JPS5994376A - Manufacture of air electrode - Google Patents

Manufacture of air electrode

Info

Publication number
JPS5994376A
JPS5994376A JP57203600A JP20360082A JPS5994376A JP S5994376 A JPS5994376 A JP S5994376A JP 57203600 A JP57203600 A JP 57203600A JP 20360082 A JP20360082 A JP 20360082A JP S5994376 A JPS5994376 A JP S5994376A
Authority
JP
Japan
Prior art keywords
air electrode
metal oxide
vapor deposition
sputtering
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57203600A
Other languages
Japanese (ja)
Inventor
Nobukazu Suzuki
鈴木 信和
Atsuo Imai
今井 淳夫
Tsutomu Takamura
高村 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57203600A priority Critical patent/JPS5994376A/en
Publication of JPS5994376A publication Critical patent/JPS5994376A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/98Raney-type electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a thin air electrode which can be subjected to heavy load discharge over a long period and has an excellent preservation performance by forming a thin film of a metal oxide having oxygen adsorbing ability on the gas- side surface of a porous electrode base by vapor deposition or sputtering. CONSTITUTION:A thin film of a metal oxide having oxygen adsorbing ability is formed on the gas-side surface of a porous electrode base having both a current collecting function and the ability to electrochemically reduce oxygen gas by vapor deposition or sputtering. For instance, after a Raney-nickel plate (200mum thickness) having a mean hole diameter of 5mum and a porosity of 80% and used as an electrode base is set on a sputtering device, a thin film of a metal oxide having oxygen adsorbing ability such as SnO2 or Cu2O is formed on one surface of the Raney-nickel plate by using the metal oxide as a target. Following that, the thus obtained plate is subjected to cathodic polarization by immersing it in 2% palladium chloride solution so as to deposit palladium in a thickness of about 0.5mum over the entire surface of the plate including the holes of the Raney-nickel plate.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、水素/酸素燃料電池、金属/空気電池、酸素
センサ用の空気電極の製造方法に関し、更に詳しく1乞
薄くても長時間にMl)重負荷放電が可能で、保存性能
にも優れた空気電極の製造方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for manufacturing an air electrode for a hydrogen/oxygen fuel cell, a metal/air battery, or an oxygen sensor. ) This invention relates to a method for producing an air electrode that is capable of heavy load discharge and has excellent storage performance.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から、各種の燃料電池、空気/亜鉛或池をはじめと
する空気金属電池やガルバニ型の酸素センサなどの空気
電極には、ガス拡散電極が用いられてきている。このガ
ス拡散電極としては、初期には均一孔径分布を有する浮
型の多孔質電極が用いられてきたが、最近では、酸素ガ
スに対する電気化学的還元能(酸素をイオン化する)を
有し、かつ集電体機能も併有する多孔質の電極本体と、
該電極本体のガス側表面に一体的に添着される薄膜状の
発水性層とから成る2層構造の電極が多用されている。
Conventionally, gas diffusion electrodes have been used as air electrodes in various fuel cells, air metal batteries including air/zinc batteries, galvanic oxygen sensors, and the like. Initially, floating porous electrodes with a uniform pore size distribution were used as gas diffusion electrodes, but recently, they have been developed to have electrochemical reduction ability for oxygen gas (ionize oxygen) and A porous electrode body that also has a current collector function,
An electrode having a two-layer structure consisting of a thin film-like water-repellent layer integrally attached to the gas-side surface of the electrode body is often used.

−この場合、電極本体は主として、酸素ガス還元JM4
圧の低いニッケルタングステン酸;パラジウム・コバル
トで被覆された炭化タングステン;ニッケル;銀;白金
;パラジウムなどを活性炭粉末のような導′這性粉末に
担持せしめて成る粉末にポリテトラフロロエチレンのよ
うな結着剤を添加した後、これを金属多孔質体、カーボ
ン多孔質体、カーボン繊維の不織布などと一体化したも
のが用いられている。
- In this case, the electrode body mainly consists of oxygen gas reduction JM4
Low-pressure nickel tungstic acid; tungsten carbide coated with palladium and cobalt; nickel; silver; platinum; palladium, etc., supported on a conductive powder such as activated carbon powder; After adding a binder, the binder is integrated with a porous metal body, a porous carbon body, a nonwoven fabric of carbon fiber, or the like.

まだ、′蹴1盈本体のガス側表面に、添着される発水性
層としては主にポリテトラフロロエチレン、テトラフロ
ロエチレン−ヘキサフロロプロピレン共重合体、エチレ
ン−テトラフロロエチレン共重合体などのフッ素樹脂、
又はポリプロピレンなどの樹脂から構成される薄膜であ
って、例えば、粒径0.2〜40μmのこれら樹脂粉末
の焼結体;これら樹脂の繊維を加熱処理して不織布化し
た紙状のもの;同じく繊維布状のもの;これら樹脂の粉
末の一部をフッ化黒鉛で置きかえたもの;これらの微粉
末を増孔剤・潤滑油などと共にロール加圧してから加熱
処理したフィルム状のもの、もしくはロール加圧後加熱
処理をしないフィルム状のもの;などの微細孔を分布す
る多孔性の薄膜である。
However, the water-repellent layer attached to the gas side surface of the main body of the shell is mainly fluorine such as polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, and ethylene-tetrafluoroethylene copolymer. resin,
Or a thin film composed of a resin such as polypropylene, for example, a sintered body of these resin powders with a particle size of 0.2 to 40 μm; A paper-like thing made by heating the fibers of these resins and making them into a nonwoven fabric; Fiber cloth-like products; parts of these resin powders replaced with fluorinated graphite; film-like products made by pressing these fine powders together with pore-forming agents, lubricating oil, etc., and then heating them, or rolls. It is a porous thin film with distributed micropores, such as a film that is not heat-treated after pressurization.

しかしながら、上記した従来構造の空気電極において、
社虜本体のガス側表面に添着されている況水准層は、電
解液に対しては不透過性であるが、空気又は空気中の水
蒸気に対しては不透過比ではない。
However, in the air electrode of the conventional structure described above,
The water layer attached to the gas side surface of the prisoner body is impermeable to electrolyte, but not to air or water vapor in the air.

そのため、例えば空気中の水蒸気が揚水性層を通過して
醒・漢本体に侵入しその結果電解液を稀釈した9、また
は逆に電解液中の水が、水蒸気として揚水性層から放散
してしまい電解液を濃縮することがある。−この結果、
電解液の濃度が変動してしまい安定した放電を長時間に
亘シ維持することができなくなるという事態を生ずる。
Therefore, for example, water vapor in the air may pass through the water-pumping layer and enter the main body, diluting the electrolyte9, or conversely, water in the electrolyte may radiate from the water-pumping layer as water vapor. Otherwise, the electrolyte may be concentrated. - As a result,
This causes a situation in which the concentration of the electrolyte fluctuates, making it impossible to maintain stable discharge for a long period of time.

空気中の炭酸ガスが揚水性層を通過して電極本体内に侵
入して活性層に吸着した場合、その部位の酸素ガスに対
する電気化学的還元能が低下して重負荷放電が阻害され
る。また、電解液がアルカリ電解液の場合には、電解液
の変質、濃度の低下又は陰極が亜鉛のときには該亜鉛陰
極の不働態化などの現象を引き起こす。更には、活性層
(電極本体の多孔質部分)で、炭酸塩を生成して孔を閉
塞し、電気化学的還元が行なわれる領域を減少させるの
で重負荷放電が阻害される。
When carbon dioxide gas in the air passes through the water-pumping layer, enters the electrode body, and is adsorbed by the active layer, the electrochemical reduction ability for oxygen gas at that location decreases, and heavy load discharge is inhibited. In addition, when the electrolyte is an alkaline electrolyte, phenomena such as deterioration of the electrolyte, decrease in concentration, or passivation of the zinc cathode when the cathode is zinc are caused. Furthermore, in the active layer (the porous part of the electrode body), carbonate is generated to block the pores and reduce the area where electrochemical reduction takes place, thereby inhibiting heavy load discharge.

このようなことは、製造した電池を長期間保存しておく
場合又は、長期間使用する場合、電池の性能が設計規準
から低下するという事態を招く0このため、空気電極の
揚水性層のガス側(空気側)に更に塩化カルシウムのよ
うな水分吸収剤又はアルカリ土類金属の水酸化物のよう
な炭酸ガス吸収剤の層を設けた構造の電池が提案されて
いる0これは、上記したような不都合な事態をある程度
防止することはできるが、ある時間経過後、これら吸収
剤が飽和状態に達しその吸収能力を喪失すれば、その効
果も消滅するのでなんら本質的な解決策ではあり得ない
If the manufactured battery is stored or used for a long period of time, the performance of the battery will deteriorate from the design standard. A battery has been proposed in which a layer of a moisture absorbent such as calcium chloride or a carbon dioxide gas absorbent such as alkaline earth metal hydroxide is further provided on the side (air side). Although it is possible to prevent such inconvenient situations to some extent, it is not an essential solution because after a certain period of time, these absorbents reach a saturated state and lose their absorption capacity, and the effect disappears. do not have.

〔発明の目的〕[Purpose of the invention]

本発明は、従来構造の以上のような欠へを解消し、空気
中の水蒸気又は炭酸ガスが電極本体内に侵入せず、しだ
がって長期に亘る重負荷放電が可能で保存性能にも優れ
た薄い空気電極の製造方法の提供を目的とする。
The present invention solves the above-mentioned deficiencies of the conventional structure, prevents water vapor or carbon dioxide from entering the electrode body, and therefore enables long-term heavy load discharge and improves storage performance. The purpose of this invention is to provide a method for manufacturing an excellent thin air electrode.

〔発明の概要〕[Summary of the invention]

本発明の空気電極は、まずその一つは酸素ガスに対する
電気化学的還元能を有し、かっ集電体機能も併有する多
孔質の電極本体と1.該電極本体のガス側表面に直接又
は多孔性膜を介して一体的に添着された酸素吸着能を有
する金属酸化物の薄膜とから成ることを特徴とする構造
であシ、その製造方法は、酸素ガスに対する電気化学的
還元能を有し、かつ、集電体機能も併有する多孔質の電
極本体のガス側表面に、蒸着法又はスパッタリング法で
、酸素吸着能を有する金属酸化物をスパッタリング源又
は蒸着源として、又反応槽ガスを酸素を10チ以下含有
する又は含有しない不活性ガスとして被着せしめて該金
属酸化物の薄膜を形成するものであり、また、他の態様
としては、孔径0.1μm以下の微細孔を有する多孔性
膜の一方の面に、蒸着法又はスパッタリング法で、酸素
吸着能を有する金属酸化物を前述と同様な方法で被着せ
しめて該金属酸化物の薄層を形成し、ついで、該多孔性
膜の他方の面を、酸素ガスに対する電気化学的還元能を
有し、かつ、集電体機能も併有する多孔質の電極本体の
ガス側表面に圧着して一体化することを特徴とするもの
である。
The air electrode of the present invention has, first of all, a porous electrode body that has an electrochemical reduction ability for oxygen gas and also has a current collector function; A thin film of a metal oxide having oxygen adsorption ability is integrally attached to the gas side surface of the electrode body directly or via a porous film, and the method for manufacturing the same includes: A metal oxide having an oxygen adsorption ability is applied to the gas side surface of the porous electrode body, which has an electrochemical reduction ability for oxygen gas and also has a current collector function, by a sputtering source using a vapor deposition method or a sputtering method. Alternatively, a thin film of the metal oxide is formed by depositing the reaction tank gas as an inert gas containing or not containing 10% or less of oxygen. A metal oxide having oxygen adsorption ability is deposited on one side of a porous film having micropores of 0.1 μm or less by vapor deposition or sputtering in the same manner as described above, and a thin layer of the metal oxide is formed. A layer is formed, and then the other surface of the porous membrane is pressed onto the gas side surface of a porous electrode body that has an electrochemical reduction ability for oxygen gas and also has a current collector function. It is characterized by being integrated.

二つ目は、酸素ガスに対する電気化学的還元能を有し、
かつ、集電体機能も併有する多孔質の電極本体のガス側
表面に、直接又は多孔性膜を介して、揚水性層及び酸素
吸着能を有する金属酸化物の薄層をこの順序で一体的に
積層した構造であることを特徴とし、その製造方法の第
1は、酸素ガスに対する電気化学的還元能を有し、かつ
、集成体機能も併有する多孔質の電極本体のガス側表面
に、蒸着法又はスパッタリング法で揚水性層を形成し、
更に、該揚水性層の上に蒸着法又はスパッタリング法で
酸素吸着能を有する金属酸化物をスパッタリング源又は
蒸着源として、又反応槽ガスを10多以下含有する又は
含有しない不活性ガスと ゛して被着せしめて該金属酸
化物の薄層を形成することを特徴とし、第2は、孔径0
.1μm以下の微細孔を有する多孔性膜の一方の面に蒸
着法又はスパッタリング法で発水性層を形成し、更に該
発水性層の上に蒸着法又はスパッタリング法で酸素吸着
能を有する金属酸化物の薄層を前述と同様な方法で形成
し、ついで、該多孔性膜の他方の面を、酸素ガスに対す
る′准気化学的還元能を有し、かつ、集′1体機能も併
有する多孔質の電極本体のガス側表面に圧着することを
特徴とするものである。
The second is that it has electrochemical reduction ability for oxygen gas,
In addition, a water-lifting layer and a thin layer of a metal oxide having oxygen adsorption ability are integrally formed in this order on the gas-side surface of the porous electrode body, which also functions as a current collector, directly or via a porous membrane. The first method for manufacturing it is to add a porous electrode to the gas side surface of the porous electrode body, which has an electrochemical reducing ability for oxygen gas and also has an assembly function. A water-lifting layer is formed by a vapor deposition method or a sputtering method,
Furthermore, a metal oxide having an oxygen adsorption ability is deposited on the water-lifting layer by vapor deposition or sputtering as a sputtering source or vapor deposition source, and an inert gas containing or not containing 10 or less gases is used as a reaction tank gas. The second feature is that the thin layer of the metal oxide is formed by depositing the metal oxide with a pore size of 0.
.. A water repellent layer is formed on one side of a porous film having micropores of 1 μm or less by vapor deposition or sputtering, and a metal oxide having oxygen adsorption ability is further formed on the water repellent layer by vapor deposition or sputtering. A thin layer of the membrane is formed in the same manner as described above, and then the other side of the porous membrane is coated with a porous membrane that has a quasi-vapor chemical reducing ability for oxygen gas and also has a concentration function. It is characterized by being pressure-bonded to the gas side surface of the electrode body.

まず、本発明の空気電極に用いる電極本体は、I′11
.素ガスを4気化学的に還元する(酸素ガスをイオン化
する)活;生能を有し、かつ、導電性の多孔質体である
。具体的には、前述したようなものの外K、銀フィルタ
ー、ラネーニッケル、銀又はニッケルの焼結体、各種の
発泡メタル、ニッケルメッキしたステンレススチール細
線の圧縮体、及びこれに金、パラジウム、銀などをメッ
キして成る金属多孔質体などをあげることができる。な
お、このとき、電極本体の細孔内で進行する′電極反応
によって生成した酸素ガスの還元性成物イオンを該細孔
(反応領域)から迅速に除去して例えば50m1v’ 
Cl/1以上の重負荷放電を円滑に継続させるために、
該電極本体の細孔の孔径は0.1〜]Oμm程度の範囲
で分布していることが好ましい。
First, the electrode body used in the air electrode of the present invention is I'11
.. It is a porous body that has the ability to chemically reduce elementary gases (ionize oxygen gas) and is electrically conductive. Specifically, outside K, silver filters, Raney nickel, sintered bodies of silver or nickel, various foamed metals, compressed bodies of nickel-plated fine stainless steel wire, and gold, palladium, silver, etc. Examples include porous metal bodies made by plating. At this time, the reducing product ions of oxygen gas generated by the electrode reaction proceeding within the pores of the electrode body are quickly removed from the pores (reaction region), for example, 50 m1v'.
In order to smoothly continue heavy load discharge of Cl/1 or more,
The pore diameters of the pores in the electrode body are preferably distributed in a range of about 0.1 to ]0 μm.

本発明の空気電極は、上記したよりな′に極本体のガス
側表面に、直接又は多孔性膜を介して、酸素吸着能を有
する金属酸化物の薄層を積層した、発水性層及び酸素吸
着能を有する金属酸化物の薄層をこの順序で積層した構
造である。
The air electrode of the present invention has a water repellent layer and an oxygen absorbing layer in which a thin layer of a metal oxide having oxygen adsorption ability is laminated on the gas side surface of the electrode body directly or via a porous membrane. It has a structure in which thin layers of metal oxides with adsorption ability are laminated in this order.

本発明において、発水性層を構成する材質としては、耐
電解液性、撥水性を有するものであればよく、実用上、
例えばポリテトラフロロエチレン(PTFE)、フロロ
エチレンプロピレン(FDP)、ポリフェニレンオキサ
イド(PPO)、ポリフェニレンサルファイド(PPS
 ) 、ポリエチレン(PE)、ポリプロピレン(PP
)及びこれらの共重合体又はこれらの混合物をあげるこ
とができる。
In the present invention, the material constituting the water repellent layer may be any material as long as it has electrolyte resistance and water repellency.
For example, polytetrafluoroethylene (PTFE), fluoroethylene propylene (FDP), polyphenylene oxide (PPO), polyphenylene sulfide (PPS)
), polyethylene (PE), polypropylene (PP
), copolymers thereof, or mixtures thereof.

また、発水性層の厚みは0.01〜1,0μmの範囲に
あることが好ましく、0.01μm未満になると形成さ
れた発水性層内にピンホールが増加してその撥水性効果
が減少し、また層全体の機械的強度も低下するので破損
等の現象が起り易すく、1.0μmを超えると電極に供
給される酸累世が不足し得られた電極の重負荷放電が困
難となる。
The thickness of the water repellent layer is preferably in the range of 0.01 to 1.0 μm; if it is less than 0.01 μm, pinholes will increase in the formed water repellent layer and the water repellent effect will decrease. Moreover, the mechanical strength of the entire layer decreases, making it easy for phenomena such as breakage to occur.If the thickness exceeds 1.0 μm, the amount of acid supplied to the electrode becomes insufficient, making it difficult for the resulting electrode to discharge under heavy load.

本発明に用いられる酸素吸着能を有する金属酸化物とけ
、金属酸化物の表面及び内部に酸素が分子(02)、又
はイオン(0□−、o”−、o2−)として吸着する性
質を有するものを指称し、具体的には、二酸化スズ(S
r102)、酸化亜鉛(ZnC1)、酸化第−g4(C
u20)、−酸化マンガン(MnO)、酸化ニッケル(
Nip) 、四三酸化コバルト(C0304)のそれぞ
れ単独又は2種以上を任意に組合せた複合体をあげるこ
とができる。これらのうち、5n02.ZnOはとくに
■用である。
The metal oxide having oxygen adsorption ability used in the present invention has the property of adsorbing oxygen as molecules (02) or ions (0□-, o''-, o2-) on the surface and inside of the metal oxide. Specifically, it refers to tin dioxide (S
r102), zinc oxide (ZnC1), -g4 oxide (C
u20), -manganese oxide (MnO), nickel oxide (
Nip) and tricobalt tetroxide (C0304), each singly or a composite of two or more of them in any combination. Among these, 5n02. ZnO is especially suitable for (2).

これらの金属1駿化物の薄層の厚みは、発水性層の場合
と同様の理由により、0.01〜1.0μmの範囲にあ
ることが好ましい。
The thickness of the thin layer of these metal monohydrides is preferably in the range of 0.01 to 1.0 μm for the same reason as in the case of the water repellent layer.

本発明においては、上記した酸素吸着能を有する金属酸
化物の薄層を単独で添着するためには、又、発水性層及
び酸素吸着能を有する金属酸化物の薄層を、電極本体の
ガス側表面にこの順序で積層するためには、次のような
方法が適用される。
In the present invention, in order to independently impregnate the thin layer of the metal oxide having the above-mentioned oxygen adsorption ability, it is necessary to add the hydrophobic layer and the thin layer of the metal oxide having the oxygen adsorption ability to the electrode body. In order to laminate the layers in this order on the side surface, the following method is applied.

前者に対する第1の方法は、電極本体のガス側表面に、
直接蒸着法又はスパッタリング法で、酸素吸着能を有す
る金属酸化物を被着せしめて所定の厚みの薄膜を形成す
る方法である。
The first method for the former is to place a
This is a method in which a metal oxide having oxygen adsorption ability is deposited using a direct vapor deposition method or a sputtering method to form a thin film of a predetermined thickness.

第2の方法は、孔径01μm以下の微細孔を有する可撓
性の多孔性膜の片面に、蒸着法又はスノ(ツタリング法
で、まず、酸素吸着能を有する金属酸化物を被着せしめ
て該金属酸化物の薄層を形成して2層構造の複合薄膜を
形成し、ついで、この複合薄膜の他方の面、すなわち、
多孔性j漠の他方の面を電極本体のガス側表面に所定の
圧力で圧着して一体化する方法である。
The second method is to first deposit a metal oxide with oxygen adsorption ability on one side of a flexible porous membrane having micropores with a pore diameter of 01 μm or less using a vapor deposition method or a sanding method. A thin layer of metal oxide is formed to form a two-layer composite thin film, and then the other side of the composite thin film, i.e.
This is a method in which the other surface of the porous membrane is pressed onto the gas side surface of the electrode body under a predetermined pressure to integrate it.

後者に対する第1の方法は、電極本体のガス側表面に、
蒸着法、スパッタリング法で、まず直接に、発水性層を
構成し得る材質を所定の厚み被着せしめて発水性層を形
成し、つ(うで、該発水性層の上に更に酸素吸着能を有
する金属酸化物を所定の厚み被着せしめて該金属酸化物
の薄層を形成する方法である。
The first method for the latter is to apply on the gas side surface of the electrode body,
By vapor deposition or sputtering, a material capable of forming a water repellent layer is first directly deposited to a predetermined thickness to form a water repellent layer, and then a layer with oxygen adsorption capacity is added on top of the water repellent layer. This method involves depositing a metal oxide having a predetermined thickness to form a thin layer of the metal oxide.

第2の方法は、孔径0.1μm以下の微細孔を有する可
例性の多孔性膜の片面に、蒸着法又はスパッタリング法
で、まず、排水性層を形成し、ついで該溌水性層の上に
酸素吸着能を有する金属酸化物の薄層を形成して多孔性
膜−溌水性層一金属酸化物の薄層から成る複合薄膜とし
、この複合薄膜の他方の面、すなわち、多孔性膜の他方
の面を電極本体のガス側表面番で所定の圧力で圧着して
一体化する方法である。
The second method is to first form a drainage layer on one side of a flexible porous membrane having micropores with a pore diameter of 0.1 μm or less by vapor deposition or sputtering, and then form a drainage layer on the water-repellent layer. A thin layer of a metal oxide having oxygen adsorption ability is formed on the surface of the porous membrane, a water-repellent layer, and a thin layer of the metal oxide to form a composite thin film. This is a method in which the other surface is crimped with the gas-side surface number of the electrode body at a predetermined pressure to integrate the electrode body.

更に、それぞれの第2の方法で用いる多孔性膜は、その
孔径が01μm以下の微細孔を有するものであればその
材質は問わない。例えば、多孔性フッ素樹脂膜(商品名
、フロロポア;住友鑞工(株)製)、多孔性ポリカーボ
ネート膜(商品名、二zクリボア;ニークリポアコーポ
ンーンヨン製)、多孔性セルローズエステル膜(商品名
、ミリポアメ/プランフィルター;ミリボアコーボレー
ンヨン製)、多孔1生ポリプロピレン1良(商品名、セ
ルガード;セラニーズ・プラスチック製)などの可撓1
生の多孔性膜をあげることができる。多孔性膜において
、その孔径が0.1μmを超えると、該多孔性膜に酸素
吸着能を有する金属酸化物薄膜、溌水性層及び酸素吸着
能を有する金属酸化物の薄膜を形成したとき、得られた
複合薄膜にピンホールが発生し易すくガって該薄膜の機
能が喪失するとともにその機械的強度も低下して破損し
易すくなる。
Furthermore, the material of the porous membrane used in each of the second methods does not matter as long as it has micropores with a pore diameter of 01 μm or less. For example, porous fluororesin membranes (trade name, Fluoropore; manufactured by Sumitomo Rinko Co., Ltd.), porous polycarbonate membranes (trade name, 2Z Kuripore; manufactured by Nikulipore Corporation), porous cellulose ester membranes ( Flexible 1, such as (trade name, Millipore Ame/Plan filter; made by Milliboa Kobo Rayon), porous 1 raw polypropylene 1 quality (trade name, Celguard; made by Celanese Plastics)
Raw porous membranes can be mentioned. In a porous membrane, when the pore diameter exceeds 0.1 μm, when a metal oxide thin film having oxygen adsorption ability, a water repellent layer, and a metal oxide thin film having oxygen adsorption ability are formed on the porous membrane, the obtained The resulting composite thin film is prone to pinholes and cracks, causing the thin film to lose its function and its mechanical strength to decrease, making it more susceptible to breakage.

このようにして製造された本発明の空気電極は常法にし
たがって電池に組込まれる。この場合、断続約数はを行
うときに、酸素ガスの電気化学的還元以外に電極構成要
素自体の一気化学的還元によって瞬間的な大電流供給を
可能とするため、酸素の酸化還元平衡電位よ)も0.4
v以内の範囲で卑な成立によって酸化状態を変化する金
属、酸化物又は水酸化物を少くとも含有する多孔質層を
、電極本体の電解液側に一体的に付設すると吉が好まし
い。この多孔質層は、軽負荷で放電中又は開路時にあっ
てはローカルセルアクションで酸素カスによって酸化さ
れ、もとの酸化状態に復帰する。
The air electrode of the present invention thus manufactured is incorporated into a battery according to a conventional method. In this case, the intermittent divisor makes it possible to supply an instantaneous large current by not only the electrochemical reduction of oxygen gas but also the chemical reduction of the electrode components themselves, so that the oxidation-reduction equilibrium potential of oxygen is ) is also 0.4
It is preferable to integrally attach a porous layer containing at least a metal, oxide, or hydroxide whose oxidation state changes by forming a base within the range of v to the electrolyte side of the electrode body. This porous layer is oxidized by oxygen scum by local cell action during discharge under a light load or when the circuit is opened, and returns to the original oxidized state.

このような多孔質層の構成材料としては、Ag2o、M
nO2、co2o3、PbO2、各種ペロブスカイト型
酸化物、スピネル型酸化物などをあげることができる。
Constituent materials for such a porous layer include Ag2o, M
Examples include nO2, co2o3, PbO2, various perovskite type oxides, and spinel type oxides.

一方、空気電極は板状で電池に組込まれるだけではなく
、円筒型電池に組込まれる場合もあるが、その場合には
、板状の空気電極を巻回して円筒とすることがある。こ
のようなときには、巻回作業で空気電極を破損させず機
械的安定性を付与するだめに、酸素吸着能を有する金属
酸化物の薄層のガス側表面には、更に、多孔性フッ素樹
脂膜、多孔性ポリカーボネート膜、多孔性セルローズエ
ステル模、多孔性ポリプロピレン膜などの多孔性薄膜を
一体的に添着しておくことが好ましい。
On the other hand, the air electrode is not only incorporated into a battery in the form of a plate, but may also be incorporated into a cylindrical battery, in which case the plate-shaped air electrode may be wound to form a cylinder. In such cases, in order to provide mechanical stability without damaging the air electrode during the winding process, a porous fluororesin film is added to the gas side surface of the thin layer of metal oxide that has oxygen adsorption ability. It is preferable to integrally attach a porous thin film such as a porous polycarbonate film, a porous cellulose ester model, or a porous polypropylene film.

〔発明の実施例〕[Embodiments of the invention]

実施例−1〜6 平均孔径5μm、多孔度80係のラネーニッケル板(厚
み200 trn )を電極本体としだ。これをスパッ
タ装aKセットして、ターゲットに各種酸素吸着能を有
する金属酸化物を用いて、ラネーニッケル板の片面に直
接上記金属酸化物の薄層を形成したOスパッタ条件は、
アルゴンガス圧力2X10 TOrr。
Examples 1 to 6 A Raney nickel plate (thickness: 200 trn) with an average pore diameter of 5 μm and a porosity of 80 was used as the electrode body. The O sputtering conditions were as follows: This was set in a sputtering equipment aK, and a thin layer of the above metal oxide was directly formed on one side of the Raney nickel plate using various metal oxides with oxygen adsorption ability as targets.
Argon gas pressure 2X10 TOrr.

高周波シカ100Wであった。金属酸化物の薄膜の厚み
はいずれも0.2μmであった。
The high frequency deer was 100W. The thickness of each metal oxide thin film was 0.2 μm.

ついで、これらを2条塩化パラジウム溶液中に浸漬して
陰分極し、ラネーニッケルの空孔内も含めて約0.5μ
mの厚みでパラジウムを析出させ本発明の空気電属J=
シだ。
Next, these were immersed in a two-line palladium chloride solution and cathodically polarized to give a polarization of about 0.5μ, including inside the pores of Raney nickel.
The pneumatic metal J= of the present invention is prepared by depositing palladium with a thickness of m.
It's shi.

実施例7〜12 平均孔径0.03μmの微細孔を均一に分布する厚み5
μmの多孔性ポリカーボネート膜(商品名:ニー。
Examples 7 to 12 Thickness 5 with uniform distribution of micropores with an average pore diameter of 0.03 μm
μm porous polycarbonate membrane (product name: Ni.

クリポア、ニュクリボアコーポレーション社製)をスパ
ッタ装置にセットし、実施例1〜6と同様な条件で該模
の片面に酸素吸着能を有する金属酸化物の薄層を形成し
た。0.2μmの薄層が形成された。ついで、この多孔
性膜の他方の面を平均孔径5μm、多孔度80%のラネ
ーニッケル板(厚み200μm)の片面に圧着した。
A thin layer of a metal oxide having oxygen adsorption ability was formed on one side of the model under the same conditions as in Examples 1 to 6. A thin layer of 0.2 μm was formed. The other side of this porous membrane was then pressure-bonded to one side of a Raney nickel plate (thickness: 200 μm) with an average pore diameter of 5 μm and a porosity of 80%.

これを2係塩化パラジウム溶液に浸漬して陰分極し、ラ
ネーニッケル板の空孔内も含めて約0.2μmのパラジ
ウムを析出させ、本発明の空気電極とした0 実施例13〜18 平均孔径5μm、多孔度80チのラネーニッケル板(厚
み200μm)を電極本体としだ。このラネーニッケル
板の片面に、アルゴンガス圧lXl0  Torr高周
e m力200 Wのスパッタ条件で、フロロエチレン
プロピレン(FEP )を被着せしめた。厚み0.2μ
mのFEP発水発水性層形5形成た。
This was immersed in a divalent palladium chloride solution and cathodically polarized to precipitate approximately 0.2 μm of palladium, including inside the pores of the Raney nickel plate, to form the air electrode of the present invention.Examples 13 to 18 Average pore diameter: 5 μm A Raney nickel plate (thickness: 200 μm) with a porosity of 80 mm was used as the electrode body. Fluoroethylene propylene (FEP) was deposited on one side of this Raney nickel plate under sputtering conditions of argon gas pressure 1X10 Torr and high frequency em power 200 W. Thickness 0.2μ
A water-repellent layer of FEP 5 was formed.

ついで、これをスパッタ装置にセットして、ターゲット
に各種酸素吸着能を有する金属酸化物を用いて、該FE
Pi水性層の上に直接上記金属酸化物の薄層を形成した
。スパッタ条件は、アルゴンガス圧力2X10 Tor
r、高周波9力100Wであった。金属ば化(吻の薄膜
の厚みはいずれも0.1μmであった。
Next, this is set in a sputtering device, and the FE is
A thin layer of the above metal oxide was formed directly on the Pi aqueous layer. The sputtering conditions are argon gas pressure 2×10 Tor
r, high frequency 9 power 100W. Metallization (the thickness of the thin film on the snout was 0.1 μm in all cases).

ついで、これらを2多塩化パラジウム溶液中に浸漬して
陰分極し、ラネーニッケルの空孔内も含めて約0.5μ
mの厚みでパラジウムを析出させ本発明の空気電極とし
た。
Next, these were immersed in a dipolypalladium chloride solution and cathodically polarized to give a polarization of about 0.5μ, including inside the pores of Raney nickel.
Palladium was deposited to a thickness of m to obtain an air electrode of the present invention.

実施例19〜24 平均孔径003μmの微細孔を均一に分布する厚み5μ
mの多孔性ポリカーボネート膜(商品名;ニュクリポア
、ニークリポアコーポレーション社製)の片面K、アル
ゴンガス圧I X 102Torr 、高周波電力20
’OWのスパッタ条件で、フロロエチレンプロピレン(
PEP)を被着せしめ、厚み0,2μmの撥水1生層を
形成した。
Examples 19 to 24 Thickness of 5 μm with uniform distribution of micropores with an average pore diameter of 003 μm
One side of a porous polycarbonate membrane (trade name: Nucleipore, manufactured by Nucleipore Corporation) with a temperature of K, argon gas pressure I x 102 Torr, high frequency power 20
Under 'OW' sputtering conditions, fluoroethylene propylene (
PEP) was applied to form a water-repellent first layer with a thickness of 0.2 μm.

ついで、該FEP溌水性層の上に実施例13〜18と同
様をτして酸素吸着能を有する金属酸化物の薄層を形成
した。0.1amの薄層が形成された。
Next, a thin layer of a metal oxide having oxygen adsorption ability was formed on the FEP water-repellent layer in the same manner as in Examples 13 to 18. A thin layer of 0.1 am was formed.

得られた複合薄膜の多孔性ポリカーボネート腹側を、平
均孔径5μm、多孔度80%のラネーニッケル&(厚み
200μm)の片面に圧着して一体化した。
The porous polycarbonate vent side of the obtained composite thin film was integrally bonded to one side of Raney nickel (thickness: 200 μm) having an average pore diameter of 5 μm and a porosity of 80%.

ついで、これを2%塩化パラジウム溶液に浸漬して陰分
極し、ラネーニッケル板の空孔内も含めて約05μmの
パラジウムを析出させ本発明の空気電極さした。
Next, this was immersed in a 2% palladium chloride solution and cathodically polarized to deposit palladium of about 0.05 μm including inside the pores of the Raney nickel plate, which was used as the air electrode of the present invention.

比較例1〜4 スパッタ反応槽中に混合ガス(酸素50%、アルゴン5
0チ)を用いた他は、実施例1〜4と同様にして各種の
酸素吸着能を有する金属酸化物の薄層(0,2μm)を
形成し、空気電極を作製した。
Comparative Examples 1 to 4 Mixed gas (oxygen 50%, argon 5%
An air electrode was produced by forming a thin layer (0.2 μm) of various metal oxides having oxygen adsorption capacity in the same manner as in Examples 1 to 4, except that 0.0-chi) was used.

比較例5〜8 スパッタ反応槽中に混合ガス(酸素50係、アルゴン、
50 % ) 上用いた他は、実施例7〜10と同様に
して各種酸素吸着能を有する金属酸化物の薄層(0,2
μIη)を形成し、空気電極を作製した0比較例9〜1
2 スパッタ反応槽中に混合ガス(酸素50係、アルゴン5
0襲)を用いた他は、実施例13〜16と同様にして各
種の酸素吸着能を有する金属酸化物の薄層(0,1μm
)を形成し、空気電極を作製しだ0比較例13〜16 スパッタ反応槽中に混合ガス(酸素50%、アルゴン5
0係)を用いた他は、実施例19〜22と同様にして各
種の酸素吸着能を有する金属酸化物の薄層(0,1μm
)を形成し、空気電極を作製した。
Comparative Examples 5 to 8 Mixed gas (oxygen 50%, argon,
Thin layers of metal oxides having various oxygen adsorption capacities (0,2
0 Comparative Examples 9 to 1 in which air electrodes were prepared by forming μIη)
2 Mixed gas (50 parts oxygen, 5 parts argon) in the sputtering reaction tank
Thin layers of metal oxides having various oxygen adsorption capacities (0.1 μm
) and prepare an air electrode.Comparative Examples 13 to 16 A mixed gas (50% oxygen, 5% argon) was placed in the sputtering reaction tank.
Thin layers of metal oxides having various oxygen adsorption capacities (0.1 μm
) was formed to produce an air electrode.

比較例17 塩化パラジウムの水溶液に活性炭粉末を懸濁した後、ホ
ルマリンで還元してパラジウム付活性炭粉末とした。つ
いで、この粉末を10〜15%のポリテトラフロロエチ
レンデイスノく−ジョンで防水処理を施し、更に結着剤
としてPTFE粉末を混合した後ロール圧延してシート
とした。このシートをニノケルネントに圧着して厚み0
.6mmの4極本体とした。次に人造黒鉛粉末にP T
 F Eディスパージョンを混合した後、那熱処理して
防水黒鉛粉末としこれに六方着剤とし、てPTFE粉末
を混合してロール圧延した。得られたシートを上記した
一極本体と圧着して厚み1.6 rsmの空気電極とし
た0比敦例18 設素ガス選択透過膜であるボリンロキサン膜(厚み50
μm)を平均孔径5μmで多孔度80%のラネーニッケ
ル板(厚み200μm)の片面に圧着した後全体を2チ
塩化パラジウム溶液中で陰分極してラネーニッケル板の
空孔内も含めて0.5μmのパラジウムを析出させ空気
電極とした。
Comparative Example 17 Activated carbon powder was suspended in an aqueous solution of palladium chloride, and then reduced with formalin to obtain palladium-attached activated carbon powder. Next, this powder was waterproofed with 10 to 15% polytetrafluoroethylene resin, mixed with PTFE powder as a binder, and rolled into a sheet. Press this sheet onto Ninokernent to make the thickness 0.
.. It was made into a 6 mm 4-pole main body. Next, P T was added to the artificial graphite powder.
After mixing the FE dispersion, it was thermally treated to obtain waterproof graphite powder, which was then mixed with hexagonal adhesive, PTFE powder, and rolled. The obtained sheet was crimped to the above-mentioned unipolar body to make an air electrode with a thickness of 1.6 rsm.
μm) was pressed onto one side of a Raney nickel plate (thickness 200 μm) with an average pore diameter of 5 μm and a porosity of 80%, and then the whole was cathodically polarized in a palladium dichloride solution to form a 0.5 μm layer including the inside of the pores of the Raney nickel plate. Palladium was deposited to form an air electrode.

比較例19 比較例17で製造した空気電極の空気側に塩化カル/ラ
ムの水蒸気吸収層を付設した。
Comparative Example 19 A water vapor absorption layer of calcium chloride/ram was attached to the air side of the air electrode manufactured in Comparative Example 17.

比較例加 平均孔径0.15μmの細孔を分布する厚み5μmの多
孔i生ポリカーボネ−14(商品名;ニークリボア、ニ
ュクリボアコーポレーション社製)の片面に、実施クリ
1〜6と同様の方法で厚み0.2μmのznoの薄膜を
形成し、他方の而を平均孔径5μm、多孔度80擾のラ
ネーニッケル板の片面に圧着した。
Comparative Example A polycarbonate material having a thickness of 5 μm and having pores with an average pore diameter of 0.15 μm distributed thereon was coated on one side of a porous raw polycarbonate 14 (trade name: Nykrybore, manufactured by Nykrybore Corporation) in the same manner as in Examples 1 to 6. A thin film of ZNO having a thickness of 0.2 μm was formed, and the other film was pressure-bonded to one side of a Raney nickel plate having an average pore diameter of 5 μm and a porosity of 80.

全1本を2チ塩化パラジウム溶液に浸漬して陰分極し、
ラネーニッケル板の空孔内も含めて約0.5μmのパラ
ジウムを析出させ空気電極とした〇比f狡例21 平均孔径0.03μmの多孔性ポリカーボネート膜を用
いたこと、ZnOの薄膜の厚みが0.005μmであっ
たことを除いては、比較例部と同様の方法で空気4面を
製造した。
All pieces were immersed in dichloropalladium solution and cathodically polarized.
Approximately 0.5 μm of palladium was deposited on the Raney nickel plate, including inside the pores, and an air electrode was made. Example 21: A porous polycarbonate membrane with an average pore diameter of 0.03 μm was used, and the thickness of the ZnO thin film was 0. Four air surfaces were manufactured in the same manner as in the comparative example section, except that the thickness was .005 μm.

比較例n Znoの薄膜の厚みが2.0μmであったことを除いて
は、比較例21と同様にして空気電極を製造した。
Comparative Example n An air electrode was manufactured in the same manner as Comparative Example 21, except that the thickness of the Zno thin film was 2.0 μm.

比較例る 平均孔径015μmの細孔を分布する厚み5μmの多孔
I生ポリカーボネート膜(商品名;ニークリボア、ニュ
クリボ了コーポレーション社製)の片面に、実施グ11
3〜18と同様にして、まず厚み02μmのPEP i
水性層をスパッタリング法で形成し、ついでこの上に厚
み0.1μmのznO薄層を実施例13〜18と同様の
スパッタリング法で形成した。得られた複合薄膜の多孔
性ポリカーボネート膜側を平均孔径51trn、多孔度
80条のラネーニッケル板(厚み200μm)の片面に
圧着して一体化した。これを2飴塩化パラジウム溶液に
浸漬して陰分極し、ラネーニッケル板の空孔内も含めて
約0.5μmのパラジウムを析出させ空気電極とした。
Comparative example Example 11 was applied to one side of a 5 μm thick porous I raw polycarbonate membrane (trade name: Nykuribore, manufactured by Nykuribore Corporation) in which pores with an average pore diameter of 015 μm are distributed.
3 to 18, first, PEP i with a thickness of 02 μm
An aqueous layer was formed by sputtering, and then a 0.1 μm thick ZnO thin layer was formed thereon by sputtering in the same manner as in Examples 13-18. The porous polycarbonate membrane side of the obtained composite thin film was pressed onto one side of a Raney nickel plate (thickness: 200 μm) having an average pore diameter of 51 trn and a porosity of 80 strips to be integrated. This was immersed in a dichloropalladium chloride solution and cathodically polarized to deposit palladium of about 0.5 μm, including inside the pores of the Raney nickel plate, to form an air electrode.

比較例部 平均孔径0.03μmの多孔性ポリカーボネート膜を用
いたこと、FDP9水性層、znoの薄層の厚みがそれ
ぞれ0.005μmであったことを除いては、比較例n
と同様の方法で空気電極を製造した。
Comparative example part Comparative example n
An air electrode was manufactured in the same manner.

比較例部 ・、F’EP 撹水性層の厚みが2.0μm、 ZnQ
O薄層の厚みが10μmであったことを除いては、比較
例部と同様にして空気電極を製造した。
Comparative example part・F'EP Water-stirring layer thickness is 2.0 μm, ZnQ
An air electrode was manufactured in the same manner as in the comparative example except that the thickness of the O thin layer was 10 μm.

比較例部 実施例13〜18のラネーニッケル板とF E P 撥
水性態とからなる複合層を2チ塩化パラジウム溶液に浸
漬して雲丹5匝し、ラネーニッケル板の空孔内も含めて
約0.5μmのパラジウムを析出させ空気戒極古した。
Comparative Example Section A composite layer consisting of the Raney nickel plates of Examples 13 to 18 and the FEP water repellent state was immersed in a dichloropalladium solution and 5 tons of sea urchin was added. 5μm of palladium was deposited and air was used for the first time.

比較例27 実施例19〜24の多孔性ポリカーボネート膜とFDP
溌水性層とからなる複合薄膜の多孔性ポリカーボネート
膜側を、平均孔径5μm、多孔度80%のラネーニッケ
ル板の片面に圧着した。これを2優塩化パラジウム溶液
に浸漬して陰分極1〜、ラネーニッケル板の空孔内も含
めて約0.5μmのパラジウムを析出させ空気′電極と
した。
Comparative Example 27 Porous polycarbonate membrane and FDP of Examples 19 to 24
The porous polycarbonate film side of the composite thin film comprising the water-repellent layer was pressed onto one side of a Raney nickel plate having an average pore diameter of 5 μm and a porosity of 80%. This was immersed in a didominant palladium chloride solution to deposit palladium of about 0.5 .mu.m including inside the pores of the Raney nickel plate during cathodic polarization 1 to form an air' electrode.

以上51個の空気電極を用い、対極を重量比で3係の水
銀アマルガム化したゲル状亜鉛、電解液を水酸化カリウ
ム、セパレータをポリアミド不織布として空気 亜鉛酸
油を組立てた。
Using the above 51 air electrodes, an air zinc acid oil was assembled using gelled zinc amalgamated with mercury at a weight ratio of 3 as the counter electrode, potassium hydroxide as the electrolyte, and polyamide nonwoven fabric as the separator.

これら51個の電池を5℃の空気中で16時間放置した
後、各イ1の′電流で5分間数社し、5分後の端子電圧
が1.0 V以下となるときの電流密度を測定した。ま
た、45°C190多の相対湿度の雰囲気中にこれら電
池を保存して電解液の漏洩状態を観察しだ。
After leaving these 51 batteries in air at 5°C for 16 hours, they were heated for several minutes at each current of 1. It was measured. In addition, these batteries were stored in an atmosphere with a relative humidity of 45° C. and 190° C., and leakage of the electrolyte was observed.

更知、保存後の電池につき、上記と同様の放電試論を行
ない、そのときの電流値の初期電流値に対する比(係)
を算出した。この算出値は、各電池の空気電極の劣化状
態の程度を表わし放電特性維持率といい得るものである
。この値の大きい1櫃はど劣化が小さいことを表わす。
After reconditioning and storage, conduct a discharge test similar to the above, and calculate the ratio of the current value to the initial current value (relationship).
was calculated. This calculated value represents the degree of deterioration of the air electrode of each battery and can be called the discharge characteristic maintenance rate. The higher the value, the lower the deterioration.

まだ、各1匝に添着されている薄膜に関し、酸素ガス透
過速度をガスクロマトグラフをガス検出手段とする等圧
法で測定し、水蒸気透過速度をJISZ0208 (カ
ップ法)に準じた方法で測定し、両者の比を(算出した
Regarding the thin film attached to each box, the oxygen gas permeation rate was measured by the isobaric method using a gas chromatograph as the gas detection means, and the water vapor permeation rate was measured by a method according to JIS Z0208 (cup method). The ratio of (calculated)

以上の結果を一括して表に示した。The above results are summarized in the table.

以下余白 〔発明の効果〕 以上の結果から明らかなように、本発明の空気電極は全
体が薄く、空気中の水蒸気又は炭酸ガスをシ極本体に侵
入させるこさがなく、そのだめ、長期に亘る一■負荷放
電/llS可能となり、また保存性能にも浚れるのでそ
の工業的両値は犬である。
The following margins [Effects of the Invention] As is clear from the above results, the air electrode of the present invention is thin as a whole and does not allow water vapor or carbon dioxide gas in the air to enter the electrode body, so that it can be used for a long period of time. Since it enables one load discharge/llS and also has a negative impact on storage performance, both industrial values are low.

なお、上記実施例の空気電極の性能評価は、電解液とし
て水酸化力IJ ”7ムを用いて行なったが、他の電解
液、例えば塩化アンモニウムや、水酸化ナトリウムや、
水酸化ルビジウム、水酸化リチウム、水酸化セシウム等
をこれら溶液に混合した電解液を用いても同様の効果が
得られることは言うまでもない。また、本発明方法にか
かる空気電極は空気−鉄忍池にも用いることができだ。
Note that the performance evaluation of the air electrode in the above example was carried out using hydroxide IJ"7M as the electrolyte, but other electrolytes such as ammonium chloride, sodium hydroxide,
It goes without saying that similar effects can be obtained by using an electrolytic solution in which rubidium hydroxide, lithium hydroxide, cesium hydroxide, etc. are mixed into these solutions. Furthermore, the air electrode according to the method of the present invention can also be used in air-iron ponds.

代理人 弁理士  則 近 憲 佑 (ほか1名)Agent Patent Attorney Noriyuki Chika (1 other person)

Claims (9)

【特許請求の範囲】[Claims] (1)酸素ガスに対する電気化学的還元能を有し、かつ
、集電体機能も併有する多孔質の電極本体のガス側表面
に、蒸着法又はスパッタリング法で、酸素吸着能を有す
る金属酸化物をスパッタリング源又は蒸着源として被着
せしめて該金属酸化物の薄膜を形成することを特徴とす
る空気電極の製造方法。
(1) A metal oxide with oxygen adsorption ability is applied by vapor deposition or sputtering to the gas side surface of a porous electrode body that has electrochemical reduction ability for oxygen gas and also has a current collector function. 1. A method for producing an air electrode, comprising depositing the metal oxide as a sputtering source or vapor deposition source to form a thin film of the metal oxide.
(2)該蒸着法又はスパッタリング法において、反応槽
ガスが酸素を10チ以下含有する又は含有しない不活性
ガスであることを特徴とする特許請求の範囲第1項記載
の空気電極の製造方法。
(2) The method for manufacturing an air electrode according to claim 1, wherein in the vapor deposition method or sputtering method, the reaction tank gas is an inert gas containing or not containing 10 or less oxygen.
(3)該電極本体が、孔径0.1〜10μmの細孔を分
布する特許請求の範囲第1項記載の空気電極の製造方法
(3) The method for manufacturing an air electrode according to claim 1, wherein the electrode body has pores having a pore diameter of 0.1 to 10 μm.
(4)該酸素吸着能を有する金属酸化物の薄膜の厚みが
、0.01〜1.0μmである特許請求の範囲第1項又
は第2項記載の空気電極の製造方法。
(4) The method for producing an air electrode according to claim 1 or 2, wherein the thin film of the metal oxide having oxygen adsorption ability has a thickness of 0.01 to 1.0 μm.
(5)孔径o、iμm以下の微細孔を有する多孔性膜の
一方の面に、蒸着法又はスパッタリング法+、酸素吸着
能を有する金属酸化物をスパッタリング源又は蒸着源と
して被着せしめて該金属酸化物の薄層を形成し、ついで
該多孔性膜の他方の面を、酸素ガスに対する電気化学的
還元能を有し、かつ、集電体機能も併有する多孔質の電
極本体のガス側表面に圧着して一体化することを特徴と
する空気電極の製造方法。
(5) A metal oxide having oxygen adsorption ability is deposited on one surface of a porous film having micropores with a pore diameter of o, iμm or less using a vapor deposition method or a sputtering method as a sputtering source or a vapor deposition source. A thin layer of oxide is formed, and then the other surface of the porous membrane is formed on the gas side surface of a porous electrode body that has an electrochemical reducing ability for oxygen gas and also has a current collector function. A method of manufacturing an air electrode characterized by crimping and integrating the air electrode with the electrode.
(6)該蒸着法又はスパッタリング法において、反応槽
ガスが酸素を10チ以下含有する又は含有しない不活性
ガスであることを特徴とする特許請求の範囲第5項記載
の空気電極の製造方法。
(6) The method for producing an air electrode according to claim 5, wherein in the vapor deposition method or sputtering method, the reaction tank gas is an inert gas containing or not containing 10 or less oxygen.
(7)該電極本体が、孔径0.1〜10μmの細孔を分
布する特許請求の範囲第5項記載の空気電極の製造方法
(7) The method for manufacturing an air electrode according to claim 5, wherein the electrode body has pores having a pore diameter of 0.1 to 10 μm.
(8)該薄層の厚みが、0.01〜1.0μmである特
許請求の範囲第5項又は第6項記載の空気電極の製造方
法0
(8) The method for producing an air electrode according to claim 5 or 6, wherein the thin layer has a thickness of 0.01 to 1.0 μm.
(9)酸素ガスに対す木霊気化学的還元能を有し、かつ
、集成体機能も併有する多孔質の電極本体のガス側表面
に、蒸着法又はスパッタリング法で発水性層を形成し、
更に、該発水性層の上〈蒸着法又はスパッタリング法で
酸素吸着能を有する金属酸化物をスパッタリング源又は
蒸着源として被着せしめて該金属酸化物の薄層を形成す
ることを特徴きする空気電極の製造方法。 α0該蒸着法又はスパッタリング法において、反応槽ガ
スが酸素を10%以下含有する又は含有しない不活性ガ
スであることを特徴とする特許請求の範囲第9項記載の
空気電極の製造防去。 圓該金属酸化物の薄層の厚みが、001〜1.0μmで
ある特許請求の範囲第9項又は第10項記載の空気電極
の製造方法。 0り該発水性層の厚みが、0.01〜1.0μmである
特許請求の範囲第9項記載の空気゛電極の製造方法。 03)該電極本体が、孔径0.1〜10μmの細孔を分
布する特許請求の範囲第9項記載の空気電極の製造方法
。 114)孔径0.1μm以下の微細孔を有する多孔性膜
の一方の面に蒸着法又はスパッタリング法で発水性層を
形成し、更に該発水性層の上に蒸着法又はスパッタリン
グ法で酸素吸着能を有する金属酸化物をスパッタリング
源又は蒸着源として被着せしめて該金属酸化物の薄層を
形成し、′”ついで、該多孔性膜の他方の面を、酸素ガ
スに対する電気化学的還元能を有し、かつ、集電体機能
も併用する多孔質の電極本体のガス側表面に圧着するこ
とを特徴とする空気電極の製造方法。 a5)該蒸着法又はスパッタリング法において、反応槽
ガスが酸素を10チ以下含有する又は含有しない不活性
ガスであることを特徴とする特許請求の範囲第14項記
載の空気電極の製造方法。 a6)該金属酸化物の薄層の厚みが、0.01〜1.0
μmである特許請求の範囲第14項又は第15項記載の
空気電極の製造方法。 aη該溌水性層の厚みが、0.01〜1,0μmである
特許請求の範囲第14項記載の空気電極の製造方法。 嶽該電極本体が、孔径0.1〜10μmの細孔を分布す
る特許請求の範囲第14項記載の空気電極の製造方法0
(9) Forming a water-repellent layer by vapor deposition or sputtering on the gas side surface of the porous electrode body, which has a chemical reduction ability for oxygen gas and also has an aggregate function;
Further, on the water repellent layer, a metal oxide having oxygen adsorption ability is deposited as a sputtering source or vapor deposition source by a vapor deposition method or a sputtering method to form a thin layer of the metal oxide. Method of manufacturing electrodes. α0 In the vapor deposition method or the sputtering method, the reaction tank gas is an inert gas containing or not containing 10% or less of oxygen. 11. The method for producing an air electrode according to claim 9 or 10, wherein the thin layer of the metal oxide has a thickness of 0.001 to 1.0 μm. 10. The method for producing an air electrode according to claim 9, wherein the water repellent layer has a thickness of 0.01 to 1.0 μm. 03) The method for manufacturing an air electrode according to claim 9, wherein the electrode body has pores having a pore diameter of 0.1 to 10 μm. 114) A water repellent layer is formed on one side of a porous membrane having micropores with a pore diameter of 0.1 μm or less by a vapor deposition method or a sputtering method, and an oxygen adsorption ability is further formed on the water repellent layer by a vapor deposition method or a sputtering method. A thin layer of the metal oxide is deposited as a sputtering or vapor deposition source, and the other side of the porous membrane is then electrochemically reduced to oxygen gas. A method for producing an air electrode, characterized in that the air electrode is pressure-bonded to the gas side surface of a porous electrode body that also serves as a current collector. a5) In the vapor deposition method or sputtering method, the reaction tank gas is oxygen. The method for manufacturing an air electrode according to claim 14, characterized in that the inert gas contains or does not contain 10 or less. a6) The thickness of the thin layer of the metal oxide is 0.01 ~1.0
The method for manufacturing an air electrode according to claim 14 or 15, wherein the air electrode is μm. 15. The method of manufacturing an air electrode according to claim 14, wherein the water repellent layer has a thickness of 0.01 to 1.0 μm. The method for producing an air electrode according to claim 14, wherein the electrode body has pores having a pore diameter of 0.1 to 10 μm.
JP57203600A 1982-11-22 1982-11-22 Manufacture of air electrode Pending JPS5994376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57203600A JPS5994376A (en) 1982-11-22 1982-11-22 Manufacture of air electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57203600A JPS5994376A (en) 1982-11-22 1982-11-22 Manufacture of air electrode

Publications (1)

Publication Number Publication Date
JPS5994376A true JPS5994376A (en) 1984-05-31

Family

ID=16476738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57203600A Pending JPS5994376A (en) 1982-11-22 1982-11-22 Manufacture of air electrode

Country Status (1)

Country Link
JP (1) JPS5994376A (en)

Similar Documents

Publication Publication Date Title
US4599157A (en) Oxygen permeable membrane
US4483694A (en) Oxygen gas permselective membrane
US4906535A (en) Electrochemical cathode and materials therefor
AU779425B2 (en) Electrochemical electrode for fuel cell
US5053375A (en) Electrochemical cathode and materials therefor
US3595700A (en) Method of making electrode
US5032473A (en) Electrochemical cathode
JPS5854564A (en) Porous catalyst layer for gas diffusion electrode
JPS5994376A (en) Manufacture of air electrode
JPS6051505A (en) Gas selective composite membrane
WO1992021156A1 (en) Improved electrochemical electrode
JPS6044003A (en) Oxygen gas permselective composite membrane and air electrode comprising the same
JPS58225573A (en) Air electrode and its production method
JPS58225571A (en) Air electrode and its production method
JPS5994377A (en) Manufacture of air electrode
JPS5954175A (en) Manufacture of air electrode
JPS58225575A (en) Air electrode and its production method
JPS5933762A (en) Air electrode and its manufacture
JPS6122570A (en) Manufacture of air electrode
JPS58225570A (en) Air electrode and its production method
JPS58225572A (en) Air electrode and its production method
JPS60133675A (en) Air electrode
JPS60180063A (en) Air electrode
JPS5958759A (en) Air electrode and its manufacture
JPS58225574A (en) Air electrode and its production method