JPS59933B2 - Color: Brown - Google Patents

Color: Brown

Info

Publication number
JPS59933B2
JPS59933B2 JP7079675A JP7079675A JPS59933B2 JP S59933 B2 JPS59933 B2 JP S59933B2 JP 7079675 A JP7079675 A JP 7079675A JP 7079675 A JP7079675 A JP 7079675A JP S59933 B2 JPS59933 B2 JP S59933B2
Authority
JP
Japan
Prior art keywords
cathode ray
ray tube
phosphor
color cathode
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7079675A
Other languages
Japanese (ja)
Other versions
JPS51147247A (en
Inventor
豊和 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7079675A priority Critical patent/JPS59933B2/en
Publication of JPS51147247A publication Critical patent/JPS51147247A/en
Publication of JPS59933B2 publication Critical patent/JPS59933B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【発明の詳細な説明】 本発明は、カラーブラウン管のフェースプレート部内面
に塗布されているけい光体の発光強度分布を測定する装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring the emission intensity distribution of a phosphor coated on the inner surface of a face plate of a color cathode ray tube.

カラーブラウン管のけい光面は任意の色調を再現するた
めに、赤、緑、青に発光するけい光体の100〜700
μの大きさの微小片から構成されている。
The fluorescent surface of a color cathode ray tube consists of 100 to 700 phosphors that emit red, green, and blue to reproduce any color tone.
It is composed of microscopic pieces with a size of μ.

この微小片の形状には、ドット状、ストライプ状、長方
形状のものがあるが、以下ドット状のものについて述べ
る。しかし本発明は、前記いずれの形状のけい光体微小
片について成り立つものである。カラーブラウン管を動
作させときに、シヤドウマスクの孔を通過した電子線が
けい光体ドットを刺激してけい光体ドットが発光する。
このけい光体ドットがどのような発光状態をしているか
ということは、カラーブラウン管の特性評価、とくに明
るさあるいはけい光面形成技術の評価をする場合重要で
ある。一般に、カラーブラウン管のけい光体ドットはシ
ヤドウマスクの孔を通つた電子線によつて刺激され、均
一に発光しているのではなく、実際には、電子銃の電子
線噴出孔が有限であること、あるいは電子線内での電子
相互の反撥などにより、シヤドウマスク孔を通過した電
子線の周縁には、ぼやけがあり、けい光体ドットは均一
な明るさに発光しないことがある。
The shapes of these minute pieces include dots, stripes, and rectangles, and the dots will be described below. However, the present invention is applicable to phosphor particles having any of the shapes described above. When the color cathode ray tube is operated, the electron beam passing through the hole in the shadow mask stimulates the phosphor dots, causing them to emit light.
The state of light emitted by these phosphor dots is important when evaluating the characteristics of color cathode ray tubes, especially when evaluating brightness or phosphor surface formation technology. In general, the phosphor dots in a color cathode ray tube are stimulated by the electron beam passing through the hole in the shadow mask, and do not emit light uniformly; in reality, the electron beam ejection hole in the electron gun is finite. , or due to mutual repulsion of electrons within the electron beam, the periphery of the electron beam passing through the shadow mask hole is blurred, and the phosphor dots may not emit light with uniform brightness.

また、けい光体ドット内のけい光体粒子の配列、アルミ
膜の小孔、アルミ膜蒸着の下地などによつても、けい光
体ドット内には発光の分布が生ずる。したがつて、カラ
ーブラウン管の明るさ評価において、けい光膜の明るさ
を評価する場合、単純にカラーブラウン管の明るさをけ
い光体発光面積で割つた数値で評価できず、けい光体ド
ット内の発光分布を測定することは、カラーブラウン管
の明るさを設計上あるいはけい光膜形成上の要因に分解
するための重要な手段となる。けい光体ドット内の発光
分布を測定する方法として、結像面上に微小なスリット
(本目的には10μ×10μのスリットが適当)をもつ
た懸微光度計を機械的にけい光体ドットの前で移動させ
、光度計出力を記録計に記録する方法が考えられる。
Furthermore, a distribution of light emission occurs within the phosphor dots due to the arrangement of the phosphor particles within the phosphor dots, the small holes in the aluminum film, the base material on which the aluminum film is deposited, and the like. Therefore, when evaluating the brightness of the phosphor film in a color CRT, it is not possible to simply evaluate the brightness of the color CRT by dividing the brightness of the phosphor by the luminous area of the phosphor. Measuring the luminescence distribution of color cathode ray tubes is an important means of breaking down the brightness of color cathode ray tubes into factors related to design or phosphor film formation. As a method for measuring the luminescence distribution within a phosphor dot, a suspended microphotometer with a minute slit (a 10μ x 10μ slit is suitable for this purpose) on the imaging plane is used to mechanically measure the luminescence distribution within a phosphor dot. One possible method is to move it in front of the photometer and record the photometer output on a recorder.

しかし、この方法は、受光器を機械的に移動させること
、あるいは光度計の応答速度を考えると、1個のけい光
体ドットを走査するためには、最低10秒かかり、受光
器移動中の測定器、カラーブラワン管動作系の微小な振
動が大きな誤差の原因となる。また、測定中のスリツト
の走査個所をモニタできないという欠点もある。スリツ
トの代りに、グラスフアイバ一を用いる方法もあるが、
問題点は前記方法と同様である。従つて、本願発明は以
上の問題点を解決し、微小部分の発光分布を測定するた
めになされたものである。
However, considering the mechanical movement of the receiver and the response speed of the photometer, this method requires at least 10 seconds to scan one phosphor dot. Microscopic vibrations in the measuring instrument and color bra one tube operating system cause large errors. Another drawback is that it is not possible to monitor the location where the slit is scanned during measurement. There is also a method of using glass fiber instead of a slit,
The problems are the same as those of the above method. Therefore, the present invention has been made to solve the above-mentioned problems and to measure the luminescence distribution of minute parts.

本発明では第1図に示すように、撮像管などの受光面に
顕微鏡で拡大したけい光体ドツト像を結像させ、この像
を走査することによりシリアルな電気信号とし、一方で
はモニタ用ブラウン管上に拡大像を表示し、またシリア
ル信号をオシロスコープに入力してその波形を描かせる
ことにより、けい光体ドツトの任意の断面の発光分布を
観察できる。
In the present invention, as shown in FIG. 1, a magnified phosphor dot image is formed using a microscope on the light-receiving surface of an image pickup tube, etc., and this image is scanned to generate a serial electrical signal. By displaying an enlarged image above and inputting a serial signal into an oscilloscope to draw its waveform, the luminescence distribution of any cross section of the phosphor dot can be observed.

図でdはカラーブラウン管、9は信号処理部である。本
発明を実際に用いた場合、受光部として10倍の対物レ
ンズをもつた高解像度ビジコンカメラeを使用し、ビジ
コン受光面に結像された拡大けい光体ドツト像1をモニ
タ用ブラウン管f上に表示した。
In the figure, d is a color cathode ray tube, and 9 is a signal processing section. When the present invention is actually used, a high-resolution vidicon camera e with a 10x objective lens is used as a light receiving section, and an enlarged phosphor dot image 1 formed on the vidicon light receiving surface is displayed on a monitor cathode ray tube f. displayed.

このブラウン管を見ながら、ピットの調整、測定個所の
選定、電子線のけい光体ドツトへのランデイング状態の
観察などを行なつた。ビジコンカメラによつて電気的シ
リアル信号となつたけい光体ドツトの拡大像は、モニタ
用ブラウン管にはいつた後、オシロスコープhの縦軸に
入力し、オシロスコープの水平同期には、モニタ用ブラ
ウン管の水平同期信号を入力した。オシロスコープの水
平軸走査を3msec/CT!L程度にすると第2図a
に示すような波形が観察された。この波形は、ちようど
モニタ用ブラウン管上で第1図の矢印aの方向から見た
けい光体発光分布の断面を示し、波形中で垂直方向に立
つた細かい線はモニタ用ブラウン管の1本1本の走査線
を示している。この走査線の1本を取り出せば、第1図
のBc走査線で表わされる断面での発光分布がオシロス
コープ上に第2図bのように示され観察することができ
る。これには、遅延回路を利用し、第2図aのJ点(j
点が第1図のBcの走査線に対応)でオシロスコープの
水平同期を0.4μSec/?に拡大することによつて
行なつた。また、波形の記録はポラロイド写真によつて
行なつた。したがつて、この方法では前記した機械的走
査法に比べ、走査時間が短かく、振動による誤差がはい
らないこと、モニタ用ブラウン管があるためにランデイ
ング状態、選定個所、ピット調整などをチエツクしなが
ら行なえる利点がある。
While looking at this cathode ray tube, we adjusted the pits, selected measurement points, and observed the landing state of the electron beam on the phosphor dot. The magnified image of the phosphor dots converted into an electrical serial signal by the vidicon camera is transmitted to the monitor cathode ray tube and then input to the vertical axis of the oscilloscope h. A horizontal synchronization signal was input. Oscilloscope horizontal axis scan 3msec/CT! If it is about L, it will look like Figure 2a.
A waveform as shown in is observed. This waveform shows a cross-section of the phosphor luminescence distribution seen from the direction of arrow a in Figure 1 on a monitor CRT. One scanning line is shown. If one of these scanning lines is taken out, the emission distribution in the cross section represented by scanning line Bc in FIG. 1 can be observed on the oscilloscope as shown in FIG. 2b. For this purpose, a delay circuit is used and the point J (j
The point corresponds to the scanning line Bc in Figure 1), and the horizontal synchronization of the oscilloscope was set to 0.4μSec/? This was done by expanding it to . In addition, waveforms were recorded using Polaroid photographs. Therefore, compared to the above-mentioned mechanical scanning method, this method requires a shorter scanning time, eliminates errors caused by vibration, and because it uses a CRT for monitoring, it is possible to check landing conditions, selected locations, pit adjustments, etc. There are advantages to doing so.

また、受光器としてはビジコンカメラのみでなく、例え
ばフエアチヤイルド社製C.C.Dカメラなどのように
受光子面が連続でなく、量子化されているものも用いる
ことができる。
Moreover, as a light receiver, not only a vidicon camera but also a C. C. It is also possible to use a device in which the photoreceptor surface is not continuous but quantized, such as in a D camera.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカラーブラウン管けい光体発光強度分布測定装
置のプロツク図、第2図aはシリアル信号波形、第2図
bはシリアル信号波形を示『。
Fig. 1 is a block diagram of a color cathode ray tube phosphor emission intensity distribution measuring device, Fig. 2a shows a serial signal waveform, and Fig. 2b shows a serial signal waveform.

Claims (1)

【特許請求の範囲】[Claims] 1 カラーブラウン管のけい光面の発光けい光体微小片
を拡大する顕微鏡と顕微鏡の対物レンズの結像面上に光
学像を電気信号に変換する素子をそなえたカメラを受光
器とし、前記素子面に結像している像を走査することに
よりシリアルな電気信号として取出し、その信号をブラ
ウン管画面上に拡大像として表示し、前記シリアル電気
信号の任意の部分を取出してオシロスコープ上に信号波
形として表示する信号処理部を備え、カラーブラウン管
のけい光面の発光けい光体微小片内の発光強度分布を、
前記オシロスコープ上の信号波形として観察、測定する
ようにしたカラーブラウン管けい光体発光強度分布測定
装置。
1. A microscope that magnifies the light-emitting phosphor particles on the fluorescent surface of a color cathode ray tube, and a camera equipped with an element that converts an optical image into an electrical signal on the imaging surface of the objective lens of the microscope is used as a light receiver, A serial electrical signal is extracted by scanning the image formed on the image, the signal is displayed as an enlarged image on a cathode ray tube screen, and an arbitrary part of the serial electrical signal is extracted and displayed as a signal waveform on an oscilloscope. It is equipped with a signal processing unit that calculates the luminescence intensity distribution within the luminous phosphor particles on the fluorescent surface of the color cathode ray tube.
A color cathode ray tube phosphor emission intensity distribution measuring device for observing and measuring a signal waveform on the oscilloscope.
JP7079675A 1975-06-13 1975-06-13 Color: Brown Expired JPS59933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7079675A JPS59933B2 (en) 1975-06-13 1975-06-13 Color: Brown

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7079675A JPS59933B2 (en) 1975-06-13 1975-06-13 Color: Brown

Publications (2)

Publication Number Publication Date
JPS51147247A JPS51147247A (en) 1976-12-17
JPS59933B2 true JPS59933B2 (en) 1984-01-09

Family

ID=13441848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7079675A Expired JPS59933B2 (en) 1975-06-13 1975-06-13 Color: Brown

Country Status (1)

Country Link
JP (1) JPS59933B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179240U (en) * 1984-10-29 1986-05-27
JPS6246348U (en) * 1985-09-09 1987-03-20
JPH0338671Y2 (en) * 1984-10-29 1991-08-15
JPH0526516Y2 (en) * 1984-12-24 1993-07-05

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179240U (en) * 1984-10-29 1986-05-27
JPH0338671Y2 (en) * 1984-10-29 1991-08-15
JPH0526516Y2 (en) * 1984-12-24 1993-07-05
JPS6246348U (en) * 1985-09-09 1987-03-20

Also Published As

Publication number Publication date
JPS51147247A (en) 1976-12-17

Similar Documents

Publication Publication Date Title
US2680200A (en) Examination of photographic materials
US2571306A (en) Cathode-ray tube focusing system
JPS59933B2 (en) Color: Brown
US3863093A (en) Multicolor direct view device
US2373396A (en) Electron discharge device
EP0050475B1 (en) Scanning-image forming apparatus using photo electric signal
US2217168A (en) Electron discharge device
US2373395A (en) Electron discharge device
JPH0855580A (en) Method and equipment for convergence measurement of color cathode-ray tube
US2875360A (en) Image intensifier
CA2317398A1 (en) Electron beam profile measurement method and system
Garman et al. Image tubes and techniques in television film camera chains
JP2775928B2 (en) Surface analyzer
JP2595104B2 (en) CRT focus measurement method
US3514699A (en) Light beam oscilloscope having substantial persistence
EP0162925A1 (en) Method of manufacturing fluorescent screen of cathode-ray tube
USRE28153E (en) Field emission scanning microscope display
MY107583A (en) Method and device for measuring the beam diameter of a cathode-ray tube(crt).
SU480140A1 (en) Chronographing device
JPS63308844A (en) Image evaluator
JPS59224038A (en) Charged particle beam scanning type analyzer
US2838598A (en) Television system
Lebedev et al. Tests and further development of universal image-converter picosecond camera
JP3597039B2 (en) Image display method and apparatus for detection signal using statistical processing
SU517080A1 (en) Raster electron microscope