JPS5992375A - Radiation detecting method - Google Patents

Radiation detecting method

Info

Publication number
JPS5992375A
JPS5992375A JP57203389A JP20338982A JPS5992375A JP S5992375 A JPS5992375 A JP S5992375A JP 57203389 A JP57203389 A JP 57203389A JP 20338982 A JP20338982 A JP 20338982A JP S5992375 A JPS5992375 A JP S5992375A
Authority
JP
Japan
Prior art keywords
radiation
sensor
rays
optical fiber
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57203389A
Other languages
Japanese (ja)
Inventor
Akira Iino
顕 飯野
Shinichi Yano
慎一 矢野
Masayuki Nishimoto
西本 征幸
Masao Nishimura
西村 真雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP57203389A priority Critical patent/JPS5992375A/en
Publication of JPS5992375A publication Critical patent/JPS5992375A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To eliminate the need for a light transmitting means and to improve operatbility by using an optical fiber with a core part made of quartz glass containing an OH group as a radiation sensor, and receiving a radiation and causing fluorescence. CONSTITUTION:The sensor 1 made of the optical fiber consists of the core part 2 made of quartz glass containing an OH group and a clad part 3 made of silicone resin, and the OH-group content of the core part 1 is about 300-1,000. The radiation sensor 1 has such singular properties that it fluoresces intensely when receiving a radiation such as alpha-rays, electron rays, gamma-rays, X-rays, neutron rays, etc.

Description

【発明の詳細な説明】 本発明は簡易性、経済性、確実性などの諸点を満足させ
る放射線検知方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation detection method that satisfies various points such as simplicity, economy, and reliability.

放射性汚染の発見、放射物質の有無など、これの検知、
測定に関する技術分野では、放射線のもつ性質、あるい
は放射線と物質との相互作用により生じる物理的、化学
的変化などを検知する部分と該検知部からの情報(例え
ば電気信号)を処理ぜる処理部とからなるのが一般的で
あり、上記検知部を構成するための検知器としては、電
離箱、岸ξ本体検知器、比例計数管、ガイガミュラー計
数管、シンチレーション検知器、写真乳剤、熱ルミネセ
ンス素子、BF3カウンタなど、種々のものがすで(こ
提供されている。
Discovery of radioactive contamination, detection of the presence or absence of radioactive materials, etc.
In the technical field related to measurement, there is a part that detects the properties of radiation or physical or chemical changes caused by the interaction between radiation and substances, and a processing part that processes information (for example, electrical signals) from the detection part. Generally, the detectors used to configure the above-mentioned detection section include an ionization chamber, Kishi ξ main body detector, proportional counter, Geiger Muller counter, scintillation detector, photographic emulsion, and thermoluminescent detector. Various sensing elements, BF3 counters, etc. are already available.

上記各検知器にはそれぞれ長所と短所とがあるため、ξ
れらは検知状況、測定条件など(こ応じて使い分けられ
ている〇 一方、上記のものとは異なる放射線センサとして、光フ
ァイバが着目されており、この光ファイバの場合は七ン
サコヌトが低廉、検知領域への布設が簡単、センサ機能
が高いなど、各種の特徴が得られるとされている。
Since each of the above detectors has its own advantages and disadvantages, ξ
These are used depending on the detection situation, measurement conditions, etc. (〇) On the other hand, optical fibers are attracting attention as a radiation sensor different from the above ones, and in the case of this optical fiber, 7000 is inexpensive, It is said to offer various features such as easy installation in the detection area and high sensor functionality.

ところが、従来の光フアイバ利用による放射線検知方法
では、常時光ファイバ(こ光信号を通しておき、該光フ
ァイバが放射線を受けたときの伝送特性低下により放射
線の有無を検知していたため、通光手段が不可欠となり
、その分だけコストアツプヤ取り披い時の面倒が生じて
いた0 本発明は上記の問題点に鑑み、光ファイバを放射線セン
サとする方法に改良を加えたものであり、以下その具体
的方法を図示の実施例(仁より説明する。
However, in the conventional radiation detection method using optical fibers, the presence or absence of radiation was detected by constantly passing optical signals through the optical fiber and deteriorating the transmission characteristics when the optical fiber received radiation. In view of the above-mentioned problems, the present invention is an improvement to the method of using an optical fiber as a radiation sensor, and the specific method is described below. The illustrated embodiment will be explained below.

第1図は本発明における放射線センサ1を示したもので
あり、光ファイバからなる当該センサ1は、OH基を含
んだ石英ガラス製のコア部2と、シリコーン樹脂製のク
ラッド部3とで構成され、そのコア部1のOH基含有量
は300〜1000程度となっている。
FIG. 1 shows a radiation sensor 1 according to the present invention, and the sensor 1 made of an optical fiber is composed of a core part 2 made of quartz glass containing OH groups and a cladding part 3 made of silicone resin. The OH group content of the core portion 1 is about 300 to 1000.

上記の放射線センサ1はα線、電子線、γ線、X線、中
性子線などの放射線を受けたとき、螢光を強く発生する
といった特異な性質を有している。
The radiation sensor 1 described above has a unique property of strongly emitting fluorescence when exposed to radiation such as alpha rays, electron beams, gamma rays, X-rays, and neutron beams.

以下これにつき説明すると、放射線センサ1のコア部2
が上記のごと<OH基を含有していてこれ(こ放射線が
照射された場合、そのコア部2での正孔、電子は構造欠
陥に捕えられることなく再結合する。
To explain this below, the core part 2 of the radiation sensor 1
contains <OH groups as described above, and when this radiation is irradiated, the holes and electrons in the core part 2 recombine without being captured by structural defects.

つまり構造欠陥(Si−○)がOH基と結合して部分構
造(SiOH)となっているから、上記正孔、電頂はこ
れに捕られれず、したがってコア部21こO11基が多
く存在すると、放射線照射によって生成される正孔−電
子対のほとんどが再結合することとなり、これらの再結
合により螢光が発生し、その発生量も多くなる01だ、
実験の結果では、上記コア部2の外周にシリコーン樹脂
製のクラッド部3が設けられているとき、螢光発生量が
より大きくなった。
In other words, since the structural defect (Si-○) is combined with the OH group to form a partial structure (SiOH), the holes and electric peaks are not captured by this, and therefore, there are many O11 groups in the core part 21. , most of the hole-electron pairs generated by radiation irradiation will recombine, and these recombinations will generate fluorescence, and the amount of fluorescence generated will increase 01.
According to the results of experiments, when the cladding section 3 made of silicone resin was provided around the outer periphery of the core section 2, the amount of fluorescent light generated was greater.

つキ゛に各種光ファイバに約10’rad  の放射線
を照射し、これ(こより発生した螢光状況を下表【こ示
す。
Next, various optical fibers were irradiated with radiation of about 10'rad, and the resulting fluorescence is shown in the table below.

上記の表で明らかなように、放射線センサ1として光フ
ァイバはそのコア部2中に300〜11000pp程度
のOH基を含有しているのがよく、また、クラッド部3
としてはシリコーン樹脂製がよいといえる。
As is clear from the table above, the optical fiber used as the radiation sensor 1 preferably contains about 300 to 11,000 pp of OH groups in its core portion 2, and the cladding portion 3
It is best to use silicone resin.

本発明では上述した放射線センサ1を用いて放射線を検
知するのであり、これの1実施例では、第2図のごとく
放射線センサ1の一端を入射端とし、その他端番こシリ
コンフAトダイオード等からなる光電変換器4、電圧計
または電流計などの計器5を順次接続する。
In the present invention, radiation is detected using the radiation sensor 1 described above. In one embodiment of this, one end of the radiation sensor 1 is used as an incident end as shown in FIG. A photoelectric converter 4 and a meter 5 such as a voltmeter or an ammeter are sequentially connected.

このようにした放射線センサ1の入射端を放射性物質6
に向けると、該物質6かもの放射線が放射線センサ1内
に入射され、これ(こよりそのコア部2は螢光を発生す
ることとなり、該螢光は光電変換器4を介して電気信号
(こ変換された後、計器5(こよりその線量、線量率等
が電圧値または電流値に換算して読みとられる。
The incident end of the radiation sensor 1 thus constructed is connected to the radioactive material 6.
When the substance 6 is directed toward the sensor 1, some radiation enters into the radiation sensor 1, and the core 2 of the material 6 generates fluorescent light, which is converted into an electrical signal via the photoelectric converter 4. After the conversion, the dose, dose rate, etc. from the meter 5 are converted into voltage or current values and read.

この際、螢光を発生した放射線センサ1は、当該螢光発
生fこノ、(づく螢光色をおびるようlこなり、センサ
外周IC不透明の被覆がないかぎり、その螢光発生状態
は目視でも充分確認できるから、放射線の有無は目視の
みでも簡単番こわがる。
At this time, the radiation sensor 1 that has generated the fluorescent light is covered with a deep fluorescent color, and unless there is an opaque coating around the sensor's outer IC, the state of the fluorescent light generation can be visually confirmed. However, since it can be confirmed sufficiently, it is easy to check whether there is radiation or not just by visual inspection.

第2図のようfこして放射線を検知する場合、放射性物
質6の線量、線量率測定の他、放射線漏れの検査、放射
性物質の探査なども行なえる。
When detecting radiation using the method shown in FIG. 2, it is possible to measure the dose and dose rate of the radioactive substance 6, as well as inspect for radiation leakage and search for radioactive substances.

第3図の実施例は放射線検知と同時に放射線遮断システ
ム(安全装置)を作動させるようにしたものであり、こ
れを詳述すると、放射線源7を収容した放射線源室8の
外側【こ遮蔽室9、さら番こ該遮蔽室9の外仰[に作業
室10が設けられ、これら各室8.9.1oの境界に遮
蔽壁11.12が介在されているもの蓼こおいて、遮断
壁12の外側に遮蔽シャッタ13を備えておき、作業室
1o側から遮蔽室9内に放射線センサ1の一端(入射端
)を介在させるととも【こその他☆;1こは前記光電変
換器4を取りつけ、さら1こ回器4からの電気信号を、
リレー14、モータ15などが備えられた遮蔽シャッタ
13の駆動系16へ入力させるよう番こしたものである
In the embodiment shown in FIG. 3, a radiation shielding system (safety device) is activated at the same time as radiation is detected. 9. A working chamber 10 is provided on the outside of the shielding chamber 9, and a shielding wall 11.12 is interposed at the boundary between these chambers 8.9.1o. A shielding shutter 13 is provided on the outside of the shielding chamber 12, and one end (incident end) of the radiation sensor 1 is inserted into the shielding chamber 9 from the working chamber 1o side. Attach the electric signal from the converter 4,
The signal is arranged so as to be input to the drive system 16 of the shielding shutter 13, which is equipped with a relay 14, a motor 15, and the like.

上記第3図(こおいて、放射線源室8かも遮蔽室9への
放射線漏洩が生じていない正常時、遮蔽シャッタ13が
閉動されることはないが、上記礁蔽室9への放射線漏洩
が生じた場8、その漏洩放射線が放射線センサ1へ入射
され、同センサ1のコア部2で発生した螢光が光電変換
器4により電気信号に変換されてこれが駆動系16のリ
レー14(こ入力され、さらに該リレー14【こよりモ
ータ15が駆動して遮蔽シャッタ13が第3図の矢印方
向へ閉動される。
In FIG. 3 above (in this case, under normal conditions when there is no radiation leakage to the radiation source chamber 8 or shielding chamber 9, the shielding shutter 13 is not closed, but radiation leakage to the shielding chamber 9). When a field 8 occurs, the leaked radiation enters the radiation sensor 1, and the fluorescence generated in the core part 2 of the sensor 1 is converted into an electrical signal by the photoelectric converter 4, which is transmitted to the relay 14 of the drive system 16 (this The relay 14 then drives the motor 15 to close the shielding shutter 13 in the direction of the arrow in FIG.

したがって放射線漏洩といった非常事態が発生しても、
これと同時1こ遮蔽シャッタ13が閉動されるので作業
室1oの安全性が確保できる0なおこの際、漏洩放射線
を介して発生した螢光番こより放射線センサ1が螢光色
をおびるので、これにより放射線の検知は行なえるので
あり、また、必要ならば第3図の光電変換器4(こ前述
した計器6を接続しておいてもよい。
Therefore, even if an emergency situation such as a radiation leak occurs,
At the same time, the shielding shutter 13 is closed, ensuring the safety of the work room 1o.In addition, at this time, the radiation sensor 1 becomes fluorescent due to the fluorescence generated through the leaked radiation. This makes it possible to detect radiation, and if necessary, the photoelectric converter 4 shown in FIG. 3 (the above-mentioned instrument 6 may be connected).

Jす上説明した通り、本発明方法はO)1基を含んだ石
英ガラク製のコア部を有する光ファイバを放射線センソ
゛とし、放射線を受けた当該センサの螢光発生により放
射線を検知することを特徴としているので、元ファイバ
の伝送損失変化により放射線検知を行なう従来法と比べ
た場合、通光手段が省略でき、したがって大幅なコスト
ダウンがはかれるとともに検知時の操作性も簡易となり
、しかもコア部は結晶体のような烏価なものでなく、(
)II基を含んだ石英ガラスでよいからセンサ自体のコ
ストも低減でき、その応用範囲も放射線量、線量率など
の測足、放射性物質の探査、放射線源周辺の安全装置な
ど、各神あり、汎用性をも具備している。
As explained above, the method of the present invention uses an optical fiber having a core made of quartz glass containing one O as a radiation sensor, and detects radiation by the generation of fluorescence of the sensor that receives radiation. Compared to the conventional method of detecting radiation based on changes in the transmission loss of the original fiber, this method eliminates the need for light passing means, resulting in significant cost reductions and simplified operability during detection. is not an iris like a crystal, but (
) Since quartz glass containing II groups can be used, the cost of the sensor itself can be reduced, and the range of applications is wide ranging, such as measurement of radiation dose and dose rate, exploration of radioactive substances, safety devices around radiation sources, etc. It also has versatility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発明方法(こ用いる放射線センサの断面図、
第2図、第3図は本発明方法番こよる各柿1i’l射線
検知例を略示した説明図である。 1・・・・・放射線センサ(光ファイバ)2・・・・・
コア部 3・・・・・クラッド部 6・・・・・放射性物質 7・・・・・放射線源 特許出願人 代理人 弁理士  井 藤   誠
Figure 1 is a cross-sectional view of a radiation sensor used in the uninvented method.
FIGS. 2 and 3 are explanatory diagrams schematically showing an example of ray detection for each persimmon according to the method of the present invention. 1... Radiation sensor (optical fiber) 2...
Core part 3...Clad part 6...Radioactive material 7...Radiation source Patent applicant representative Patent attorney Makoto Ito

Claims (1)

【特許請求の範囲】 tl)OH基を含んだ石英ガラス製のコア部を有する元
ファイバを放射線センサとし、放射線を受けた当該セン
サの螢光発生により放射線を検知する放射線検知方法。 (2)  光ファイバはコア部の外周(こシリコーン樹
脂製のクラッド部を備えている特許請求の範囲第1項記
載の放射線検知方法。 (3)  コア部のOH基含有量は数百〜数千ppmで
ある特許請求の範囲第1項または第2項に記載の放射線
検知方法。
[Claims] tl) A radiation detection method in which a source fiber having a core made of quartz glass containing an OH group is used as a radiation sensor, and radiation is detected by fluorescence generation of the sensor upon receiving radiation. (2) The radiation detection method according to claim 1, wherein the optical fiber has a cladding made of a silicone resin on the outer periphery of the core. (3) The content of OH groups in the core is from several hundred to several hundred. The radiation detection method according to claim 1 or 2, wherein the amount of radiation is 1,000 ppm.
JP57203389A 1982-11-19 1982-11-19 Radiation detecting method Pending JPS5992375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57203389A JPS5992375A (en) 1982-11-19 1982-11-19 Radiation detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57203389A JPS5992375A (en) 1982-11-19 1982-11-19 Radiation detecting method

Publications (1)

Publication Number Publication Date
JPS5992375A true JPS5992375A (en) 1984-05-28

Family

ID=16473228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57203389A Pending JPS5992375A (en) 1982-11-19 1982-11-19 Radiation detecting method

Country Status (1)

Country Link
JP (1) JPS5992375A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880475A (en) * 1996-12-27 1999-03-09 Mitsubishi Denki Kabushiki Kaisha Scintillation fiber type radiation detector
JP2006046996A (en) * 2004-08-02 2006-02-16 Fujikura Ltd Multi-purpose radiation environment monitoring element
JP2013253912A (en) * 2012-06-08 2013-12-19 Shinetsu Quartz Prod Co Ltd Non-doped quartz glass sensor for radiation detection, and radiation leak detection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880475A (en) * 1996-12-27 1999-03-09 Mitsubishi Denki Kabushiki Kaisha Scintillation fiber type radiation detector
JP2006046996A (en) * 2004-08-02 2006-02-16 Fujikura Ltd Multi-purpose radiation environment monitoring element
JP4512780B2 (en) * 2004-08-02 2010-07-28 株式会社フジクラ Multipurpose radiation environment monitor element
JP2013253912A (en) * 2012-06-08 2013-12-19 Shinetsu Quartz Prod Co Ltd Non-doped quartz glass sensor for radiation detection, and radiation leak detection system

Similar Documents

Publication Publication Date Title
US5481114A (en) Process and apparatus for the simultaneous selective detection of neutrons and X or gamma photons
JP2748323B2 (en) Fissile material characterization device with at least one neutron detector embedded in a scintillator for gamma ray detection
EP2021831A2 (en) Neutron and gamma ray monitor
JPH06201835A (en) Transmission device for radiation ray detection light
JPH06235772A (en) Simultaneous selection detector for neutron, x-ray or gamma-ray photon
US3857036A (en) Encapsulated scintillation phosphor
JPS60188869A (en) Scintillation detector
US3600578A (en) Reactor power level sensing device using cherenkov radiation
JP4528274B2 (en) Scintillation detector and radiation detection apparatus
JPH1144768A (en) Radiation detector and radiation monitor using the same
JP2000206254A (en) Alpha ray and beta/gamma ray discrimination type radiation detector
US2954473A (en) Cerenkov radiation fission product detector
JPS5992375A (en) Radiation detecting method
RU2388015C1 (en) X-ray analyser
JP5669782B2 (en) Radioactivity inspection equipment
JPH08285949A (en) Radiation detection apparatus
JP2007225569A (en) Scintillation detector
CN114488256A (en) Novel multi-particle ray radiation detector
CN206440836U (en) Scintillator radiac
JP3462871B2 (en) Radiation detection optical transmission device
RU2088952C1 (en) Ionizing radiation detector
RU2217777C2 (en) Device for evaluating concentration of radioactive materials
JP7417824B2 (en) Radioactive substance measuring device
JPS6333179Y2 (en)
Finocchiaro et al. Field tests of the MICADO monitoring detectors in real radwaste storages