directions of the preceding material that is the same lot as the material to be controlled, The control amount (ΔB!+ΔBz) for the standard setting value of the roll groove bottom interval (B□.B2) of at least the final stand of - number and even number, with the exit outside diameter (C□. ”2) as the target value.
) is determined by 41 [Outer diameter control method in sizer.
JP57202081A 1982-11-19 1982-11-19 Method for controlling outer diameter in seizer Pending JPS5994515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57202081A JPS5994515A (en) 1982-11-19 1982-11-19 Method for controlling outer diameter in seizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57202081A JPS5994515A (en) 1982-11-19 1982-11-19 Method for controlling outer diameter in seizer

Publications (1)

Publication Number Publication Date
JPS5994515A true JPS5994515A (en) 1984-05-31

Family

ID=16451641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57202081A Pending JPS5994515A (en) 1982-11-19 1982-11-19 Method for controlling outer diameter in seizer

Country Status (1)

Country Link
JP (1) JPS5994515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2422892A1 (en) * 2009-04-20 2012-02-29 Sumitomo Metal Industries, Ltd. Method of producing seamless pipe and apparatus for performing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2422892A1 (en) * 2009-04-20 2012-02-29 Sumitomo Metal Industries, Ltd. Method of producing seamless pipe and apparatus for performing the same
EP2422892A4 (en) * 2009-04-20 2014-07-16 Nippon Steel & Sumitomo Metal Corp Method of producing seamless pipe and apparatus for performing the same

Similar Documents

Publication Publication Date Title
US4006618A (en) Method of producing seamless steel tube
JP3743609B2 (en) Seamless pipe rolling apparatus and rolling control method
JPS5994515A (en) Method for controlling outer diameter in seizer
JPH0871616A (en) Device for rolling seamless tube and method for controlling rolling
EP1779939B1 (en) Rolling control method for mandrel mill, rolling control device and control program
EP2087949B1 (en) Mandrel mill and process for manufacturing seamless pipe
JP3111901B2 (en) Rolling method of seamless steel pipe
JP3633071B2 (en) Pipe rolling mill and roll position setting method
JPS6043805B2 (en) Outer diameter control method for pipe forming machine
JP3082672B2 (en) Rolling method of seamless steel pipe
JPS58196109A (en) Method for elongation rolling of steel pipe
JPH0938711A (en) Method for controlling drawing-rolling of steel pipe
US5548988A (en) Multi-stand roll train
JPH105817A (en) Method for rolling seamless steel tube
SU973199A1 (en) Production tool for longitudinal rolling of tubes
JP3705479B2 (en) Rolling control method and rolling apparatus for seamless pipe
JP2812213B2 (en) Tube rolling method
JPS5994514A (en) Method for controlling outer diameter in seizer
JPS61140317A (en) Control method of rolling of mandrel mill
JPS5978704A (en) Rolling method which prevents flawing on outside and inside surfaces in mandrel mill
JPS59130608A (en) Continuous rolling method of bottomed pipe
JP2002035818A (en) Apparatus for rolling seamless tube and method for controlling seamless tube rolling
JPH01138031A (en) Manufacture of tapered ring parts
JPH0586286B2 (en)
SU1488044A1 (en) Method of reduction in cross-sectional area of tubes with tension