JPS5993238A - Electric discharge machining device - Google Patents

Electric discharge machining device

Info

Publication number
JPS5993238A
JPS5993238A JP19998482A JP19998482A JPS5993238A JP S5993238 A JPS5993238 A JP S5993238A JP 19998482 A JP19998482 A JP 19998482A JP 19998482 A JP19998482 A JP 19998482A JP S5993238 A JPS5993238 A JP S5993238A
Authority
JP
Japan
Prior art keywords
electrode
temperature
machining
fluid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19998482A
Other languages
Japanese (ja)
Other versions
JPH0232084B2 (en
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP19998482A priority Critical patent/JPS5993238A/en
Publication of JPS5993238A publication Critical patent/JPS5993238A/en
Publication of JPH0232084B2 publication Critical patent/JPH0232084B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/10Supply or regeneration of working media

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To decrease the consumption ratio of an electrode so as to enable the all night unmanned operation of electric discharge machining to be performed, by controlling temperature regulating fluid of the electrode through at least either one the fluid temperature or the flow rate so that temperature of the electrode is controlled to a level decreasing the consumption ratio of the electrode. CONSTITUTION:A controller 9, in which temperature of an electrode 1 is indirectly measured from a difference of temperatures between temperature detectors 8, 8', provided in a fluid outlet pipe part 5a from the electrode 1 and its inlet pipe part 5b, and from a signal of the flow rate or the like of fluid, drives a pump 13 and a motor 14a or controls the working condition of a heater 11 and/or a cooler 14 while changes the flow rate of the fluid in accordance with said measurement of temperature of the electrode, thus maintaining the temperature of the electrode at about, for instance, 40 deg.C minimizing consumption ratio of the electrode. In such way, water system machining fluid, which causes the consumption ratio of the electrode to be largely different by temperature, can be used, and all night numanned operation of electric discharge machining can be performed, further a machining speed can be also increased.

Description

【発明の詳細な説明】 本発明は、電極消耗比、或いは更に加工精度を改善した
放電加工装置に係り、特に放電加工液として水系のもの
を用いる場合に好適なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric discharge machining apparatus that improves the electrode consumption ratio or the machining accuracy, and is particularly suitable when a water-based electric discharge machining fluid is used.

放電加工の分野に於ける棒状や縮型形状電極を使用する
穿孔、型彫加工の分野に於では、加工液として通常ケロ
シン(白灯油)やトランス油等の炭化水素油系のものが
常用されておシ、他方ワイヤ電極を使用する所謂ワイヤ
カット放電加工の分野に於では、加工液として通常水、
特に純水系のものが常用されて来ている。
In the field of drilling and die-sinking using rod-shaped or contracted electrodes in the field of electrical discharge machining, hydrocarbon oil-based machining fluids such as kerosene (white kerosene) and transformer oil are commonly used. On the other hand, in the field of so-called wire-cut electrical discharge machining that uses wire electrodes, water,
In particular, pure water-based products have come into regular use.

前者に於てケロシンが用いられるのは、機械の防錆上等
に好都合なこともあるが、一般的に加工速度は遅いが加
工面粗さが小さくて寸法精度の高い仕」=げ加工の加工
条件領域から、加工面粗さは荒いが加工速度が早い荒加
工の加工領域迄の全加工条件領域にわたって各種の加工
性能が一般に他よ9優れていて、かつ設定加工条件には
ソ比例的に安定して得られること、及び比較的安価で入
手し易く、また比較的長寿命で加工中及び廃棄等の後処
理に当り、格別公害等の問題が生じないか、処理が比較
的容易なこと等によるものと思惟されるO しかして、斯種ケロシンやトランス油等の炭化水素油系
加工液の最大の欠点としては、該加工液が可燃性である
と言うことであって、放電加工等の電気加工は該加工液
中で、又は該加工液を介して一対の電極(一方が加工用
電極で、他方が被加工物)を微小間隙を隔て\相対向さ
ぜ該間隙に通電し、て放電や放電々解等を継続的に発生
維持させて加工を行なうものであシ、他方斯種電気加工
装置はその稼動運転中に、運転作業者が機械装置に常時
付いていることなく自動運転加工を行なう類のものであ
る所から、上記加工液としてはケロシンに各種添加物を
添加して発火温度を上昇させたものが使用されているも
のメ、また近時火災検知の自動消火装置が上記電気加工
装置用の個々の機械毎等に付設される状況にあるもの\
依然として発火火災を生ずる危険性がアリ、このため上
述の如く自動運転加工の機械装置でありながら、例えば
無人では、及び又は終夜運転には供し難いものであった
。後者の加工液水は、火災等の危険は全くなく、又防錆
剤等の各種添加剤等が仮9に必要としても極めて安価で
あシ、再生処理、廃棄処理等も容易、また炭化水素油の
ように人の皮膚等に障害を与えることもない等炭化水素
油系加工液に比較して種々の優れた点があり、また加工
性能の点でも、例えば電圧パルスの持続時間が約数10
μs前後以下で、加工面粗さ約数10μmRmax以下
の所謂仕上げ加工条件領域に於ては炭化水素油系加工液
に充分比肩し得るもの\、上記以上程度の加工面粗さの
中加工乃至荒加工に近い加工条件領域になると種々の加
工性能中、加工速度が極端に低下するとか、加工が困難
になったり、また電極消耗が増大して電極低消耗の加工
ができないとかの欠点があり、このため上記の加工液水
は、加工条件が電極消耗を許容する所謂仕上げ加工の加
工条件領域に限られるワイヤカット放電加工(通常数値
制御方式)に於て使用されるに止っている0なお、ワイ
ヤカット放電加工に於ては、被加工物を加工液中に浸漬
した状態で加工する形式のものもあるが、通常は加工タ
ンク又は加工液ノ々ンの上部開放大気中に於て、加工部
に加工液をノズルにより噴射供給する形式のものであっ
て、炭化水素油を加工液として用いると、加工部から直
ぐに発火する危険性があって実質上加工は不可能であり
、他方上記の如く加工液水使用の利点及び条件も備って
いる所から使用されているものと思惟される。そして、
このように加工液を水とするワイヤカット放電加工が近
年普及して来た所から、上記穿孔、型彫加工の放電加工
機の分野に於ても・火災等の危険が全くない水又は水を
主成分とする加工液による放電加工(通常水加工等と言
う)の開発、登場が強く望まれており、か\る要請は穿
孔、型彫型式の放電加工機が数値制御ワイヤカット放電
加工機同様に数値制御化され、従って高度に自動化され
て、かつ高価になるに従いさらに強まっている。
In the former case, kerosene is used because it is useful for preventing rust in the machine, but in general, the machining speed is slow, but the surface roughness is small and the dimensional accuracy is high. Various machining performances are generally superior to others over the entire machining condition range, from the machining condition range to the rough machining range where the machined surface is rough but the machining speed is fast, and it is proportional to the set machining conditions. It is relatively cheap and easy to obtain, has a relatively long life, and does not cause any particular pollution problems during processing or after-treatment such as disposal, or is relatively easy to dispose of. However, the biggest drawback of hydrocarbon oil-based machining fluids such as kerosene and transformer oil is that they are flammable, and are not suitable for electrical discharge machining. Electrical machining, such as the , electric discharge, electrostatic discharge, etc. are continuously generated and maintained during machining.On the other hand, such electric processing equipment does not require an operator to be constantly attached to the machine during operation. Since it is a type of automatic processing, the processing fluid used is kerosene with various additives added to raise the ignition temperature. Those where the device is attached to each individual machine for the above electrical processing equipment\
There is still a risk of ignition and fire, and for this reason, even though the machine is an automatic processing machine as described above, it is difficult to operate unattended or overnight. The latter processing liquid water has no danger of fire or the like, is extremely inexpensive even if various additives such as rust preventive agents are required, is easy to recycle and dispose of, and is not a hydrocarbon. It has various advantages over hydrocarbon oil-based machining fluids, such as not causing damage to human skin like oils, and in terms of machining performance, for example, the duration of the voltage pulse is a fraction of the time. 10
In the so-called finishing machining condition range where the machined surface roughness is around 10 μm or less and the machined surface roughness is about several 10 μm Rmax or less, it can be fully compared to hydrocarbon oil-based machining fluids. When the machining conditions are close to machining, there are disadvantages such as the machining speed drops dramatically, machining becomes difficult, and electrode consumption increases, making it impossible to perform machining with low electrode consumption. For this reason, the above-mentioned machining liquid water is only used in wire-cut electrical discharge machining (usually numerically controlled) where the machining conditions are limited to the so-called finishing machining condition range that allows electrode wear. In some wire-cut electric discharge machining, the workpiece is machined while being immersed in the machining fluid, but usually the machining process is performed in the upper part of the machining tank or machining fluid in the open atmosphere. If hydrocarbon oil is used as the machining fluid, there is a risk of immediate ignition from the machining part, making machining virtually impossible. It is thought that it is used because it has the advantages and conditions of using water as a machining fluid. and,
Since wire-cut electrical discharge machining using water as the machining fluid has become popular in recent years, water or water, which poses no danger of fire or the like, is also used in the field of electrical discharge machines for drilling and die-sinking. There is a strong desire for the development and appearance of electrical discharge machining (usually referred to as water machining) using a machining fluid mainly composed of Like machines, they are numerically controlled and therefore highly automated, and as they become more expensive, they become even more powerful.

しかしながら、例えば5×103Ω百以上の所謂純水を
加工液とする限シに於ては(勿論数係前後以下の防錆剤
等を添加したものを含む)、加工電圧パルス(又は放電
電流)<パルス)の幅(τ0n又はτ0)が約30〜5
0μs前後程度、加工面粗さで約30〜50μsRma
x前後程度またはそれ以上の加工条件領域、即ち中加工
条件以上になると、或いは、また電極加工面積が、数1
0C4のように大きくなると、それ丈加工間隙抵抗は低
くなる訳で、例えば電圧パルス(τOn)の無負荷電圧
を格別に大きくするとか、又は放電々流ノ<パルス(τ
0)の放1  電々光振幅(IP)を格別に大きくした
場合等の格1  別特殊な加工条件、即ち従来通常の電
圧ノクパルス(τ。n)又は放電ノクパルス(τ0)、
まだ必要ならば電圧パルス(τon)間体止時間(τo
ff )の各条件、又はそれらに比較的容易に可能な程
度の工夫を凝らした限シでは、前述の如く加工速度の急
減、電極消耗の増大等のだめ実用に供し得ないのが現状
である。
However, for example, in the case where so-called pure water with a resistance of 5 x 103Ω or more is used as the machining fluid (of course, it also includes those to which rust preventives, etc. of around a numerical coefficient or less are added), the machining voltage pulse (or discharge current) <Pulse) width (τ0n or τ0) is approximately 30 to 5
Approximately 0 μs, approximately 30 to 50 μs Rma for machined surface roughness
When the machining conditions are around or above x, that is, the medium machining conditions or higher, the electrode machining area becomes
As it becomes larger like 0C4, the gap resistance during machining becomes lower, so for example, the no-load voltage of the voltage pulse (τOn) may be made exceptionally large, or the discharge current < pulse (τ
0) Emission 1 Exceptionally special machining conditions such as when the electrophoresis amplitude (IP) is made particularly large, i.e. the conventional normal voltage pulse (τ.n) or discharge pulse (τ0),
If it is still necessary, change the body dwell time (τo) between voltage pulses (τon)
ff), or to the extent that they can be modified to a relatively easily possible degree, it is currently impossible to put it into practical use due to the sudden decrease in processing speed and increase in electrode consumption as described above.

ところで、放電加工における加工液の液温は通常、作業
室温の約20〜25°0前後程度であシ、精密加工を必
要とする場合や長時間にわたって高速荒加工を行う場合
、加工液の冷却装置や温度制御装置が設けられるが、こ
の場合も加工液は同様の温度、即ち上記室温程度の常温
に保たれ、電極の温度も加工液による冷却作用によって
加工液に近い温度となる。もし、高速の荒加工を、加工
液を格別冷却するとと々く長時間高負荷で継続させた場
合に、加工タンクの加工液が約50〜60°C前後又は
それ以上に上昇することがあるかも知れないが、高温状
態を継続させて加工するということはまずない。
By the way, the temperature of the machining fluid in electrical discharge machining is usually around 20 to 25 degrees above the working room temperature. A device and a temperature control device are provided, but in this case as well, the machining fluid is kept at the same temperature, that is, at room temperature, which is about the above-mentioned room temperature, and the temperature of the electrode is also brought to a temperature close to that of the machining fluid due to the cooling effect of the machining fluid. If high-speed rough machining is continued under high load for a long time unless the machining fluid is particularly cooled, the machining fluid in the machining tank may rise to around 50-60°C or more. It may be possible, but it is highly unlikely that high temperature conditions will continue to be processed.

このように、従来のケロシン等を加工液として用いる放
電加工においては、加工液を単に常温程度に冷却するか
温度制御を行わないかのいずれかであるが、本発明者ら
が水系加工液を用いて電極温度、(なお本発明に於て電
極温度、被加工物温度、或いはまた加工液温度とは、電
極、被加工物の平均温度よシも数度以上高い温度即ち、
電極、被加工物の加工間隙露出面(加工面)から少し内
側の温度、従ってまた電極、又は被加工物か設置されて
いて加工が行なわれる加エタンク内加工液の温度よシも
約10〜20°0以内程度高い温度のことを言う。)に
対する電極消耗比を求める実験を行った所、常用の電極
低消耗の放電パルス条件(例えば、電圧パルスの幅約3
0〜500μs)に於て電極材質や加工液組成によって
電極消耗比が最低となる電極温度、及び、または被加工
物温度の最適温度が大いに異なっていることが判明し、
また、電極温度によって電極消耗比が太いに異なること
が判明した。下記の表は、被加工物が鉄材であシ、電極
が銅、グラファイト、黄銅の各場合において、加工液を
純水とシリコーンオイルやアルキル、アリル、エーテル
等の表面活性剤を1係前後等数係含んだ水(曇点約45
°C)とした場合における電極消耗比が最適となる大孔
の上記電極温度を示したものである。
As described above, in conventional electric discharge machining using kerosene or the like as a machining fluid, the machining fluid is either simply cooled to around room temperature or temperature control is not performed. (In the present invention, the electrode temperature, workpiece temperature, or machining fluid temperature refers to a temperature that is several degrees or more higher than the average temperature of the electrode and workpiece, i.e.,
The temperature slightly inside the machining gap exposed surface (machining surface) of the electrode and workpiece, and therefore the temperature of the machining fluid in the processing tank where the electrode or workpiece is installed and where machining is performed, is also about 10~ It refers to a temperature as high as 20° or less. ), we conducted an experiment to determine the electrode consumption ratio under the commonly used discharge pulse conditions of low electrode consumption (for example, the voltage pulse width is approximately 3
It has been found that the electrode temperature at which the electrode consumption ratio is the lowest and/or the optimum temperature of the workpiece vary greatly depending on the electrode material and the composition of the processing fluid in the 0-500 μs)
It was also found that the electrode consumption ratio differed greatly depending on the electrode temperature. The table below shows that when the workpiece is iron and the electrode is copper, graphite, or brass, the machining fluid should be pure water and a surfactant such as silicone oil, alkyl, allyl, or ether should be added to about 1 part. Water containing a numerical coefficient (cloud point approximately 45)
The figure shows the electrode temperature of the large hole at which the electrode consumption ratio is optimal when the temperature is set to (°C).

また、第1図は、電極が銅、被加工物が鉄、加工極性、
逆極性、加工液が、純水に界面活性剤として非イオン系
のポリエーテル変性シリコーンオイル1%、炭化水素油
としてスピンドル油1%を夫々添加混合したものを用い
、また上記電極温度が高低容易に制御変化ができ、かつ
高い電極温度での加工も可能な加工間隙を加工液中へ非
浸漬状態として加工する放電加工方法、即ち、加工用電
極と被加工物とを相対向させて形成°シ、加工液が介在
せしめられる微小加工間隔に休止時間を置きながら間歇
的な電圧パルスを印加して発生する放電により加工を行
う電気加工方法に於て、前記力ロエ用電極と被加工物と
を少なくとも前記加工間隔が貯溜加工液外の気中に於て
形成保持されるように気中に配置した状態で加工間隔に
加工液を連続的又は間歇的に注入しつ\加工を行なう加
工方法を適用し、加工電圧パルスの幅約120μs1放
電電流振幅約15A1電圧ノくルス間体止幅約40μs
前後で可変とし、加工液の加工間隔への噴出供給量と、
電極被加工物間近接開離運動による間歇加工の持続と休
止の時間、及び必要に応じ上記電圧パルス間休止幅の調
整により、上記電極温度を変化させた場合の上記電極温
度に対する電極消耗比(E /W)を示したものである
0 本発明はこの上すな実験結果から、電極消耗比が小とな
るような電極温度制御を行う手段を設けた放電加工装置
を提供するものである。
In addition, in Figure 1, the electrode is copper, the workpiece is iron, and the machining polarity is
The processing liquid used was a mixture of pure water with 1% nonionic polyether-modified silicone oil as a surfactant and 1% spindle oil as a hydrocarbon oil, and the electrode temperature was easily adjusted. An electrical discharge machining method in which the machining gap is machined without being immersed in the machining fluid, which allows control changes to be made and machining can be performed at high electrode temperatures. In an electric machining method in which machining is performed by electric discharge generated by applying intermittent voltage pulses while leaving a pause time between micro-machining intervals in which machining fluid is interposed, A machining method in which machining is performed while continuously or intermittently injecting machining liquid into the machining gap while at least the machining gap is formed and held in the air outside the stored machining liquid. The width of the machining voltage pulse is approximately 120μs, the amplitude of the discharge current is approximately 15A, the width of the voltage pulse is approximately 40μs.
It is variable in front and back, and the amount of machining fluid jetted to the machining interval,
The electrode wear ratio ( Based on these excellent experimental results, the present invention provides an electric discharge machining apparatus equipped with a means for controlling electrode temperature such that the electrode consumption ratio is reduced.

以下本発明を第2図ないし第5図に示す実施例によシ説
明する。第2図において、1は内部に温度調節用液体(
水等)を流す通路1aを有する電極、2は被加工物、3
は被加工物2を収容した力ロエタンクであり、該タンク
3内には前記の表面活他剤を含んだ水でなる加工液4が
電極1と被加工物2との間に充満するように入れである
。この場合、上記電極温度が所望に応じ、制御設定可能
であるため、前述第1図の加工特性を得る加工方法とは
異なり、加工液中浸漬方式の従来通常の加工方法である
。5は該電極1に対して温度調節用液体を循環させる循
環路、6は該循環路に設けられた液体温度制御装置、7
は該循環路に設けられた液体循環用ポンプ、8.8’は
それぞれ該電極1からの液体の出口管部5aと入口管路
5bに設けられた液体温度検出器、9は電極1に循環さ
せる液体の温度または流量を制御することによシ、電極
1の上記電極温度が電極消耗比の小さいものとなるよう
に指令制御する制御装置である。前記液体温度制御装置
6は、液体貯槽10と、該貯槽10内の液体を加熱する
ヒータ11と、該貯槽10に対する液体の循環路12、
ポンプ13およびモータ14aを含むクーラ14からな
る冷却装置とからなる。制御装置9は、例えば前記温度
検出器8によって検出される温度と温度検出器8′によ
って検出される温度の差と、液体の流量又は流速を考慮
した信号とから電極1の電極温度を間接的に測定し、そ
の結果によりてポンプ13およびモーター4aを駆動す
るか、あるいはヒーター1及び又はクーラー4の作動条
件を制御させると共に、ポンプ7による液体流量を変え
て電極温度が所定の温度を維持するように制御する。液
体流量を変える手段としては、ポンプ7の吐出側に流量
調節弁を設けて該弁の開度を調節する方法もおる。
The present invention will be explained below with reference to the embodiments shown in FIGS. 2 to 5. In Fig. 2, 1 has a temperature regulating liquid (
an electrode having a passage 1a through which water (water, etc.) flows; 2 is a workpiece; 3
2 is a mechanical tank containing a workpiece 2, and the tank 3 is filled with a machining liquid 4 made of water containing the above-mentioned surface activator so that it is filled between the electrode 1 and the workpiece 2. It is a container. In this case, since the electrode temperature can be controlled and set as desired, it is different from the processing method for obtaining the processing characteristics shown in FIG. 1 described above, and is a conventional processing method of immersion in a processing liquid. 5 is a circulation path for circulating a temperature regulating liquid to the electrode 1; 6 is a liquid temperature control device provided in the circulation path; 7
8.8' is a liquid circulation pump provided in the circulation path, 8.8' is a liquid temperature sensor provided in the outlet pipe 5a and inlet pipe 5b of the liquid from the electrode 1, and 9 is a liquid circulation pump provided in the electrode 1. This is a control device that commands and controls the electrode temperature of the electrode 1 so that the electrode consumption ratio is small by controlling the temperature or flow rate of the liquid. The liquid temperature control device 6 includes a liquid storage tank 10, a heater 11 that heats the liquid in the storage tank 10, a liquid circulation path 12 for the storage tank 10,
The cooling device includes a pump 13 and a cooler 14 including a motor 14a. The control device 9 indirectly determines the electrode temperature of the electrode 1 from, for example, the difference between the temperature detected by the temperature detector 8 and the temperature detected by the temperature detector 8', and a signal that takes into account the flow rate or flow rate of the liquid. According to the results, the pump 13 and motor 4a are driven, or the operating conditions of the heater 1 and/or cooler 4 are controlled, and the liquid flow rate by the pump 7 is changed to maintain the electrode temperature at a predetermined temperature. Control as follows. As a means for changing the liquid flow rate, there is also a method of providing a flow rate control valve on the discharge side of the pump 7 and adjusting the opening degree of the valve.

このような電極温度制御を行うことによシ、電極1の前
記電極温度を電極消耗比の小さい温度(例えば第1図の
例における40°C前後)に保つことが可能となシ、従
来のケロシン油を加工液と( して用いる場合に近い電極消耗比を得ることができ、水
系加工液を実用に供することが可能となる。
By performing such electrode temperature control, it is possible to maintain the electrode temperature of the electrode 1 at a temperature at which the electrode consumption ratio is small (for example, around 40°C in the example shown in Fig. 1). It is possible to obtain an electrode wear ratio close to that obtained when kerosene oil is used as a machining fluid, making it possible to put water-based machining fluids to practical use.

なお、液体温度制御装置6は、電極1の目的温度によっ
ては、ヒーター1のみ、あるいはクーラー4を含む冷却
装置のみを備えるものでもよく、また貯槽10内全部の
液体を加熱するのではなく、貯槽10から電極1及び循
環路5に供給するために汲み上げた液体のみを、ヒータ
等を用いて所定温度に加熱しつつ供給するように構成し
ても良い。
Note that depending on the target temperature of the electrode 1, the liquid temperature control device 6 may include only the heater 1 or only a cooling device including the cooler 4, and instead of heating the entire liquid in the storage tank 10, It may be configured such that only the liquid pumped up from 10 to be supplied to the electrode 1 and the circulation path 5 is supplied while being heated to a predetermined temperature using a heater or the like.

第3図は電極1′の電極温度を制御すると共に、さらに
加工液4の温度をも制御するようにして前記電極温度を
、前述第2図の実施例の場合よシもよシ正確確実に所定
値に維持できるようにしたものである。この加工液4の
温度を制御する装置の構成は第2図に示しだ電極1の温
度を制御する装置の構成とはソ同様である。すなわち、
加工タンク3を含む循環路15と、該循環路15の途中
に設けた加工液貯槽20および加工液循環ポンプ17と
、加工液槽3内の加工液温度を検出する温度検出器18
と、加工液貯槽20内の加工液を加熱するヒータ21と
、該貯槽20内の加工液番外部に導出して循環させる循
環路22、ポンプ23、モータ24aを含むクーラ24
と、前記温度検出器18によって検出される加工液温度
が電極1′の電極消耗比が最低となる前記電極温度よシ
や\低い所定温度となるように前記ヒータ21、または
ポンプ23゛とモータ24aを制御して加工液温度を制
御するか、あるいはポンプ17による循環流量を変化さ
せる制御装置19とからなる0なお、本例の電極1′は
中実であってその非加工部の周囲には環状中空体16に
よって電極1′の周囲に前記温度調節用液体を流す通路
1 a’を設けると共に、前記ポンプ7や前記液体温度
制御装置6の制御は、通路1 a’の出口温度を温度検
出器8による検出温度によって行うようにしたものであ
る。
In FIG. 3, the electrode temperature of the electrode 1' is controlled, and the temperature of the machining fluid 4 is also controlled to ensure that the electrode temperature is more accurately and reliably controlled than in the embodiment shown in FIG. This allows it to be maintained at a predetermined value. The structure of the device for controlling the temperature of the working fluid 4 is shown in FIG. 2 and is the same as that of the device for controlling the temperature of the electrode 1. That is,
A circulation path 15 including a machining tank 3, a machining fluid storage tank 20 and a machining fluid circulation pump 17 provided in the middle of the circulation path 15, and a temperature detector 18 that detects the temperature of the machining fluid in the machining fluid tank 3.
, a heater 21 that heats the machining fluid in the machining fluid storage tank 20, a cooler 24 that includes a circulation path 22 that leads the machining fluid in the storage tank 20 to the outside and circulates it, a pump 23, and a motor 24a.
Then, the heater 21 or the pump 23' and the motor are set so that the machining fluid temperature detected by the temperature detector 18 is a predetermined temperature lower than the electrode temperature at which the electrode consumption ratio of the electrode 1' is the lowest. 24a to control the machining fluid temperature or a control device 19 that changes the circulating flow rate by the pump 17. Note that the electrode 1' in this example is solid, and there is a The annular hollow body 16 provides a passage 1a' through which the temperature regulating liquid flows around the electrode 1', and the control of the pump 7 and the liquid temperature control device 6 controls the outlet temperature of the passage 1a'. This is done based on the temperature detected by the detector 8.

このように加工液の温度制御も併せて行うようにすれば
、電極消耗比を低減する上で重要な電極の加工部の温度
も良好に制御維持することができるから、よシミ極消耗
比を低減することが可能となる0なお、加工液の温度制
御を行う場合には、加工タンク3内にヒータあるいは冷
媒流動用冷却コイルを設けて温度制御を行うことも可能
である。
If the temperature of the machining fluid is also controlled in this way, the temperature of the machined part of the electrode, which is important for reducing the electrode wear rate, can be maintained under good control, thereby reducing the stain and extreme wear rate. In addition, when controlling the temperature of the machining fluid, it is also possible to provide a heater or a cooling coil for coolant flow in the machining tank 3 to perform temperature control.

また電極1′又は被加工物2に加工液供給孔を設けて加
工間隙に加工液を供給する場合には、温度制御された加
工液を電極温度制御に用いることができる。
Further, when a machining fluid supply hole is provided in the electrode 1' or the workpiece 2 to supply machining fluid to the machining gap, the temperature-controlled machining fluid can be used to control the electrode temperature.

なお、この第3図の実施例に於て、加工液4の循環路1
5や加工液貯槽20部に於て、加液中の加工屑等を除去
する濾過装置、加工液4の性状を一定に保つように脱イ
オン、有機物や界面活性剤添加等各種の使用加工液に応
じた再生、調整手段装置等が省略されていることは明ら
かである。、第4図は本発明の他の実施例であシ、被加
工物2をセットする加工テーブル25の温度を制御する
ことによシ、被加工物2の温度も熱伝導によシ間接的に
前記電極温度又はそれよシも少し低目等適宜に制御でき
るようにしたものであり、本実施例でおいては、テーブ
ル25に温度調節用液体を通す蛇行状の孔26を設け、
該孔26に対して液体貯槽27とポンプ28とを有する
循環路29を形成し、貯槽27には加熱用ヒータ30と
、該貯槽27内の液体を外部に導出して循環させる循環
路31、ポンプ32およびモータ33aを含むクーラ3
3とを設け、前記孔26の出入口に設けた温度検出器3
4.34’による検出温度に応じて制御装置35によシ
ボンプ28、ヒータ30、クーラ用モータ33aを制御
することによシ、テーブル25の温度が所定の温度とな
るようにしたものである。この′構成によシ、テーブル
25の温度が所定の温度(電極消耗比が小となる電極温
度又はそれよシも少し高い温度して被加工物温度を前記
電極温度よシもや\低い温度)となるように制御するこ
とによシ、被加工物2の温度も熱伝導によって制御する
ことができ、電極1“のみの温度制御を行う場合に比べ
てよシ安定した電極温度の維持制御を行うことができる
。なお本実施例における電極1″は薄板状金属を所定形
状に成形し、その裏面に、液体通路を形成するパイプ3
6を埋設しかつ該裏面形状に合致する形状に成形した半
田等の低融点合金37を、熱伝導性に優れた粉粒体また
は熱伝導性ペイント38を介して密着させ、これを支持
枠39で着脱可能に支持したものであり、電極1“が消
耗すれば電極1″を低融点合金37から外すことができ
るので、電極を複数用いる場合に有利である。図面第5
図は、一部の構成に変更を加わえた本発明実施例の部分
図で、電極1″′と温度調節用液体との間に高熱伝導体
の所謂ヒートノ<イブ40を設けて、前記液体を第2〜
4図の実施例のように電極1.1’、1“内部や接触部
等一体の部分に供給流通させる必要がなく構成に自由度
を与えるようにしたものである。図に於て、1″は切削
成形、プレス成形、又は電鋳成形等によシミ極材で成形
され、必要に応じて裏打補強された電極で、電極スピン
ドル41の電極取付盤42に取り付けられ、かつ前記ヒ
ートパイプ40の通常吸熱端40aを電極1“の内面に
密着させて、図示実施例の場合電極t′の高温化が避け
られない尖鋭部1bに対応して1本が低融点合金等の充
填剤43によシ固定して設けられているが、電極t′の
各部等所要部を電極温度に維持制御するため所定の本数
並設すれば良く、そして、このヒートツクイブ40の他
端放熱端40bを図示の如く必要に応じて放熱フィン4
0cを取付けて、液体温度制御装置6カ)ら供給される
温度調節用液体の循環路44中に位置されることによシ
、ヒートノくイブ40の吸熱端40aの温度を放熱端4
0bとはソ同一に近い温度を保つよう冷却することがで
きる断力1ら、電極1″が例えば電鋳殻のような薄板状
のものであっても電極温度を所定の温度に制御維持する
ことができる0 なお本発明において用いられる加工液は水系のものに限
定されるものではないが、第1図からもわかるように、
水系のものに用いた場合に電極消耗比を低減する上で最
も有効でちる。該水系加工液としては、重量百分比で0
.1〜10%の水溶性のシリコーンオイルやアルキル、
アリル、エーテル等の好ましくは約100°C前後又は
それ以下の比較的低い曇点を有する非イオン性の界面活
性剤を純水に溶解したもの、さらに炭化水素油を0.1
〜5%又は金属、合金、炭素等の約1〜3μmφまたは
それ以下の微粒子0.5〜5チの一方又は両方を添加混
合したものが有効であって、また加工の態様としては、
上記第2〜4図で図示説明した加工間隙を加工液4中に
浸漬した状態で加工を行なう従来通常の加工方法の外、
前述第1図の特性曲線が得られた実験例として説明した
、加工間隙を加工液に対し非浸漬状態とし、カロエ間隙
へCよ該間隙で行なわれる放電加工作用によって全部乃
至は大部分の介在加工液が分解、燃焼、蒸気化等して加
工間隙から外部へ放出される状態を維持するように加工
液の供給や放電パルス、゛或いはさらに放電パルスの時
間的な発生させ方等を制御する態様の加工方式のものに
適用した場合にもさらに一段と有用なものである。
In the embodiment shown in FIG. 3, the circulation path 1 for the machining fluid 4
5 and 20 parts of the processing liquid storage tank, there is a filtration device to remove processing waste from the added liquid, deionization to keep the properties of the processing liquid 4 constant, and various processing liquids used such as addition of organic substances and surfactants. It is clear that the regeneration, adjustment means, etc. corresponding to the above are omitted. , FIG. 4 shows another embodiment of the present invention, in which the temperature of the workpiece 2 is indirectly controlled by heat conduction by controlling the temperature of the processing table 25 on which the workpiece 2 is set. In this embodiment, the temperature of the electrode or the like can be controlled as appropriate, such as to a slightly lower temperature.
A circulation path 29 having a liquid storage tank 27 and a pump 28 is formed in the hole 26; Cooler 3 including pump 32 and motor 33a
3, and a temperature sensor 3 provided at the entrance and exit of the hole 26.
The temperature of the table 25 is kept at a predetermined temperature by controlling the pump 28, the heater 30, and the cooler motor 33a by the control device 35 in accordance with the temperature detected by 4.34'. With this configuration, the temperature of the table 25 is set to a predetermined temperature (the electrode temperature at which the electrode consumption ratio is small, or a slightly higher temperature), and the workpiece temperature is lower than the electrode temperature. ), the temperature of the workpiece 2 can also be controlled by heat conduction, and the electrode temperature can be maintained more stably than when only the temperature of the electrode 1 is controlled. The electrode 1'' in this embodiment is formed by forming a thin metal plate into a predetermined shape, and a pipe 3 forming a liquid passage is provided on the back surface of the electrode 1''.
A low melting point alloy 37 such as solder, which is embedded in 6 and molded into a shape that matches the shape of the back surface, is adhered to the supporting frame 39 through powder or granular material with excellent thermal conductivity or thermally conductive paint 38 . This is advantageous when a plurality of electrodes are used, since the electrode 1'' can be detached from the low melting point alloy 37 if the electrode 1'' wears out. Drawing 5th
The figure is a partial view of an embodiment of the present invention with some changes made to the structure, in which a so-called heat nob 40 made of a high thermal conductor is provided between the electrode 1'' and the temperature regulating liquid to control the liquid. 2nd~
As in the embodiment shown in Figure 4, there is no need to supply and distribute the supply to integral parts such as the inside of the electrodes 1.1' and 1'' and the contact parts, giving flexibility in the configuration. ″ is an electrode formed from stain electrode material by cutting, press molding, electroforming, etc. and reinforced with lining if necessary, and is attached to the electrode mounting plate 42 of the electrode spindle 41 and is attached to the heat pipe 40. The normal heat-absorbing end 40a of the electrode 1'' is brought into close contact with the inner surface of the electrode 1'', and in the illustrated embodiment, one end is covered with a filler 43 such as a low-melting point alloy, corresponding to the sharp portion 1b where the temperature of the electrode t' cannot be avoided. However, in order to maintain and control the required parts of the electrode t' at the electrode temperature, it is sufficient to arrange a predetermined number of them in parallel. Heat dissipation fins 4 as needed.
0c and placed in the circulation path 44 of the temperature regulating liquid supplied from the liquid temperature control device 6), the temperature of the heat absorption end 40a of the heat nozzle 40 can be changed to the heat radiation end 4.
0b is a shearing force that can be cooled to maintain a temperature close to the same, and even if the electrode 1'' is in the form of a thin plate such as an electroformed shell, the electrode temperature can be controlled and maintained at a predetermined temperature. Note that the processing fluid used in the present invention is not limited to water-based fluids, but as can be seen from FIG.
It is most effective in reducing the electrode consumption ratio when used in water-based products. The aqueous processing fluid has a weight percentage of 0.
.. 1 to 10% water-soluble silicone oil or alkyl,
A nonionic surfactant having a relatively low clouding point, preferably around 100°C or less, such as allyl or ether, dissolved in pure water, and a hydrocarbon oil of 0.1
It is effective to add and mix one or both of ~5% or fine particles of metals, alloys, carbon, etc. with a diameter of about 1 to 3 μm or less, or 0.5 to 5 cm, and the processing mode is as follows:
In addition to the conventional machining method in which machining is performed while the machining gap is immersed in the machining liquid 4 as illustrated and explained in FIGS. 2 to 4 above,
As explained above as an experimental example in which the characteristic curve shown in FIG. Controls the supply of machining fluid, the discharge pulse, or the temporal generation of the discharge pulse, etc., so as to maintain a state in which the machining fluid decomposes, burns, vaporizes, etc. and is released from the machining gap to the outside. It is even more useful when applied to a processing method according to the embodiment.

また、先に詳細に説明した、ケロシン等の炭化水素油系
を使用する従来通常電気加工法の場合や、純水系の水を
加工液とする所謂仕上げ放電加工条件の電気加工の場合
にも、電極消耗がよシ低く或いはさらに加工精度が良い
、又は加工速度を従来よシも増大した加工条件で電極消
耗のより少ない前記電極温度が存在する場合がある訳で
、本発明は従来のそれ等の加工の場合に適用しても有用
なものである。
In addition, in the case of the conventional electric machining method using a hydrocarbon oil system such as kerosene, which was explained in detail earlier, and in the case of electric machining under so-called finishing electrical discharge machining conditions using pure water as the machining fluid, There are cases where the electrode temperature at which the electrode wear is lower is lower than that of the conventional one under processing conditions where the electrode wear is lower or the processing accuracy is better, or the processing speed is increased compared to the conventional one. It is also useful when applied to processing.

以上述べたように、本発明によれば、電極温度を電極消
耗比が最低となる温度に制御することが可能とガる。こ
のため、温度によって電極消耗比が太いに異なる水系加
工液を使用する電気加工装置に本発明を適用した場合に
は電極消耗比を大幅に低減させることが可能となシ、水
系加工液を実用に耐えるものとして利用することが可能
となる。
As described above, according to the present invention, it is possible to control the electrode temperature to the temperature at which the electrode consumption ratio is the lowest. Therefore, when the present invention is applied to electrical machining equipment that uses a water-based machining fluid whose electrode consumption ratio varies greatly depending on the temperature, it is possible to significantly reduce the electrode consumption ratio. It can be used as something that can withstand

従って本発明によれば、例えば数値制御方式の終夜無人
運転の放電加工を可能とし、また、電極が加工液浸漬状
態にないよう々加工態様、す々わち電極と被加工物を気
中に保って加工液の分解物や加工屑を加工液の噴射によ
シ火花と共に周りに飛散させる態様により、従来にない
加工速度を得ることも可能となる。
Therefore, according to the present invention, for example, electric discharge machining using a numerical control method can be operated unattended all night, and the machining mode is changed so that the electrode is not immersed in the machining fluid, that is, the electrode and the workpiece are immersed in the air. It is also possible to obtain an unprecedented machining speed by maintaining the machining fluid and scattering the decomposed products and machining debris around the machining fluid along with sparks by jetting the machining fluid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水系加工液を用いた場合の電極源゛度に対する
電極消耗比の相関図、第2図ないし第9図は本発明の実
施例をそれぞれ示す構成図である。 1 、1′、 1//、 IJ//・・・電極、la、
la’・・・通路、2・・被加工物、4・・・加工液、
5・・循環路、6・・・液体温度制御装置、7・・・ポ
ンプ、8.8’・・・温度検出器、9・・・制御装置 特許出願人 株式会社井上ジャパックス研究所代理人 
弁理士 若 1)勝 −
FIG. 1 is a correlation diagram of the electrode consumption ratio with respect to the electrode source degree when an aqueous machining fluid is used, and FIGS. 2 to 9 are block diagrams showing embodiments of the present invention. 1, 1', 1//, IJ//...electrode, la,
la'... passage, 2... workpiece, 4... machining fluid,
5...Circulation path, 6...Liquid temperature control device, 7...Pump, 8.8'...Temperature detector, 9...Control device patent applicant Inoue Japax Laboratory Co., Ltd. Agent
Young Patent Attorney 1) Katsu −

Claims (1)

【特許請求の範囲】 1、 加工テーブル上に被加工物がセットされ、該被加
工物と電極との間に加工液を介在させた状態で電圧パル
スを印加して発生する放電によシ加工を行う放電加工装
置において、前記電極を取シ付け、該電極の温度調節用
液体を流す通路を設けた電極装置と、該通路を含む温度
調節用液体の循環路と、該循環路に設けられた液体循環
用ポンプ、および該液体を加熱または冷却する温度制御
装置と、前記通路に供給される該液体の温度と流量の少
なくともいずれか一方を制御することによシ、前記電極
の温度が所定値と々るように制御する制御装置とを備え
たことを特徴とする放電加工装置。 2、前記加工液の温度を所定値に制御する加工液温度制
御装置をさらに備えたことを特徴とする特許請求の範囲
第1項記載の放電加工装置。 3、前記加工テーブルの温度を所定値に制御するテーブ
ル温度制御装置をさらに備えたことを特徴とする特許請
求の範囲第1項記載の放電加工装置。 4、前記電極装置に於て、一端が前記電極に、他端が前
記通路の液体に未々接するように介設された熱伝導体を
有することを特徴とする特許求の範囲第1項乃至第3項
の何れかに記載の放電加工装置。
[Claims] 1. Machining by electric discharge generated by applying a voltage pulse with a workpiece set on a processing table and a machining fluid interposed between the workpiece and an electrode. An electric discharge machining apparatus for performing the above-mentioned electrical discharge machining includes: an electrode device in which the electrode is mounted and a passage for a temperature regulating liquid of the electrode is provided; a circulation path for the temperature regulating liquid including the passage; The temperature of the electrode is maintained at a predetermined level by controlling at least one of the temperature and flow rate of the liquid supplied to the passage, a liquid circulation pump, a temperature control device for heating or cooling the liquid, and a temperature control device for heating or cooling the liquid. An electrical discharge machining device characterized by comprising a control device that controls the value so that the value is constant. 2. The electric discharge machining apparatus according to claim 1, further comprising a machining fluid temperature control device that controls the temperature of the machining fluid to a predetermined value. 3. The electric discharge machining apparatus according to claim 1, further comprising a table temperature control device for controlling the temperature of the machining table to a predetermined value. 4. The electrode device has a heat conductor interposed such that one end is in contact with the electrode and the other end is in contact with the liquid in the passageway. The electric discharge machining apparatus according to any one of Item 3.
JP19998482A 1982-11-15 1982-11-15 Electric discharge machining device Granted JPS5993238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19998482A JPS5993238A (en) 1982-11-15 1982-11-15 Electric discharge machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19998482A JPS5993238A (en) 1982-11-15 1982-11-15 Electric discharge machining device

Publications (2)

Publication Number Publication Date
JPS5993238A true JPS5993238A (en) 1984-05-29
JPH0232084B2 JPH0232084B2 (en) 1990-07-18

Family

ID=16416847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19998482A Granted JPS5993238A (en) 1982-11-15 1982-11-15 Electric discharge machining device

Country Status (1)

Country Link
JP (1) JPS5993238A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0226215A2 (en) * 1985-12-18 1987-06-24 Mitsubishi Denki Kabushiki Kaisha Electric spark machining apparatus
US4698477A (en) * 1984-06-04 1987-10-06 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machining apparatus with forced cooling system
JPH01175129U (en) * 1988-05-30 1989-12-13
JP2010125556A (en) * 2008-11-27 2010-06-10 Sodick Co Ltd Wire electric discharge machining apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346519A (en) * 1976-10-07 1978-04-26 Acf Ind Inc Motor driven rotary fuel pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346519A (en) * 1976-10-07 1978-04-26 Acf Ind Inc Motor driven rotary fuel pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698477A (en) * 1984-06-04 1987-10-06 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machining apparatus with forced cooling system
EP0226215A2 (en) * 1985-12-18 1987-06-24 Mitsubishi Denki Kabushiki Kaisha Electric spark machining apparatus
JPH01175129U (en) * 1988-05-30 1989-12-13
JP2010125556A (en) * 2008-11-27 2010-06-10 Sodick Co Ltd Wire electric discharge machining apparatus

Also Published As

Publication number Publication date
JPH0232084B2 (en) 1990-07-18

Similar Documents

Publication Publication Date Title
US7394040B2 (en) Electromachining process and apparatus
US2818490A (en) Means for use in the working of metals by electro-erosion
US5685971A (en) Apparatus and method for forming a variable diameter hole in a conductive workpiece
Amorim et al. Die-sinking electrical discharge machining of a high-strength copper-based alloy for injection molds
US4559115A (en) Method of and apparatus for machining ceramic materials
US4508950A (en) EDM Method and apparatus using liquid hydrocarbon decomposition yielded gases and a deionized water liquid
US4575603A (en) TW-Electroerosion with controlled flushing flow guidance means
JPS5993238A (en) Electric discharge machining device
JP2954736B2 (en) Control system for electric discharge machine
US2762946A (en) Automatic hydraulic servo feed for electric arc metal working machines
US4473733A (en) EDM Method and apparatus using hydrocarbon and water liquids
Dewangan Experimental investigation of machining parameters for EDM using U-shaped electrode of AISI P20 tool steel
JPS62255013A (en) Electro-chemical machining device
US2815435A (en) Spark machining apparatus
GB2103138A (en) Travelling-wire electric discharge machining method and apparatus with a cooled machining fluid
JP5636603B2 (en) Cutting apparatus and method using strong alkaline water
US3468784A (en) Electrical stock removal apparatus
US4649255A (en) EDM using a partition member to separate hydrocarbon and water liquids in the work tank
JP2008202093A (en) Discharge surface-treatment apparatus and discharge surface-treatment method
JPH0244649B2 (en)
US10556280B2 (en) Methods and systems for electrochemical machining
JPS5748431A (en) Wire-cut electric discharge machining device
Liu et al. Influence of discharge energy on EDM ablation
CN211387259U (en) Slow wire oil cutting machine
JPH025528B2 (en)