JPS5993834A - Manufacture of cold rolled steel sheet with superior press formability - Google Patents

Manufacture of cold rolled steel sheet with superior press formability

Info

Publication number
JPS5993834A
JPS5993834A JP57201324A JP20132482A JPS5993834A JP S5993834 A JPS5993834 A JP S5993834A JP 57201324 A JP57201324 A JP 57201324A JP 20132482 A JP20132482 A JP 20132482A JP S5993834 A JPS5993834 A JP S5993834A
Authority
JP
Japan
Prior art keywords
rolling
steel
hot
rolled steel
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57201324A
Other languages
Japanese (ja)
Other versions
JPH02416B2 (en
Inventor
Takashi Obara
隆史 小原
Susumu Sato
進 佐藤
Takashi Sakata
敬 坂田
Minoru Nishida
稔 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57201324A priority Critical patent/JPS5993834A/en
Publication of JPS5993834A publication Critical patent/JPS5993834A/en
Publication of JPH02416B2 publication Critical patent/JPH02416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain easily a cold rolled steel sheet with high deep drawability by a continuous annealing method by restricting the total amount of Ni, Cr and Cu in a dead soft steel having a specified composition and conditions during the hot rolling of a slab of the steel. CONSTITUTION:A molten steel consisting of, by weight, <=0.002% C, 0.05-0.20% Mn, 0.010-0.100% sol. Al, 0.06-0.20% Ni+Cr+Cu and the balance Fe is continuously cast to form a slab. The slab is hot rolled at >=95% total draft in finish rolling or at >=44% average draft at each stand, and the resulting hot rolled steel strip is coiled at <=580 deg.C. The strip is pickled, cold rolled, and continuously annealed to obtain a cold rolled steel sheet with superior press formability.

Description

【発明の詳細な説明】 本発明はプレス成形性にすぐれた冷延鋼板の製造方法に
係り、特に深絞り性、異方性のすぐれた冷延鋼板の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cold rolled steel sheet with excellent press formability, and particularly to a method for manufacturing a cold rolled steel sheet with excellent deep drawability and anisotropy.

従来、絞り性、延性の良好な冷延鋼板は箱焼鈍法によシ
製造されている。しかし箱焼鈍法は、処理に数日を要す
るばかりでなく、コイル状態で熱処理されるためコイル
の半径方向で加熱・冷却速度が異な一す、コイル全体に
わたって均−彦利質を得ることが困難であった。連続焼
鈍法を用いると、箱焼鈍法の持つこれらの欠点を解消す
ることが可能である。しかし連続焼鈍法では、急速加熱
急速冷却処理を伴うため、結晶粒の成長性が悪く、また
鋼中に固溶しているCの析出が進まないため硬質で絞り
性・耐時効性に劣る。連続焼鈍法のこれらの欠点を解消
するために、熱間圧延時高温で巻取ることにより、絞り
性に有利な方位に粒成長を促進させ、かつ連続焼鈍中急
速冷却後に300〜500℃で数秒〜数分の過時効処理
を行うことにより、未析出の固溶Cの析出を促進させ、
時効性を改善する方法が提案されているが、熱延時の高
温巻取は酸洗性の低下を伴い、かつこの方法により製造
された鋼板は、絞り性、延性、耐熱性の点で未だ箱焼鈍
材の材質よシ劣る。
Conventionally, cold-rolled steel sheets with good drawability and ductility have been manufactured by box annealing. However, the box annealing method not only takes several days to complete the process, but also has difficulty in obtaining uniform heat and strength over the entire coil, as the heating and cooling rates differ in the radial direction of the coil as the coil is heat treated. Met. By using the continuous annealing method, it is possible to eliminate these drawbacks of the box annealing method. However, since continuous annealing involves rapid heating and rapid cooling, the growth of crystal grains is poor, and the precipitation of C dissolved in solid solution in the steel does not progress, resulting in hardness and poor drawability and aging resistance. In order to eliminate these drawbacks of the continuous annealing method, by winding at a high temperature during hot rolling, grain growth is promoted in a direction that is advantageous for drawability, and after rapid cooling during continuous annealing, rolling at 300 to 500 °C for several seconds By performing over-aging treatment for ~ several minutes, precipitation of unprecipitated solid solution C is promoted,
A method to improve aging properties has been proposed, but high-temperature coiling during hot rolling is accompanied by a decline in pickling properties, and steel sheets produced by this method still have poor drawability, ductility, and heat resistance. Inferior to annealed material.

一方、連続焼鈍材の耐時効性を悪化させている主原因が
固溶しているCということから、C含有量を0.005
0%以下に低減した極低炭素鋼の素材を用いて耐時効性
を向上させる方法が提案されている。また極低炭素鋼を
用いて深絞り性の良好な鋼板を製造する代表的技術とし
て特開昭55−58333がある。同公報の実施例によ
ればC:0.0020%の鋼を1100℃に加熱し熱延
仕上温度865〜870℃、巻取温度550〜610℃
の範囲で圧延し急速加熱で連続焼鈍することによシラン
クツオード値(下値)が175〜2.44の鋼板が得ら
れるとしている。しかしこのような製造条件では下値は
比較的高いものの、異方性が大きくなることは周知の享
実である。
On the other hand, since the main cause of deteriorating the aging resistance of continuously annealed materials is solid solution C, the C content was reduced to 0.005.
A method has been proposed to improve aging resistance using ultra-low carbon steel material with carbon content reduced to 0% or less. Furthermore, Japanese Patent Application Laid-open No. 58333/1983 is a representative technique for producing steel sheets with good deep drawability using ultra-low carbon steel. According to an example in the same publication, steel with C: 0.0020% is heated to 1100°C, hot-rolled at a finishing temperature of 865-870°C, and a coiling temperature of 550-610°C.
It is said that a steel plate with a silanc tsode value (lower value) of 175 to 2.44 can be obtained by rolling in a range of 1 and continuously annealing with rapid heating. However, it is a well-known fact that under such manufacturing conditions, although the lower value is relatively high, the anisotropy increases.

そこで、極低炭素鋼の大きな異方性を改善する目的でN
b、Ti等の炭窒化物形成元素を添加する方法も提案さ
れているが、炭窒化物が表面欠陥の原因となるという重
大な欠点がある。
Therefore, in order to improve the large anisotropy of ultra-low carbon steel, N
A method of adding carbonitride-forming elements such as Ti, Ti, etc. has also been proposed, but this method has the serious drawback that carbonitrides cause surface defects.

本発明の目的は上記従来技術の問題点を解決し、連続焼
鈍法によるプレス成形性にすぐれた冷延鋼板の製造方法
を提供するにある2゜ 本発明の要旨とするところは次のとおシである。
The purpose of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for producing cold rolled steel sheets with excellent press formability by continuous annealing. It is.

すなわち、重量比にて、C:0.002%以下、Mn:
0.05〜0.20%、5otAt: o、ol、0〜
0100%、(Ni+Cr+Cu): 0.06〜0.
20%を含有し残部がFeおよび不可避的不純物よシ成
る溶鋼を連続鋳造によシスラブとする工程と、前記スラ
ブを仕上圧延の全圧下率が95%以上もしくは各スタン
ドの平均圧下率が44%以上とし580℃以下で巻取る
熱延工程と、前記熱延銅帯を酸洗、冷延後連続焼鈍する
工程と、を有して成ることを特徴とするプレス成形性に
すぐれた冷延鋼板の製造方法である。
That is, in terms of weight ratio, C: 0.002% or less, Mn:
0.05~0.20%, 5otAt: o, ol, 0~
0100%, (Ni+Cr+Cu): 0.06-0.
A step in which molten steel containing 20% Fe and unavoidable impurities is converted into a cis slab by continuous casting, and the slab is finished rolled with a total reduction rate of 95% or more or an average reduction rate of each stand of 44%. A cold-rolled steel sheet with excellent press formability, characterized by comprising a hot-rolling step of winding at 580° C. or lower, and a step of pickling the hot-rolled copper strip, continuously annealing it after cold rolling. This is a manufacturing method.

本発明者らは化学成分と熱間圧延条件を限定することに
よシ深絞シ性の良好な鋼板を容易に製造し得ることを見
い出した。この結果を得るに至った基礎実験について説
明する。すなわち、@1表に示す化学成分の鋼を底吹転
炉とRH脱ガス装置により溶製し連続鋳造機でスラブと
しだ後1.100℃に再加熱し、4段の粗圧延機と7段
の仕上圧延機よシなる熱間圧延装置にて第2表に示す熱
間圧延条件にて板Jii 3.2 trysの熱延鋼帯
とした。すなわち仕上厚み3.2咽、圧延仕上温度78
0℃、巻取温度550℃を一定とし、シートパーの厚み
を変えて仕上圧延の全圧下率を変え、供試材A5におい
ては7段の仕上圧延機のうち後段の2スタンドを使用せ
ず前段の5スタンドのみで仕上圧延を行い、各スタシド
当りの圧下率を高めだ。
The present inventors have discovered that by limiting the chemical composition and hot rolling conditions, it is possible to easily produce a steel sheet with good deep drawing properties. The basic experiment that led to this result will be explained. In other words, steel with the chemical composition shown in Table 1 is melted using a bottom blowing converter and an RH degassing device, cast into a slab using a continuous casting machine, reheated to 1.100°C, and then passed through a four-high rough rolling mill and a seven-stage rough rolling mill. A hot-rolled steel strip of Jii 3.2 tries was produced using a hot rolling apparatus such as a high-speed finishing mill under the hot rolling conditions shown in Table 2. That is, the finishing thickness is 3.2mm, and the rolling finishing temperature is 78mm.
0°C and the winding temperature were kept constant at 550°C, and the total rolling reduction rate of finish rolling was changed by changing the thickness of the sheet par. For sample material A5, the latter two stands of the seven-stage finishing mill were not used, and the first stage was used. Finish rolling was performed using only five stands, increasing the rolling reduction per stand.

次にこれらの熱延鋼帯を酸洗後0.8咽に冷延し、75
0℃×30秒の短時間焼鈍後、0,8%の調質圧延を行
い、その材質を調査し、その結果を同じく第2表に示し
た。調査において降伏応力(YS )、抗張力(TS)
、伸び(Ez)およびランクフォード値(下値)はいず
れも圧延方向(ハ)と圧延方向に45度(D)、90度
(C)とを測定し、それぞれの平均値バした。
Next, these hot rolled steel strips were pickled and cold rolled to a thickness of 0.8 mm.
After short-time annealing at 0° C. for 30 seconds, 0.8% temper rolling was performed, and the material properties were investigated. The results are also shown in Table 2. In the investigation yield stress (YS), tensile strength (TS)
, elongation (Ez), and Lankford value (lower value) were all measured in the rolling direction (c), at 45 degrees (D), and at 90 degrees (C) in the rolling direction, and their average values were calculated.

第2表から供試材屋1は極低炭素鋼Aを通常の−圧下率
で圧延したものであって、この材質はEt290MPa
  と比較的良好であったが、Et、r値の異方性はΔ
Et:6%、△r = 0.8と非常に大きく絞シ用鋼
板としては使用できなかった。
From Table 2, sample material 1 is made of ultra-low carbon steel A rolled at a normal rolling reduction, and this material has an Et of 290 MPa.
However, the anisotropy of Et and r values was Δ
Et: 6%, Δr = 0.8, which was very large and could not be used as a steel plate for drawing.

供試材A2はA1と同様にA鋼を使用し、シートバーの
厚みを90fIrlnとし強圧下した以外の条件はすべ
てA1と同一の場合であって、&1に比して下値が若干
改善されたものの、△Et、△rは全く改善されなかっ
た。
Sample material A2 used A steel like A1, the thickness of the sheet bar was 90fIrln, and all conditions were the same as A1 except for strong reduction, and the lower value was slightly improved compared to &1. However, ΔEt and Δr were not improved at all.

供試材53、A4はCu、Nj、Crを多く含有するB
鋼をA3はA1と同一の通常圧延、A4は扁2と同一の
高圧下率の条件で圧延した場合である。B鋼を通常の熱
延条件で圧延した洗3はAI、A2とほぼ同様に△Et
、Δrが非常に犬きがった。
Sample material 53, A4 is B containing a large amount of Cu, Nj, and Cr.
Steel A3 is rolled under the same normal rolling conditions as A1, and steel A4 is rolled under the same high rolling reduction conditions as Flat 2. Arai 3, which is obtained by rolling B steel under normal hot rolling conditions, has △Et almost the same as AI and A2.
, Δr was very doglike.

しかしB鋼を全圧下率96%の高圧下率で圧延した屋4
は△El、△rが非常に小さくなり、Etも良好であっ
た。
However, steel B was rolled at a high reduction rate of 96%.
△El and △r became very small, and Et was also good.

次に供試材/f65はB鋼をシートバー厚み58關から
前記の如く前半5スタンドのみで仕上圧延したので各ス
タンドあたシの圧下率は平均44%と高く、この場合も
異方性△Et、△rの改善が認められた。
Next, for the sample material/f65, B steel was finish rolled from a sheet bar thickness of 58 mm using only the first half of the 5 stands as described above, so the rolling reduction of each stand was as high as 44% on average, and in this case as well, the anisotropic Improvements in ΔEt and Δr were observed.

また、Cが多(Ni%Cr%Cuともに少ないC鋼を高
圧下率で圧延した供試材A6は下値が低く異方性も大き
いためプレス用には適さなかった。
In addition, sample material A6, which was obtained by rolling a C steel with a high C content (both Ni%Cr%Cu) at a high reduction rate, had a low reduction value and large anisotropy, so it was not suitable for press use.

上記の如く、B鋼のようにCが非常に少なくかつCu、
Ni、Cr等を適当に含有した極低炭素鋼を高圧下率で
熱延し、冷延後連続焼鈍するとEt、r値が高く、かつ
異方性の非常に小さいプレス用に適した鋼板を製造でき
ることが明らかとなった。
As mentioned above, like B steel, C is very low and Cu,
If ultra-low carbon steel containing appropriate amounts of Ni, Cr, etc. is hot-rolled at a high reduction rate and then continuously annealed after cold-rolling, a steel plate with high Et and r values and very small anisotropy suitable for pressing can be obtained. It has become clear that it can be manufactured.

これらの基礎実験に基づき、B鋼の組成を参考にして多
種類の極低炭素鋼について同様の実験を繰返した結果、
次の如く鋼成分を限定することによシ、熱延高圧下仕上
の効果が顕著になシ、すぐれた深絞り用冷延鋼板が得ら
れることが判明した。
Based on these basic experiments, we repeated similar experiments on many types of ultra-low carbon steel using the composition of Steel B as a reference.
It has been found that by limiting the steel components as described below, the effect of the hot rolling high-rolling finish is remarkable and an excellent cold rolled steel sheet for deep drawing can be obtained.

次に本発明の冷延鋼板の成分を限定した理由につき説明
する。
Next, the reason for limiting the components of the cold rolled steel sheet of the present invention will be explained.

Cニ ーCは前記の基礎実験結果からも分かるように、Cが多
いと深絞シ性が劣化し、かつ高圧下仕上の効果が消失す
るので、Cは少ない方が好ましく、特にプレス加工に適
した高い下値を得るためには、0.0(12X以下に限
定する必要がある。
As can be seen from the above basic experiment results, if there is too much C, the deep drawing properties will deteriorate and the effect of high-pressure finishing will disappear, so it is better to have less C, and it is especially suitable for press working. In order to obtain a high lower value, it is necessary to limit the value to 0.0 (12X or less).

Mn : MnはSによる熱間脆性を防止するため0.05%以上
を必要とするが、0.20Xを越える含有は材質を劣化
させるので、0.05〜0.20Xの範囲に限定した。
Mn: 0.05% or more of Mn is required to prevent hot embrittlement caused by S, but since a content exceeding 0.20X deteriorates the material, it was limited to a range of 0.05 to 0.20X.

5olAt: 5otktはNの固定に有用な元素であシ、0.010
%未満ではその効果が々く、0.100%を越える含有
は表面性状を害するので0.010〜0、100%の範
囲に限定した。
5olAt: 5otkt is an element useful for fixing N, 0.010
If the content is less than 0.1%, the effect will be too great, and if the content exceeds 0.100%, the surface quality will be impaired, so the content was limited to a range of 0.010 to 0.100%.

Cu+Ni+Cr: Cu、Ni、Crは耐候性、耐食性等の表面性状を改善
する目的で添加されることがあっても、深絞シ性には何
ら積極的意味を持たない不純物として考えられてきた。
Cu+Ni+Cr: Although Cu, Ni, and Cr are sometimes added for the purpose of improving surface properties such as weather resistance and corrosion resistance, they have been considered as impurities that have no positive effect on deep drawing properties.

しかし本発明鋼の如くcが非常に少なく、かつ炭窒化物
形成元素を含有しない鋼においては、Cu、Ni、Cr
等の炭窒化物を形成しない元素の役割が相対的に重要釦
なってくる。すなわち、材質を向上させるには、C,N
、M、 n等を低減することが有効であることが知られ
ておシ、主要な合金元素であるMnも本発明においては
0.20%以下と非常に低い水準にある。この−場合、
鋼は高温で非常に再結晶し易く、結晶粒は粗大化し、絞
り性に好ましくない(200)集合組織が発達する。本
発明の如く極低炭素においては非炭窒化物形成元素であ
るCu、Ni、Crの作用はいまだに明確ではないが、
これら元素に共通することは、粒内に均一に固溶しかつ
下値を劣化させないことである。これら元素の添加によ
シ熱間加工時の歪は熱延時に動的に開放されにくくなり
、不均一変形の防止、再結晶の抑制が達成され、極低炭
素鋼の材質を改善するものと考えられる。Cu、Ni、
Crの効果はいずれも同程度であり、従ってこれら元素
の合計量が重要になってくる。通常極低炭素鋼において
はCu、Ni、Crはそれぞれ0.015%未満であり
、3成分の合計で多くても005%以下である。しかじ
熱延圧下率を高くすることによる材質特に異方性改善効
果は(Cu+N i+c r )で0.06%程度から
認められ、好ましくは0.08%以上の含有が必要であ
る。また合計で0.20%を越えると硬質化するので、
(Cu+Ni+Cr ) テ0.06〜0.02%の範
囲に限定した。
However, in steels like the steel of the present invention, which have a very low c content and do not contain carbonitride-forming elements, Cu, Ni, Cr
The role of elements that do not form carbonitrides, such as carbonitrides, becomes relatively important. In other words, to improve the material quality, C, N
It is known that it is effective to reduce , M, n, etc., and Mn, which is a main alloying element, is also at a very low level of 0.20% or less in the present invention. In this case,
Steel is highly susceptible to recrystallization at high temperatures, resulting in coarse grains and the development of a (200) texture that is unfavorable for drawability. Although the effects of non-carbonitride-forming elements Cu, Ni, and Cr are still unclear in ultra-low carbon as in the present invention,
What these elements have in common is that they are uniformly dissolved in solid solution within the grains and do not deteriorate the lower value. The addition of these elements makes it difficult for strain during hot working to be released dynamically during hot rolling, thereby preventing uneven deformation and suppressing recrystallization, thereby improving the material quality of ultra-low carbon steel. Conceivable. Cu, Ni,
The effects of Cr are the same in all cases, so the total amount of these elements is important. Usually, in ultra-low carbon steel, Cu, Ni, and Cr are each less than 0.015%, and the total of the three components is at most 0.005% or less. However, the effect of improving the material quality, especially the anisotropy, by increasing the hot rolling reduction ratio can be seen from about 0.06% (Cu+N i + cr), and preferably the content should be 0.08% or more. Also, if the total amount exceeds 0.20%, it will become hard, so
(Cu+Ni+Cr) Te was limited to a range of 0.06 to 0.02%.

次に上記の本発明の限定成分を有する冷延鋼板の製造条
件について説明する。
Next, the manufacturing conditions of the cold-rolled steel sheet having the above-mentioned limiting ingredients of the present invention will be explained.

まず、製鋼法については特に限定しないがC:0.0’
02%以下とするには、転炉および脱ガス装置との組合
せが有効である。スラブは均一性を必要とするので連続
鋳造によシ製造する。スラブを連続的に熱間圧延する際
の仕上圧延条件は本発明においてきわめて重要である。
First, the steel manufacturing method is not particularly limited, but C: 0.0'
A combination of a converter and a degassing device is effective in achieving a reduction of 0.02% or less. Since the slab requires uniformity, it is manufactured by continuous casting. Finish rolling conditions when continuously hot rolling a slab are extremely important in the present invention.

すなわち、従来の熱延鋼板あるいは冷延鋼板の素材は脱
ガス処理を行わずに製造できるC:0.02%以上の鋼
が主体であり、当然のことながら、熱間圧延、冷間圧延
の条件はともに低炭素鋼を対象として設計されていた。
In other words, the material for conventional hot-rolled steel sheets or cold-rolled steel sheets is mainly steel with C: 0.02% or more, which can be manufactured without degassing treatment, and naturally, the material for hot-rolled and cold-rolled steel sheets is Both conditions were designed for low carbon steel.

しかるに、極低炭素鋼は低炭素鋼と異なる種々の挙動を
示し、特に熱間圧延時に圧延歪が解放され易く、再結晶
し易いため、オーステナイト粒径そしてそれに対応する
フェライト結晶粒径が太き点にあった。
However, ultra-low carbon steel exhibits various behaviors that are different from low carbon steel, and in particular, rolling strain is easily released during hot rolling and recrystallization is easy, so the austenite grain size and the corresponding ferrite grain size are thicker. It was on point.

イタ低炭素鋼において熱延圧下率を高くすることは板厚
中心部まで十分歪みが加わシ、かつその歪みが大きくな
沙細粒化することを意味し、その結果良好な下値と小さ
な異方性が得られるものと考えられる。
Increasing the hot rolling reduction rate in low carbon steel means that sufficient strain is applied to the center of the sheet thickness, and the strain becomes large and the grains become finer, resulting in a good lower value and small anisotropy. It is thought that this provides a sense of gender.

この知見に基づき次の基礎実験を行った。すなわち第1
表に示しだA鋼とB鋼について、シートバーの厚さ以外
は第2表に示す供試材扁2および扁4と同一の熱間圧延
条件で圧延し、0.8 tnnの冷延鋼板とj〜、熱間
圧延の全仕上圧下率とΔrおよび下値との関係を調査し
その結果を第1図および第2図に示した。
Based on this knowledge, we conducted the following basic experiment. That is, the first
The A steel and B steel shown in the table were rolled under the same hot rolling conditions as the test materials Flat 2 and Flat 4 shown in Table 2 except for the thickness of the sheet bar, and a cold rolled steel plate of 0.8 tnn was obtained. The relationship between the total finishing reduction ratio of hot rolling, Δr, and the lower value was investigated, and the results are shown in FIGS. 1 and 2.

第1図および第2図から△r−と下値の高圧下率による
改善効果はCu、Ni、Cr等の合金元素が非常に少な
いA鋼ではあまり認められず、合金元素をおる程度含ん
だB鋼において顕著であることが分かる。jた、合金元
素をある程度含有したB鋼は仕上全圧下率が95%以上
でΔrおよび下値の顕著な改善が認められるので、本発
明においては、仕上圧延における全圧下率を95%以上
に限定した。
From Fig. 1 and Fig. 2, the improvement effect of high rolling reduction on the lower value of △r- is not so noticeable in steel A, which contains very few alloying elements such as Cu, Ni, and Cr, and in steel B, which contains alloying elements to some extent. It can be seen that this is noticeable in steel. In addition, in steel B containing alloying elements to some extent, significant improvements in Δr and lower values are observed when the total rolling reduction in finish is 95% or more, so in the present invention, the total rolling reduction in finish rolling is limited to 95% or more. did.

なお仕上圧延における高圧下は、各スタンドあたシの圧
下率の平均圧下率を44%以上にすることによっても全
圧下率を95%以上に限定したと同様に△rおよび下値
の改善効果が認められる。
In addition, with regard to high rolling reduction in finish rolling, setting the average rolling reduction ratio of each stand perforation to 44% or more has the same effect of improving △r and lower value as limiting the total rolling reduction ratio to 95% or more. Is recognized.

すなわち本発明の限定成分範囲内の鋼を種々溶製し熱間
圧延するにあたって、シートバー厚みまたは仕上圧延機
使用スタンド数を変えて各スタンドの平均圧下率を変え
次に0.8調に冷間圧延してΔrおよび下値を調査し、
その結果を第3図、第4図に示した。第3図第4図から
平均圧下率を44%以上にすることによシ異方性が少な
くなり下値圧下率44%以上に限定した。
That is, when melting and hot rolling various types of steel within the limited composition range of the present invention, the average rolling reduction of each stand was changed by changing the sheet bar thickness or the number of stands used in the finishing mill, and then cooling to 0.8. Inter-rolling and investigating Δr and lower value,
The results are shown in FIGS. 3 and 4. From FIG. 3 and FIG. 4, the anisotropy is reduced by setting the average rolling reduction to 44% or more, so the lower value rolling reduction is limited to 44% or more.

スラブ加熱温度は限定しないが、スラブ、加熱温度が低
い方が材質は良好になり、特に1150℃以下では良好
な結果が得られた。極低炭素鋼においては、熱延温度に
よる材質変化が小さいので熱延温度は再結晶温度以上、
900℃以下であればよく特に限定しない。巻取温度は
高くなると巻取径粒成長が進行し粗大化するので粒成長
が起こらない580℃以下に限定した。
Although the heating temperature of the slab is not limited, the lower the heating temperature of the slab, the better the quality of the material, and especially good results were obtained at 1150° C. or lower. In ultra-low carbon steel, the change in material properties due to hot rolling temperature is small, so the hot rolling temperature is higher than the recrystallization temperature.
There is no particular limitation as long as the temperature is 900°C or less. The winding temperature was limited to 580° C. or lower, at which no grain growth occurs, because as the winding temperature increases, grain growth progresses and coarsens the winding diameter.

これら熱延鋼帯を酸洗した後の冷間圧延については特に
限定しないが、圧下率が高い方が下値が高くなシ良好な
材質が得られる。冷延後の焼鈍は加熱速度の遅い箱焼鈍
では異方性が大きくなるので、本発明の特徴を生かすた
め連続焼鈍を行う。
Cold rolling after pickling these hot rolled steel strips is not particularly limited, but the higher the rolling reduction, the higher the reduction value and the better the material quality can be obtained. When annealing after cold rolling, box annealing with a slow heating rate increases anisotropy, so continuous annealing is performed to take advantage of the features of the present invention.

連続焼鈍は連続型焼鈍炉のみならず溶融亜鉛めっき法の
ようなライン内焼鈍方式の表面処理工程によっても、す
ぐれた材質のものが得られる。
Continuous annealing can produce excellent materials not only in a continuous annealing furnace but also in an in-line annealing surface treatment process such as hot-dip galvanizing.

実施例 第3表に示す組成の鋼を転炉およびRH脱ガス装置を用
いて溶製し、連続鋳造にてスラブとしスラブ手入後厚み
40〜90調のシートバーに粗圧延し、次に7スタンド
の仕上圧延機にて第4表に示す仕上圧延条件にて3.2
調の熱延鋼帯とした。
Example Steel with the composition shown in Table 3 was melted using a converter and an RH degassing device, made into a slab by continuous casting, and after the slab was treated, it was roughly rolled into a sheet bar with a thickness of 40 to 90 mm. 3.2 under the finishing rolling conditions shown in Table 4 on a 7-stand finishing mill.
It was made of hot-rolled steel strip.

なお第3表、第4表において本発明の限定条件を満足し
ない項目についてはアンダーラインで示した。次に上記
の熱延鋼帯を酸洗後0.8訓に冷間圧延し、800℃×
40秒の連続焼鈍を施し、0.6%の調質圧延を行って
冷延鋼板とした。これらの冷延鋼板について前記の第2
表と同様に材質を調査し、その結果を同じく第4表に示
した。
Note that in Tables 3 and 4, items that do not satisfy the limiting conditions of the present invention are underlined. Next, the above hot-rolled steel strip was pickled and then cold-rolled to a temperature of 0.8 degrees.
Continuous annealing was performed for 40 seconds, followed by 0.6% temper rolling to obtain a cold rolled steel sheet. Regarding these cold rolled steel sheets, the second
The materials were investigated in the same manner as in the table, and the results are also shown in Table 4.

第4表から本発明例である供試材屋11.12.14は
いずれも下値が高くΔrが小さくプレス成形性がすぐれ
ているのに対し、比較例である供試材A 13.15.
16はΔrが大きくプレス用鋼板として使用できないこ
とが分かる。
Table 4 shows that Sample Materials 11, 12, and 14, which are examples of the present invention, all have high lower values and small Δr and excellent press formability, whereas Sample Materials A 13, 15, which are comparative examples.
It can be seen that No. 16 has a large Δr and cannot be used as a steel plate for pressing.

本発明は上記実施例からも明らかな如く、連続鋳造スラ
ブの成分を限定し、熱間仕上圧延において全圧下率を9
5%以上もしくは各スタンドの平均圧下車を44%以上
とし580℃以下で巻取り、冷延後連続焼鈍することに
よってプレス成形性のすぐれた冷延鋼板を製造すること
ができる。
As is clear from the above examples, the present invention limits the components of the continuous casting slab and reduces the total reduction rate to 9 in hot finish rolling.
A cold-rolled steel sheet with excellent press formability can be produced by rolling the steel sheet at a temperature of 580° C. or lower with a reduction rate of 5% or more or an average rolling reduction of each stand of 44% or more, followed by continuous annealing after cold rolling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ熱間仕上圧延の全圧下率
と冷延鋼板の△rおよび下値との関係を示す線図、第3
図および第4図はそれぞれ熱間仕上圧延における各スタ
ンドの平均圧下率と冷延鋼板の△rおよび下値との関係
を示す線図である。 代理人 弁理士  中 路 武 雄 第1図 イ士上全f”xT率 (%) シ(2図 仕上全圧T牽(%) 第3図 各スタ〉ト干均圧T圭 (%) 第4図 各スタ〕ノド干埒圧T亭(%)
Figures 1 and 2 are diagrams showing the relationship between the total rolling reduction in hot finish rolling and △r and lower value of cold rolled steel sheets, respectively.
4 and 4 are diagrams respectively showing the relationship between the average rolling reduction of each stand in hot finish rolling and Δr and lower value of a cold rolled steel sheet. Agent Patent Attorney Takeo Nakaji Figure 1: Total f” x T ratio (%) Figure 2: Total finishing pressure (%) Figure 3: Equal pressure at each start (%) 4 Figures each star] Throat pressure T-tei (%)

Claims (1)

【特許請求の範囲】[Claims] (1)重量比にて、C:0.002%以下、Mn:0.
05〜0.20%、5otAA:0.010〜0.10
0%、(Ni−1−Cr+Cu): 0.06〜0.2
0%を含有し残部がFeおよび不可避的不純物より成る
溶鋼を連続鋳造によりスラブとする工程と、前記スラブ
を仕上圧延の全圧下率が95%以上もしくは各スタンド
の平均圧下率が44%以上とし580℃以下で巻取る熱
延工程と、前記熱延銅帯を酸洗、冷延後連続焼鈍する工
程々、を有して成ることを特徴とするプレス成形性にす
ぐれた冷延鋼板の製造方法。
(1) In terms of weight ratio, C: 0.002% or less, Mn: 0.
05-0.20%, 5otAA: 0.010-0.10
0%, (Ni-1-Cr+Cu): 0.06-0.2
0%, with the remainder consisting of Fe and unavoidable impurities, into a slab by continuous casting, and the slab is finished rolled with a total reduction rate of 95% or more or an average reduction rate of each stand of 44% or more. Production of a cold-rolled steel sheet with excellent press formability, characterized by comprising a hot-rolling step of winding at 580°C or less, and a step of pickling the hot-rolled copper strip, continuously annealing it after cold rolling. Method.
JP57201324A 1982-11-17 1982-11-17 Manufacture of cold rolled steel sheet with superior press formability Granted JPS5993834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57201324A JPS5993834A (en) 1982-11-17 1982-11-17 Manufacture of cold rolled steel sheet with superior press formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57201324A JPS5993834A (en) 1982-11-17 1982-11-17 Manufacture of cold rolled steel sheet with superior press formability

Publications (2)

Publication Number Publication Date
JPS5993834A true JPS5993834A (en) 1984-05-30
JPH02416B2 JPH02416B2 (en) 1990-01-08

Family

ID=16439118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57201324A Granted JPS5993834A (en) 1982-11-17 1982-11-17 Manufacture of cold rolled steel sheet with superior press formability

Country Status (1)

Country Link
JP (1) JPS5993834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002434A (en) * 2015-08-13 2015-10-28 武汉钢铁(集团)公司 Hot-rolled steel for steel disc of vehicle driven plate and preparation method of hot-rolled steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135121A (en) * 1996-10-29 1998-05-22 Nikon Corp Projection aligner
JP2007292829A (en) * 2006-04-21 2007-11-08 Canon Inc Mask for near field exposure, method for manufacturing mask for near field exposure, near field exposure device and near field exposure method using this mask
JP2010085867A (en) * 2008-10-01 2010-04-15 Hoya Corp Mask blank substrate set and mask blank set
JP2012220608A (en) * 2011-04-06 2012-11-12 Clean Technology Inc Manufacturing device for three-dimensional optical filter
JP2013143560A (en) * 2012-01-13 2013-07-22 Canon Inc Exposure apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135121A (en) * 1996-10-29 1998-05-22 Nikon Corp Projection aligner
JP2007292829A (en) * 2006-04-21 2007-11-08 Canon Inc Mask for near field exposure, method for manufacturing mask for near field exposure, near field exposure device and near field exposure method using this mask
JP2010085867A (en) * 2008-10-01 2010-04-15 Hoya Corp Mask blank substrate set and mask blank set
JP2012220608A (en) * 2011-04-06 2012-11-12 Clean Technology Inc Manufacturing device for three-dimensional optical filter
JP2013143560A (en) * 2012-01-13 2013-07-22 Canon Inc Exposure apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002434A (en) * 2015-08-13 2015-10-28 武汉钢铁(集团)公司 Hot-rolled steel for steel disc of vehicle driven plate and preparation method of hot-rolled steel

Also Published As

Publication number Publication date
JPH02416B2 (en) 1990-01-08

Similar Documents

Publication Publication Date Title
JPH10219394A (en) Cold rolled steel sheet excellent in deep drawability and aging resistance, and hot rolled steel strip for cold rolled steel sheet
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JPS5959827A (en) Manufacture of hot-rolled steel plate with superior processability
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JPH08176735A (en) Steel sheet for can and production thereof
JP2001098328A (en) Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPH03170618A (en) Highly efficient production of cold-rolled steel sheet extremely excellent in workability
JP2007211337A (en) Cold-rolled steel sheet having excellent strain-aging resistance and low in-plane anisotropy and method for manufacture thereof
JPH0617141A (en) Production of cold rolled steel sheet excellent in workability and shape
JPH1060542A (en) Production of steel sheet for can
JPS5993834A (en) Manufacture of cold rolled steel sheet with superior press formability
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JPH09256064A (en) Production of ferritic stainless steel thin sheet excellent in roping characteristic
JPS63243226A (en) Production of cold rolled steel sheet for ultra-deep drawing having excellent resistance to brittleness by secondary operation
JPH0583609B2 (en)
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JP3596045B2 (en) Manufacturing method of bake hardening type cold rolled steel sheet with excellent formability
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPH03150316A (en) Production of cold rolled steel sheet for deep drawing
JP3806983B2 (en) Cold-rolled steel sheet material for deep drawing with excellent ridging resistance after cold rolling and annealing
JP4135434B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JPH09125195A (en) Hot rolled steel plate excellent in workability and its production
JPH0668129B2 (en) Method for producing hot rolled steel sheet with excellent deep drawability
JP2005015882A (en) High-strength cold rolled steel sheet for deep drawing and method for manufacturing the same
JPH01177321A (en) Manufacture of cold rolled steel sheet excellent in deep drawability