JPS5992025A - Preparation of oxidation catalyst - Google Patents

Preparation of oxidation catalyst

Info

Publication number
JPS5992025A
JPS5992025A JP57203370A JP20337082A JPS5992025A JP S5992025 A JPS5992025 A JP S5992025A JP 57203370 A JP57203370 A JP 57203370A JP 20337082 A JP20337082 A JP 20337082A JP S5992025 A JPS5992025 A JP S5992025A
Authority
JP
Japan
Prior art keywords
slurry
vanadium
vanadyl phosphate
phosphorus
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57203370A
Other languages
Japanese (ja)
Other versions
JPH0424103B2 (en
Inventor
Masayuki Otake
大竹 正之
Masayoshi Murayama
村山 正義
Yuji Kawaragi
裕二 河原木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP57203370A priority Critical patent/JPS5992025A/en
Priority to US06/473,196 priority patent/US4472527A/en
Priority to GB08306615A priority patent/GB2118060B/en
Priority to DE3311681A priority patent/DE3311681C2/en
Priority to CA000424905A priority patent/CA1186674A/en
Priority to KR1019830001332A priority patent/KR900009016B1/en
Priority to US06/591,997 priority patent/US4520127A/en
Publication of JPS5992025A publication Critical patent/JPS5992025A/en
Publication of JPH0424103B2 publication Critical patent/JPH0424103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To enhance the flowability, the strength and the activity of a catalyst, by a method wherein a slurry prepared by mixing a solution containing phosphoric acid and tetravalent V and a silica sol in a slurry containing specific P-V type crystalline oxide is spray dried and the obtained composition is baked. CONSTITUTION:An aqueous solvent containing pentavalent P and tetravalent V is heated to 110-250 deg.C to prepare an aqueous slurry containing V-P type crystalline oxide showing X-ray diffraction spectrum (to a cathode, Cu-Kalpha) at 2theta(+0.2 deg.), 15.7 deg., 19.6 deg., 24.2 deg., 27.0 deg., 28.8 deg. and 20.4 deg.. A vanadyl phosphate solution containing phosphoric acid and tetravelent vanadium and having vanadyl phosphate formed by a part thereof and a silica sol are mixed in said aqueous slurry to prepare a homogeneous slurry. This slurry is spray dried and the formed solid particle is baked to obtain a V-P type oxidation catalyst.

Description

【発明の詳細な説明】 本発明は酸化触媒の製造法に関するものであり、特にn
−ブタンの接触気相酸化による無水マレイン酸の製造に
好適な触媒の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an oxidation catalyst, and in particular to a method for producing an oxidation catalyst.
- A method for producing a catalyst suitable for the production of maleic anhydride by catalytic gas phase oxidation of butane.

バナジウム、リンおよび酸素を含む槌成物が、ブタン、
ブテン、ブタジェンなどの接触気相酸化による無水マレ
イン酸の製造に有効な触媒であることは公知であり、そ
の製造法についても禮々の提案がなされている。とくに
n−ブタンからの無水マレイン酸の製造には、下記第1
表の特徴的なX線回折スペクトルを示す結晶性化合物で
あるピロ燐酸バナジル((■0)t”20.)が有効で
あるとされている( B、 Bordθs、P。
A hammer compound containing vanadium, phosphorus and oxygen is used to produce butane,
It is known that it is an effective catalyst for the production of maleic anhydride by catalytic gas phase oxidation of butene, butadiene, etc., and numerous proposals have been made regarding its production method. In particular, for the production of maleic anhydride from n-butane, the following
Vanadyl pyrophosphate ((■0)t''20.), a crystalline compound that shows the characteristic X-ray diffraction spectrum shown in the table, is said to be effective (B, Bordθs, P.

Courtine 、J、0ata1.、!rり 、x
36(/yzv))。
Courtine, J., 0ata1. ,! ri, x
36 (/yzv)).

第1表 (vO)*P*Oy (D X線回折スペクトル(対陰
極;0u−Ka)−〇(±0.2°) 強度比 /ダ、2°          20 /S、70           .20/l、に02
0 コ3.00        700 2g、グ0         90 3o、oo           s 。
Table 1 (vO)*P*Oy (D ni02
0 ko 3.00 700 2g, g 0 90 3o, oo s.

33.7’             lI。33.7' lI.

a6.go           ダO一方、n−ブタ
ンの接触気相酸化による無水マレイン酸の製造は大きな
発熱を伴うので、流動床反応方式が適当であると考えら
れている。
a6. On the other hand, since the production of maleic anhydride by catalytic gas phase oxidation of n-butane is accompanied by a large exotherm, a fluidized bed reaction system is considered appropriate.

本発明はリンおよびバナジウムを含み、第1表のxfm
回折スペクトルと合致する回折スペクトルを与え、かつ
流動床に用いるのに好適な触媒を製造する方法を提供す
るものである。
The present invention includes phosphorus and vanadium, and the xfm of Table 1
A method is provided for producing a catalyst that provides a diffraction spectrum that matches the diffraction spectrum and is suitable for use in fluidized beds.

本発明によれば、五個のリンおよび四価のバナジウムを
含有する水性溶液を//θ〜コSO酸化物を含む水性ス
ラリーを得る第1工程、第7エ程で得られたスラリーに
、リン酸および四価のバナジウムを含みかつその少くと
も一部がリン酸バナジルを形成しているリン酸バナジル
溶液並びにシリカゾルを混合して均質なスラリーとする
笛コニ程、第2工程で得られたスラリーを噴霧乾燥する
第3工程、第3工程で生成した固体粒子を焼成する第ダ
ニ程の各工程を順次行なうことにより、第1表のX線回
折スペクトルと合致するスペクトルを示し、かつ流動床
に用いるのに好適ガバナジウムーリン系酸化触媒を製造
することができる。
According to the present invention, an aqueous solution containing five phosphorus and tetravalent vanadium is added to the slurry obtained in the seventh step of the first step of obtaining an aqueous slurry containing //θ~coSO oxide, A homogeneous slurry obtained by mixing a vanadyl phosphate solution containing phosphoric acid and tetravalent vanadium and at least a part of which forms vanadyl phosphate and silica sol is obtained in the second step. By sequentially performing the third step of spray drying the slurry and the second step of firing the solid particles generated in the third step, a spectrum matching the X-ray diffraction spectrum shown in Table 1 can be obtained, and the fluidized bed A governoradium-phosphorous oxidation catalyst suitable for use in the present invention can be produced.

′第3表 X線回折スペクトル(対陰極;Ou−にα)コθ(±0
.2°) 強度比 /!r、り’          100/9.A0!
j;0 24t、コOIIθ コク o6           ダ5コざ、ざ0  
    コS 3θ、4g0gθ (他に、1g、に0、J /、to、32..2°に強
度比10−20程度の弱いピークが見られる)本発明に
ついて詳細に説明すると、本発明では第7エ程として、
四価のバナジウムおよび五個のリンを含有し、かつ第2
表に示すX線回折スペクトルを与える結晶性複合酸化物
を水熱合成により製造する。第2表に示すX線回折スペ
クトルを与えるリン−バナジウム系結晶性複合酸化物は
公知であり、いくつかの製造方法が報告されている(特
開昭5/−9,!;夕90号、同s6−1目lS号、U
、S、P、 41.コt3.λgt号参照)。
'Table 3 X-ray diffraction spectrum (anticathode; α to Ou)
.. 2°) Intensity ratio/! r, ri' 100/9. A0!
j;0 24t, KOIIθ KOKU o6 da5koza,za0
koS3θ, 4g0gθ (In addition, a weak peak with an intensity ratio of about 10-20 is seen at 1g, 0, J/, to, 32..2°) To explain the present invention in detail, the present invention As the 7th degree,
Contains tetravalent vanadium and five phosphorus, and
A crystalline composite oxide giving the X-ray diffraction spectrum shown in the table is produced by hydrothermal synthesis. Phosphorus-vanadium-based crystalline composite oxides that give the X-ray diffraction spectra shown in Table 2 are known, and several manufacturing methods have been reported (Japanese Patent Application Laid-open No. 5/-9, 1983; No. 90, Same s6-1 IS No., U
, S, P, 41. Kot3. (See λgt issue).

これら公知の方法と異なり、本発明方法では水熱合成に
より、上述の結晶性複合酸化物を製造する。この方法に
よれば、コールタ−カウンター法による平均粒子径が0
.2〜70μという極めて微細な結晶が生成する。従っ
て濾過により分離することは必ずしも容易ではないが、
スラリーのま甘で他の成分を加えて噴霧乾燥して触媒と
するにはかえって好都合である。水熱合成は五酸化バナ
ジウムのような五個のバナジウム化合物を、リン酸と抱
水ヒドラジンのような非ハロゲン系還元剤を含む酸性水
溶液中で反応させて、王として四価のバナジウムとリン
酸を含む水性溶液とし、次いでこれを密閉容器中で/l
θ〜2jOC好ましくは/2θ〜lざOCに0.3−2
0θ時間程度保持することにより行なわれる(特願昭!
t−32//θ号参照)。酸性水溶液中のリン酸濃度は
5〜Sθ(重量)係、好ましくは5〜3t(重量)%で
ある。リン酸濃度が高すぎると、五酸化バナジウムが還
元される以前にリン酸と反応する可能性があり、液粘度
も著るしく高くなって取扱いが困難となる。
Unlike these known methods, the method of the present invention produces the above-mentioned crystalline composite oxide by hydrothermal synthesis. According to this method, the average particle diameter determined by the Coulter counter method is 0.
.. Extremely fine crystals of 2 to 70 microns are produced. Therefore, it is not always easy to separate by filtration, but
It is rather convenient to add other ingredients to the slurry and spray dry it to use as a catalyst. Hydrothermal synthesis involves reacting five vanadium compounds, such as vanadium pentoxide, in an acidic aqueous solution containing phosphoric acid and a non-halogen reducing agent such as hydrazine hydrate. an aqueous solution containing
θ~2jOC preferably /2θ~lzaOC 0.3-2
This is done by holding it for about 0θ time (Tokugansho!
(See t-32//θ issue). The phosphoric acid concentration in the acidic aqueous solution is 5 to Sθ (weight), preferably 5 to 3 t (weight) %. If the phosphoric acid concentration is too high, vanadium pentoxide may react with the phosphoric acid before being reduced, and the liquid viscosity will also become significantly high, making handling difficult.

ま念、還元剤の使用陛は、五個のバナジウムを四価に還
元するに要する化学量論量で十分であり、通常その95
〜/2θ係の範囲で使用される。還元剤としてはヒドラ
ジン、ヒドロキシルアミンtたはこれらのリン酸mなど
のような非ハロゲン系の無機還元剤が好ましい。所望な
らばシュウ酸などの有機還元剤も用い得るが、工業的に
は有利では々い。なお、バナジウムの還元は、予じめリ
ン酸および還元剤を溶解して調製した酸性水溶液中に、
五酸化バナジウムを添加することにより行たうべきであ
り、これにより神度のよい結晶を生成させることができ
る。
Please note that the stoichiometric amount of reducing agent required to reduce five vanadiums to tetravalent is sufficient, and usually 95
It is used in the range of ~/2θ. The reducing agent is preferably a non-halogen inorganic reducing agent such as hydrazine, hydroxylamine, or their phosphoric acid. If desired, an organic reducing agent such as oxalic acid may also be used, but this is not industrially advantageous. In addition, vanadium is reduced by dissolving phosphoric acid and a reducing agent in an acidic aqueous solution prepared in advance.
This should be done by adding vanadium pentoxide, which can produce crystals of high quality.

水熱合成に際しては、水溶液中に微粉砕した種結晶を少
量添加するのが好ましい。この水熱合成により生成する
結晶性複合酸化物は、はぼ(V2O3) (ptOs)
 (2HtO) ’7)組成式テ表ワスコトカテきる。
During hydrothermal synthesis, it is preferable to add a small amount of finely ground seed crystals to the aqueous solution. The crystalline composite oxide produced by this hydrothermal synthesis is Habo (V2O3) (ptOs).
(2HtO) '7) The composition formula can be seen.

従って、リンとバナジウムの比は、P/V原子比で理論
的には八〇であるので、バナジウム化合物と、リン化合
物は、P/V原子比でθ1g〜ハ2jの範囲内で反応さ
せるのが好ましい。
Therefore, since the ratio of phosphorus to vanadium is theoretically 80 in P/V atomic ratio, the vanadium compound and phosphorus compound should be reacted within the range of θ1g to HA2j in P/V atomic ratio. is preferred.

またこの結晶性複合酸化物のバナジウムは、バナジウム
イオンとのイオン半径の差の小さい各種の金属イオンで
一部置換されていてもよい。
Further, vanadium in this crystalline composite oxide may be partially substituted with various metal ions having a small difference in ionic radius from vanadium ions.

このような金属イオンとしては、鉄、クロム、アルミニ
ウム、チタン、コバルト、マクネシウム等のイオンが挙
げられる。このよう女金属イオンで一部置換された複合
酸化物は、触媒とした際、活性の向上及び活性の安定化
に著しい改善をもたらすことができる。置換の割合は結
晶性複合酸化物におけるこれらの金属の比率がバナジウ
ムlグラム原子あた多金属として0.002〜O1弘、
より好ましくは0.07〜O32グラム原子と々る範囲
で選択される。複合酸化物にこのような他の金属イオン
を導入するには、水熱合成系にこれらの金属イオンを塩
酸塩、硫酸塩、硝酸塩、炭酸塩等の無機塩、シュウ酸塩
等の有機塩の形で添加する方法があげられる。
Examples of such metal ions include ions of iron, chromium, aluminum, titanium, cobalt, magnesium, and the like. When such a composite oxide partially substituted with female metal ions is used as a catalyst, it can significantly improve the activity and stabilize the activity. The substitution ratio is such that the ratio of these metals in the crystalline composite oxide is 0.002 to 0.01 h as polymetal per 1 gram atom of vanadium,
More preferably, it is selected within the range of 0.07 to O32 gram atom. In order to introduce such other metal ions into the composite oxide, these metal ions are added to the hydrothermal synthesis system using inorganic salts such as hydrochloride, sulfate, nitrate, carbonate, etc., or organic salts such as oxalate. One method is to add it in the form of

このようにして得られる置換固溶型の複合酸化物のX線
回折パターンは、第2表に示したピークから若干シフト
するが、−〇〇が±0.2°以内である。
The X-ray diffraction pattern of the substituted solid solution type composite oxide thus obtained is slightly shifted from the peaks shown in Table 2, but -〇〇 is within ±0.2°.

本発明において、上述の第1工程で得られたスラリーに
添加するリン酸バナジル溶液は、四価のバナジウムと五
個のリンを含有し、その少くとも一部がリン酸バナジル
として存在する溶液である。
In the present invention, the vanadyl phosphate solution added to the slurry obtained in the first step described above is a solution containing tetravalent vanadium and five phosphorus, at least a part of which exists as vanadyl phosphate. be.

この溶液は、第1工程で得られたスラリー中の複合酸化
物と後述する担体としてのシリカゾルとのバインダーと
しての効果を有し、流動触媒の流動性、強度の向上に寄
与する。この溶液の判決は特に限定的ではないが、以下
にその数例を示す。
This solution has the effect of acting as a binder between the composite oxide in the slurry obtained in the first step and the silica sol as a support described later, and contributes to improving the fluidity and strength of the fluidized catalyst. Although the judgment of this solution is not particularly limited, some examples are shown below.

一般的には五個のリン化合物、例えば、リン酸を含有す
る水性溶液に、還元剤と五酸化バナジウムを添加溶解し
て得られる。水性溶液中のバナジウム元素に対するリン
元素の原子比はθ、!〜lθの範囲が好ましい。一般に
リン酸バナジルを含有する水性溶液は不安定であシ、長
時間安定に保つことは困難な場合があるため、水性溶液
の安定化のためにシュウ酸を存在させることができる。
Generally, it is obtained by adding and dissolving a reducing agent and vanadium pentoxide in an aqueous solution containing five phosphorus compounds, for example, phosphoric acid. The atomic ratio of phosphorus to vanadium in an aqueous solution is θ,! A range of ˜lθ is preferable. Generally, aqueous solutions containing vanadyl phosphate are unstable and may be difficult to keep stable for long periods of time, so oxalic acid may be present to stabilize the aqueous solution.

その量はバナジウム元素に対するシュウ酸のモル比でハ
コ以下、好ましくはO,ユ〜lの範囲である。シュウ酸
の量があまり多いと、触媒の機械的強度、嵩密度、活性
面に好ましくない影響を与える。換言すれば、バナジウ
ム元素に対するシュウ酸のモル比がハコ以下という範囲
は、シュウ酸バナジルを形成しない範囲ということがで
きる。
The amount is in the molar ratio of oxalic acid to vanadium element, and is preferably in the range of 0.0 to 1. If the amount of oxalic acid is too large, it will have an unfavorable effect on the mechanical strength, bulk density and active surface of the catalyst. In other words, a range in which the molar ratio of oxalic acid to vanadium element is less than or equal to 50% can be said to be a range in which vanadyl oxalate is not formed.

水性溶液のjJll法の一1体例としては次のような方
法がある。
Examples of the jJll method for aqueous solutions include the following methods.

第1に、リン酸およびシュウ酸を含有する水性溶液に、
五酸化バナジウムを、バナジウム原子に対するシュウ酸
のモル比が八り以下で、かつ好ましくtd、0.7以上
となるように添加して、リン酸バナジル及びシュウ酸を
含有する水性溶液とする方法である。具体的には、リン
酸を含有する酸性水性媒体中にシュウ酸を溶解し、五酸
化バナジウムを若干の加温により還元が進行する温度に
保ちつつ添加することによって製造する。この方法によ
れば、還元終了後は、バナジウム原子に対し、ハコモル
以下のシュウ酸が存在することになる。
First, in an aqueous solution containing phosphoric acid and oxalic acid,
A method of preparing an aqueous solution containing vanadyl phosphate and oxalic acid by adding vanadium pentoxide so that the molar ratio of oxalic acid to vanadium atoms is 8 or less, and preferably td, 0.7 or more. be. Specifically, it is produced by dissolving oxalic acid in an acidic aqueous medium containing phosphoric acid, and adding vanadium pentoxide while maintaining the temperature at which reduction proceeds by slight heating. According to this method, after the completion of the reduction, less than half a mole of oxalic acid exists per vanadium atom.

第一に、リン酸を含有する酸性水性溶液にシュウ酸以外
の還元剤、好ましくは抱水ヒドラジン、ヒドラジンまた
はヒドロキシルアミンの塩酸塩、リン酸塩等の無機還元
剤、乳酸のような有機還元剤から選ばれる一種または二
種以上の混合物を添加し、次いで五酸化バナジウムを添
加して還元し、均一がリン酸バナジル含有水性溶液を得
る、この後、好ましくはシュウ酸を添加する。
First, a reducing agent other than oxalic acid is added to an acidic aqueous solution containing phosphoric acid, preferably an inorganic reducing agent such as hydrazine hydrate, hydrochloride or phosphate of hydrazine or hydroxylamine, or an organic reducing agent such as lactic acid. One or a mixture of two or more selected from the following are added, and vanadium pentoxide is then added to reduce the solution to obtain a homogeneous aqueous solution containing vanadyl phosphate. After this, oxalic acid is preferably added.

第3に、五酸化バナジウム、リン酸および亜リン酸を水
性媒体中に混合し、亜リン酸の還元作用により四価のバ
ナジウムイオンとする方法である。この方法で得られる
リン酸バナジルを含有する水溶液からは、数行すると下
記第3表に示すようなQ機内なX線回折スペクトルを与
える結晶性固体が析出する。
The third method is to mix vanadium pentoxide, phosphoric acid and phosphorous acid in an aqueous medium and convert the mixture into tetravalent vanadium ions by the reducing action of the phosphorous acid. From the aqueous solution containing vanadyl phosphate obtained by this method, a crystalline solid which gives a Q in-machine X-ray diffraction spectrum as shown in Table 3 below precipitates after a few steps.

第3表 (対陰極;Ou−にα) このような結晶性固体の析出は、本発明の目的からは好
ましくなく、水溶液を長時間安定に保つ必要がある場合
にはシュウ酸を添加するのが好ましい。
Table 3 (Anticathode; α to Ou) Such precipitation of crystalline solids is not desirable from the purpose of the present invention, and when it is necessary to keep the aqueous solution stable for a long time, oxalic acid should not be added. is preferred.

上記のバナジウムおよびリンを含有するリン酸バナジル
溶液には、必要に応じてアルコール、クトン、エーテル
等の有機溶媒が併用されていてもかまわない。
The vanadyl phosphate solution containing vanadium and phosphorus may contain an organic solvent such as alcohol, chthon, or ether, if necessary.

本発明においては、第1工程で得られたスラリーに上述
のリン酸バナジル溶液およびシリカゾルを混合してスラ
リーを調製し、噴穆乾燥する。シリカゾルはあらかじめ
10−A;0重−t%の濃度として調製しておき、第1
工程で得られたスラリーおよびリン酸バナジル溶液と混
合して攪拌し、均一なスラリーとする。第1工程のスラ
リー、リン酸バナジル溶液およびシリカゾルの割合は、
乾燥型i%でスラリーニリン酸バナジル溶液=、20:
ざθ〜gθ:2θ、リン酸バナジルM液ニジリカゾル=
ro:so〜りθ:/θ、スラリー:シリカゾル−go
 : so〜?θ:10の範囲内で選択される。なおリ
ン酸バナジル溶液の乾燥M量は、バナジウムおよびリン
ヲv204およびP2O1+として計算することもでき
る。
In the present invention, a slurry is prepared by mixing the above-mentioned vanadyl phosphate solution and silica sol with the slurry obtained in the first step, and the slurry is blown and dried. The silica sol was prepared in advance at a concentration of 10-A; 0 wt%, and the first
The slurry obtained in the step and the vanadyl phosphate solution are mixed and stirred to form a uniform slurry. The proportions of the slurry, vanadyl phosphate solution and silica sol in the first step are:
Slurry vanadyl diphosphate solution in dry form i% = 20:
Z θ ~ g θ: 2 θ, vanadyl phosphate M liquid nizirikasol =
ro:so~riθ:/θ, slurry: silica sol-go
: So~? θ: Selected within a range of 10. Note that the dry M amount of the vanadyl phosphate solution can also be calculated as vanadium, phosphorus, and P2O1+.

第1工程のスラリーおよびリン酸バナジル溶液の量がシ
リカゾルに対してあまりに少々いと。
The amount of slurry and vanadyl phosphate solution in the first step is too small relative to the silica sol.

触媒強度は向上するが、活性の低下がみられる。Catalyst strength improves, but activity decreases.

また、リン酸バナジル溶液の量が、第1工程のスラリー
に対して上記範囲を下回ると、触媒強度が低下する傾向
にある。
Furthermore, if the amount of the vanadyl phosphate solution is less than the above range relative to the slurry in the first step, the catalyst strength tends to decrease.

第1工程のスラリー、リン酸バナジル溶液およびシリカ
ゾルの混合に際しては、ボールミル、ロッドミル、攪拌
ミル、サンドグラインダー、ウルトラホモミキサー、ウ
ルトラタラックス、超音波ミル等の湿式混合装置を用い
て、できるだけ均質なスラリーとするのが好ましい。
When mixing the slurry, vanadyl phosphate solution, and silica sol in the first step, use a wet mixing device such as a ball mill, rod mill, stirring mill, sand grinder, Ultra Homo Mixer, Ultra Turrax, or ultrasonic mill to achieve as homogeneous mixing as possible. Preferably, it is a slurry.

上述の第一工程で得られたスラリーは、次いで噴霧乾燥
して球状の固体粒子とする。噴霧乾燥の条件は、通常、
乾燥ガスの入口温度が一〇θ〜3SOC1出口温度が1
00〜3!QCとなるようにする。また、給液景とディ
スク回転数を調節して、噴霧乾燥により得られる固体粒
子の粒子径の平均値が3θ〜looミクロン程度の範囲
になる様にする。平均粒子径のより好ましい範囲はダo
〜70ミクロンである。
The slurry obtained in the first step described above is then spray dried into spherical solid particles. Spray drying conditions are usually
Inlet temperature of drying gas is 10θ~3SOC1 outlet temperature is 1
00~3! Ensure that QC is achieved. Further, the liquid supply angle and the disk rotation speed are adjusted so that the average particle diameter of the solid particles obtained by spray drying is in the range of about 3θ to loo microns. A more preferable range of average particle diameter is
~70 microns.

以上のようにして得られた固体粒子は、さらに焼成して
酸化触媒とする。焼成は通常tio。
The solid particles obtained as described above are further calcined to form an oxidation catalyst. Firing is usually tio.

〜toor2.好ましくけダ左0〜6001Z’−で行
々われる。焼成の雰囲気としては、空気またはブタン、
ブテン類等の有機物を含む空気を用いることができる。
~toor2. Preferably, this is done from 0 to 6001Z'-. The firing atmosphere is air or butane,
Air containing organic substances such as butenes can be used.

アルゴン、窒素等の不活性ガス雰囲気中での焼成も行な
われる。この焼成により、固体粒子中の第1工稈で生成
した結晶性酸化物は第1表に示すX線回折パターンを与
える複合酸化物に変化する。
Firing may also be carried out in an inert gas atmosphere such as argon or nitrogen. By this firing, the crystalline oxide produced in the first culm in the solid particles is changed into a composite oxide giving the X-ray diffraction pattern shown in Table 1.

本発明方法により得られる酸化触媒は、流動性5強度お
よび活性に優れ、炭素数グの炭化水素、とくにn−ブタ
ンの酸化による無水マレイン酸の製造用触媒として好適
である。
The oxidation catalyst obtained by the method of the present invention has excellent fluidity, strength, and activity, and is suitable as a catalyst for producing maleic anhydride by oxidizing hydrocarbons having several grams of carbon atoms, particularly n-butane.

以下に実施例により本発明をさらに具体的に説明するが
、本発明はその要旨を超えない限り、以下の実施例に限
定されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

実施例−/ く結晶性酸化物スラリーの夷ll造〉 100tのグラスライニングを施したジャケット付き耐
圧容器に、脱塩水3g、θへ、g3係リン酸−へg3k
g、KO%抱水ヒドラジン溶液2、gjkyを仕込み、
次いで攪拌しなから五酸化バナジウム粉末/A、1IO
ky、を発泡に注意して少」−ずつ添加溶解した。この
間、発熱による温度上昇を抑えて滑温をtθ〜gOCに
保つため、低温熱媒をジャケット内に循環して除熱した
Example - Preparation of crystalline oxide slurry In a 100 t glass-lined jacketed pressure vessel, add 3 g of demineralized water, 3 g of θ, and 3 g of G3 phosphoric acid.
g, KO% hydrazine hydrate solution 2, prepare gjky,
Then, without stirring, add vanadium pentoxide powder/A, 1IO
ky was added and dissolved in small portions, being careful not to foam. During this time, in order to suppress the temperature rise due to heat generation and maintain the slip temperature between tθ and gOC, a low-temperature heating medium was circulated inside the jacket to remove heat.

五酸化バナジウムを約7時間で添加終了し、青色のリン
酸バナジル溶液を得た。これに種結晶/、Okgを添加
し、次いで/AOCの熱媒をジャケット内に循環して加
熱した。液温度/ダOCまで2時間で昇温し、その壕ま
10時間の水熱処理を行なった。この間圧力は約−,4
1kgであった。?OCまで冷却後、脱塩水10,3k
gを加え、スラリー中の固体濃度を約35チに調節して
抜出した。この固体のX線回折測定を行なったところ、
第2表に示す主要回折ピークを示すことが判明し、純粋
な結晶性酸化物であることを確認した。捷たコールタ−
カウンター法でスラリー中の固体の粒子径分布を調べた
ところ、θ、りμの平均粒子径を示した。この酸化物ス
ラリーの仕込み基準のP/′v原子比は八〇Sである。
Addition of vanadium pentoxide was completed in about 7 hours, and a blue vanadyl phosphate solution was obtained. Seed crystals /, Okg were added to this, and then /AOC heating medium was circulated inside the jacket to heat it. The temperature was raised to the liquid temperature/DaOC in 2 hours, and the trench was subjected to hydrothermal treatment for 10 hours. During this time, the pressure is approximately -,4
It was 1 kg. ? After cooling to OC, demineralized water 10.3k
g was added to adjust the solid concentration in the slurry to about 35 g, and the slurry was discharged. When we performed X-ray diffraction measurements on this solid, we found that
It was found that it exhibited the main diffraction peaks shown in Table 2, and it was confirmed that it was a pure crystalline oxide. broken coulter
When the particle size distribution of the solid in the slurry was investigated using a counter method, the average particle size of θ and μ was shown. The charging standard P/'v atomic ratio of this oxide slurry is 80S.

〈リン酸バナジル溶液の製造〉 脱塩水5oky)にgs係リン酸6.ヲコタにノ、シュ
ウ酸(H2O,0,・uH20)ダ、7g9kgを添加
し、ざθCまで加熱攪拌しながら溶解した。次いで五酸
化バナジウム11.3/9に、ψを少惜ずつ発泡にグラ
ム原子あたりθ0gグラムモルのシュウ酸を含んでいる
、またこの溶液は安定であり、常温で77月保存しても
固体析出をおこさなかった。
<Production of vanadyl phosphate solution> Add 6.0 kg of gs phosphoric acid to 5.0 kg of demineralized water. To Wokota, 7 g and 9 kg of oxalic acid (H2O, 0, .uH20) was added and dissolved while stirring while heating to θC. Next, vanadium pentoxide 11.3/9 was foamed with a small amount of ψ and 0 g mol of oxalic acid per gram atom, and this solution was stable and did not cause solid precipitation even if stored at room temperature for 77 months. It didn't happen.

〈噴霧乾燥用スラリーの製造および噴霧乾燥〉上記で得
7’r、 IJン酸ガバナジル溶液20kgに、攪拌し
ながら上記で得た結晶性酸化物スラリーA、gOkgを
添加した。次いで撲拌(,2ながらlI。
<Production of slurry for spray drying and spray drying> To 20 kg of the governoradyl IJ acid solution obtained above, 1 kg of the crystalline oxide slurry A obtained above was added with stirring. Then, the beating (,2 while lI.

チシリカゾル溶液3.g、lkyを添加した。このスラ
リーを連続湿式粉砕機で処理し、十分に均質化した後、
高速回転ディスク付きスプレードライヤーを用いて噴霧
乾燥を行なった。スラリーの固体濃度は20%であり、
乾燥ガスの入ロ温度コso’6.出ロ温度/グθCであ
った。得られた粒子の平均粒子径はsrμで真球性、強
度とも良好であった。
Tisilica sol solution 3. g, lky were added. After processing this slurry with a continuous wet grinder and thoroughly homogenizing it,
Spray drying was performed using a spray dryer with a high speed rotating disc. The solids concentration of the slurry is 20%;
Drying gas input temperature so'6. The temperature was 0.001m/g.theta.C. The average particle diameter of the obtained particles was srμ, and both sphericity and strength were good.

〈焼成および活性テスト〉 上記で得た固体粒子を流動床に入れ1.3jtOCで7
時間空気雰囲気下に焼成し、引続いて窒素雰囲気下で5
00C,,2時間焼成して触媒とした。篩分してqダμ
〜//6μの粒子径部分を取得し、これについて小型の
流動床反応器を用いて活性テストを行なった。すなわち
内径/7mmの反応管に触媒、20@lを装入し、n−
ブタ/3係/!:F/、気混合ガスをGH8V 3θO
となるように反応器に導入して反応させた。生成物は水
に吸収させ、この水溶液の電位差滴定および廃ガスのガ
スクロマトグラフによる分析により、反応成績を求めた
。その拮宋、最適反応温度は1Ips’r3で、このと
きのブタン反応率はざ2.0チ、無水マレイン酸収率l
Iグ、0 %であった。
<Calcination and activity test> The solid particles obtained above were placed in a fluidized bed and heated at 7
Calcinate under air atmosphere for 5 hours, followed by under nitrogen atmosphere for 5 hours.
The catalyst was fired at 00C for 2 hours. Sieve and q daμ
A particle size fraction of ~//6μ was obtained and tested for activity using a small fluidized bed reactor. That is, a catalyst, 20@l, was charged into a reaction tube with an inner diameter of 7 mm, and n-
Pig/Part 3/! :F/, gas mixture GH8V 3θO
It was introduced into the reactor and reacted in such a manner that The product was absorbed into water, and the reaction results were determined by potentiometric titration of the aqueous solution and gas chromatographic analysis of the waste gas. The optimum reaction temperature is 1 Ips'r3, the butane reaction rate is 2.0 cm, and the maleic anhydride yield is 1.
Ig, 0%.

なお焼成して得られた触媒は、X S回折の結呆、第1
表に示した回折ピーク群を与え、触媒調製に際し水熱合
成で生成した結晶性酸化物がとが判明した。また、この
回折ピークの強度は。
Note that the catalyst obtained by calcination is
The diffraction peaks shown in the table were obtained, indicating that this was a crystalline oxide produced by hydrothermal synthesis during catalyst preparation. Also, what is the intensity of this diffraction peak?

触媒調製に用いた結晶性酸化物の量から期待される強度
にほぼ合致した。従って触媒調製工程においては結晶性
酸化物の破壊はかいと考えられ、またバインダーとして
用いた燐酸バナジル溶液中の酸化物の結晶性酸化物への
変換もないと推定され、る。
The strength almost matched that expected from the amount of crystalline oxide used in catalyst preparation. Therefore, it is considered that the crystalline oxide is not destroyed in the catalyst preparation process, and it is also presumed that the oxide in the vanadyl phosphate solution used as the binder is not converted to the crystalline oxide.

特許出願人  三菱化成工業株式会社 代 理 人  弁理士 長谷用   −ほか/名Patent applicant: Mitsubishi Chemical Industries, Ltd. Representative Patent Attorney Hase - Others/Names

Claims (3)

【特許請求の範囲】[Claims] (1)  五個のリンおよび四価のバナジウムを含有す
る水性溶媒を/10−コSOCに加熱して下記に示す特
徴的なxi回折スペクトルを示すバナジウム−リン系結
晶性酸化物を含む水性スラリーを得る第1工程、第1工
程で得られたスラリーに、リン酸および四価のバナジウ
ムを含みかつその少くとも一部がリン酸バナジルを形成
しているリン酸バナジル溶液並びにシリカゾルを混合し
て均質なスラリーとする第一工程、第一工程で得られた
スラIJ−を噴霧乾燥する第3工程、第3工程で生成し
た固体粒子を焼成する第グ工程の各工程からなることを
特徴とするバナジウム−リン系酸化触媒のデ1遣方法。 Xa回折スペクトル(対陰極;Ou−にα)コθ (±
0.2°) /!、り0 /9.6゜ 211、コ0 コア、θ0 .2g、ざ0 3θ、ダ0
(1) An aqueous slurry containing a vanadium-phosphorus crystalline oxide that exhibits the characteristic xi diffraction spectrum shown below by heating an aqueous solvent containing five phosphorus and tetravalent vanadium to /10-coSOC The first step is to mix the slurry obtained in the first step with a vanadyl phosphate solution containing phosphoric acid and tetravalent vanadium and at least a part of which forms vanadyl phosphate, and a silica sol. It is characterized by consisting of the following steps: a first step of making a homogeneous slurry, a third step of spray drying the sludge IJ obtained in the first step, and a third step of calcining the solid particles produced in the third step. A method for developing a vanadium-phosphorus oxidation catalyst. Xa diffraction spectrum (Anticathode; α to Ou) Coθ (±
0.2°) /! , ri0 /9.6°211, co0 core, θ0 . 2g, za 0 3θ, da 0
(2)第一工程のリン酸バナジル溶液が、バナジウムl
グラム原子あたり八−グラムモル以下のシュウ酸を含ん
でいることを特徴とする特許請求の範囲第1項記載の方
法。
(2) The vanadyl phosphate solution in the first step is
A method according to claim 1, characterized in that it contains no more than 8-gram moles of oxalic acid per gram atom.
(3)第一工程のリン酸バナジル溶液のP/V原子比が
0.!r−10の範囲にあることを特徴とする特許請求
の範囲第1項または第2項記載の方法。 (・1)第グ工程で得られる焼成物のP/V原子比がθ
、t〜/、Sの範囲にあることを特徴とする特許請求の
範囲第1項ないし第3項のいずれかに記載の方法。
(3) The P/V atomic ratio of the vanadyl phosphate solution in the first step is 0. ! 3. A method according to claim 1 or 2, characterized in that it is in the range r-10. (・1) The P/V atomic ratio of the fired product obtained in the th step is θ
, t to /, S.
JP57203370A 1982-03-31 1982-11-19 Preparation of oxidation catalyst Granted JPS5992025A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP57203370A JPS5992025A (en) 1982-11-19 1982-11-19 Preparation of oxidation catalyst
US06/473,196 US4472527A (en) 1982-03-31 1983-03-08 Process for preparing an oxidation catalyst composition
GB08306615A GB2118060B (en) 1982-03-31 1983-03-10 Process for preparing an oxidation catalyst composition
DE3311681A DE3311681C2 (en) 1982-03-31 1983-03-30 Oxidation catalyst and process for its preparation
CA000424905A CA1186674A (en) 1982-03-31 1983-03-30 Process for preparing an oxidation catalyst composition
KR1019830001332A KR900009016B1 (en) 1982-03-31 1983-03-31 Process for preparing an oxidation catalyst composition
US06/591,997 US4520127A (en) 1982-03-31 1984-03-21 Oxidation catalyst composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57203370A JPS5992025A (en) 1982-11-19 1982-11-19 Preparation of oxidation catalyst

Publications (2)

Publication Number Publication Date
JPS5992025A true JPS5992025A (en) 1984-05-28
JPH0424103B2 JPH0424103B2 (en) 1992-04-24

Family

ID=16472902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57203370A Granted JPS5992025A (en) 1982-03-31 1982-11-19 Preparation of oxidation catalyst

Country Status (1)

Country Link
JP (1) JPS5992025A (en)

Also Published As

Publication number Publication date
JPH0424103B2 (en) 1992-04-24

Similar Documents

Publication Publication Date Title
US4520127A (en) Oxidation catalyst composition
TWI411469B (en) Production method of catalyst carrying silica and method for producing unsaturated carboxylic acid or unsaturated nitrile
JP3391532B2 (en) Method for producing catalyst for producing methacrylic acid
JP2893539B2 (en) Method for producing vanadium-phosphorus crystalline oxide and catalyst containing the same
JPH01171640A (en) Production of iron-antimony-phosphorus-containing catalyst suitable for fluidized bed reaction
JP3384412B2 (en) Method for producing crystalline zirconium phosphate
JPS5992025A (en) Preparation of oxidation catalyst
JPS5919546A (en) Catalyst for synthesis of methanol
JPS58151313A (en) Manufacture of vanadium-phosphorus oxide
JPH0424104B2 (en)
JPS6064632A (en) Preparation of catalyst composition
JPS5992024A (en) Preparation of oxidation catalyst
JPH0455966B2 (en)
JPH0424101B2 (en)
JPH02175605A (en) Production of vanadium-phosphorus based crystalline oxide or catalyst containing the same
JP7383327B1 (en) Acicular alumina particle aggregate and its manufacturing method
JPH11193293A (en) Iron phosphate-oxalic acid-amine complex
JPH0231838A (en) Production of oxidation catalyst
JPS6271544A (en) Catalyst composition
JPH0312937B2 (en)
JPH01133912A (en) Production of vanadium/phosphorus-based crystalline oxide or catalyst incorporating it
JPS61251678A (en) Production of maleic anhydride
JPH0436743B2 (en)
JP2001080916A (en) Mel type crystalline metallosilicate and its production
JPS61207382A (en) Production of maleic anhydride