JPS5990777A - Converting method of internal energy possessed by substance into work by use of thermal change of refrigerating cycle - Google Patents

Converting method of internal energy possessed by substance into work by use of thermal change of refrigerating cycle

Info

Publication number
JPS5990777A
JPS5990777A JP57201328A JP20132882A JPS5990777A JP S5990777 A JPS5990777 A JP S5990777A JP 57201328 A JP57201328 A JP 57201328A JP 20132882 A JP20132882 A JP 20132882A JP S5990777 A JPS5990777 A JP S5990777A
Authority
JP
Japan
Prior art keywords
heat
cylinder
work
temperature
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57201328A
Other languages
Japanese (ja)
Inventor
Senji Oigawa
大井川 宣治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57201328A priority Critical patent/JPS5990777A/en
Priority to PCT/JP1983/000412 priority patent/WO1984001983A1/en
Priority to AU22074/83A priority patent/AU2207483A/en
Publication of JPS5990777A publication Critical patent/JPS5990777A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • F03G7/06143Wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To make an efficient use of heat of a small temperature difference and to achieve saving of natural resources, by causing a cycle of adiabatic compression and adiabatic expansion in a container isolated from the outside, and taking out the thermal change as work by use of a substance like a shape memory alloy. CONSTITUTION:A piston 3 is disposed in a cylinder 1 having a heat-insulating material 2 applied to the inner surface thereof in the manner that it is freely reciprocable in the cylinder 1, and the inside of the cylinder 1 is isolated thermally from the outside. A cooling medium 11 such as Freon gas and nitinol wires 4 made of a shape memory alloy which is corrugated at a low temperature and becomes straight at a high temperature, stacked in a multiplicity of layers, are placed in the cylinder 1. One end of each nitinol wire 4 is fixed to fixing member 5 while the other end is fixed to a fixing member 7 attached to a sliding shaft 6. Further, a heat exchanger 8 is disposed in the cylinder 1 at the lower portion of the layer of nitinol wires 4 so as to impart or absorb heat to and from the heating medium passed through the inside of a pipe 9. Further, a fan 10 is provided for making the temperature in the system uniform promptly.

Description

【発明の詳細な説明】 この発明は、冷凍サイクル等、可逆サイクルによる湯度
変化により得られる。比較的低温差の熱量を、断熱系内
に設けたチタンニッケル合金(=テノール)あるいは、
銅−W鉛−アルミ合金等マルチ:/4tイト状態の彬吠
記憶合金類に与え内部的な力を、力学的エネルギーに変
換することを可能にした方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is obtained by changing the temperature of hot water using a reversible cycle such as a refrigeration cycle. A titanium-nickel alloy (= tenor) installed in an insulating system that generates heat at a relatively low temperature, or
This is a method that makes it possible to convert the internal force applied to multi-metal memory alloys such as copper-Wlead-aluminum alloys into mechanical energy.

従来、熱エネル〒−から力学的エネルギーえの変換効率
は、カルノーの定理など熱力学の法則に従った値に近づ
けるよう努力しているものである、又、熱源は原子力1
石池1石炭、ガス、太陽熱、地熱、廃熱など総べて外部
的熱源が投入され。
Conventionally, efforts have been made to bring the conversion efficiency from thermal energy to mechanical energy close to a value that follows the laws of thermodynamics such as Carnot's theorem.
Ishiike 1 All external heat sources such as coal, gas, solar heat, geothermal heat, and waste heat are input.

その一部が仕事に変換されているもので、一般に温度、
灰力、容積が関係し働く倒閾である。
Some of it is converted into work, and generally temperature,
It is a falling threshold that works because of the power and volume.

この機関の基本的特徴は、主な熱源を外部に求めず、断
熱系内において温度差を作り、それを熱源きして利用す
るものであるが従来のように熱エネル=F−(内部エネ
ルギ→を変換するものではなく、主に温度差と熱量が関
係し′圧力と蓄積1よ関係しない機関である。
The basic feature of this engine is that it does not require an external heat source, but instead creates a temperature difference within the adiabatic system and uses that as a heat source. It is not an engine that converts →, but is mainly related to temperature difference and amount of heat, and has less to do with 'pressure and accumulation 1.

との岬成を第1図によって説明する。断熱材(2)を設
けたシリ:/ダー(1)上柱復動するじストv (3)
をもって内部と外部を熱的に隔絶し断fi糸とする。こ
の内部に冷l (11)と、1例としてニチノール線(
4)を入れ、そのl端を固定(5)シ他端を摺動軸(6
)に連らなる1端(7)に固定する。ニチノール線は第
2図に示すように低温で波状、高温で直線の記憶形状と
する。内部に熱交換器(8)を設は外部とバイづ(9)
を通して熱の授受を行ない内部と熱量の調節を行なう、
また系内部の温度を迅速に平均化するファ:/ (10
)等を設ける。この構成による機能士の実施例を述べる
と。
The formation of the cape will be explained with reference to FIG. Cylinder provided with insulation material (2):/dar (1) Upper column double-acting position v (3)
The inside and outside are thermally isolated by the filament to create a broken fi thread. Inside this, there is cold l(11) and, for example, a nitinol wire (
4), fix its l end (5), and attach the other end to the sliding shaft (6).
) at one end (7). As shown in FIG. 2, the nitinol wire has a memorized shape that is wavy at low temperatures and straight at high temperatures. A heat exchanger (8) is installed inside and connected to the outside (9).
It exchanges heat through the inside and adjusts the amount of heat.
In addition, the temperature inside the system is quickly averaged: / (10
), etc. An example of a functional engineer using this configuration will be described.

シリンダー内の冷媒(作業物質)を1例としてフo:/
糸カフ CCI、F−CC:IF、 (i付書頬1m品
名1 )D シー113.以下113 、!:いう)を
使用する。113 It比較的、低温、低汗で状態変化
を示し、蒸発5替然も大きくシリンダー内で熱伝達を速
やかに行なう作業物質の1つである。この113をニチ
ノールのマルテンリイト変態開始温度42°Cまた逆変
態終了温度80°Cになるよう圧縮と膨張を行なう、1
すの42oCに相当する蒸気圧は0,8567/Cr/
’ abs、又80°C#I。
Taking the refrigerant (working substance) in the cylinder as an example,
Thread cuff CCI, F-CC: IF, (I appendix cheek 1m product name 1) D sea 113. 113 below! :Use ). 113 It is one of the working substances that shows a change in state at relatively low temperatures and low perspiration, and that evaporates significantly and rapidly transfers heat within the cylinder. This 113 is compressed and expanded so that the temperature at which Nitinol starts to undergo martenlith transformation is 42°C and the temperature at which reverse transformation ends is 80°C.
The vapor pressure equivalent to 42oC is 0,8567/Cr/
' abs, also 80°C#I.

に相当する圧力は2.73g/Cm2ab sである5
この圧縮と膨張をサイクルさせ、42°C〜80°Cの
温度差上移動する熱量をニチノール材に与え変形を連続
させる。変形範囲で回復可能な歪は多くの場合6−8メ
であり、又、線方向に伸縮して得られる力は最大60〜
70Kg/ln♂(参考書類2)即度が得られる。
The corresponding pressure is 2.73 g/Cm2ab s5
This compression and expansion are cycled to give the nitinol material the amount of heat that moves due to the temperature difference of 42°C to 80°C, causing continuous deformation. The strain that can be recovered within the deformation range is in most cases 6-8 meters, and the maximum force obtained by stretching and contracting in the linear direction is 60 to 80 meters.
70Kg/ln♂ (reference document 2) can be obtained.

先づ、シリンダー内の113蒸気を42°Cに設定する
。従って二手ノールも42°Cであり形状ば波状に縮ん
でいる状態である。第3図に示すp−v線上のC点であ
る。ここでにストン(3)の外圧Pを増加しシリンター
の内部温度を8点80’Cになるまで圧縮する。この渦
稈を実線C−tで示す、この圧縮過程ではシリンター内
の蒸気に先づ温度上昇か起り次にニチノールに熱が伝達
される。同時に波形状は直線状に変化し軸(6)を矢印
方向に慴動する。
First, the 113 steam in the cylinder is set to 42°C. Therefore, the temperature of the two-handed knoll is also 42°C, and its shape is in a state where it has shrunk into a wavy shape. This is point C on the p-v line shown in FIG. At this point, the external pressure P of the cylinder (3) is increased and the internal temperature of the cylinder is compressed to 80'C at 8 points. This vortex culm is shown by the solid line C-t. During this compression process, the temperature of the steam in the syringe first increases, and then heat is transferred to the nitinol. At the same time, the wave shape changes linearly, causing the shaft (6) to slide in the direction of the arrow.

この時の軸は無負荷である。従って113の熱的変化は
完全な断熱変化2け相違する。この圧縮過程によって熱
はニチノールに蓄熱され膨張過程のときの熱源となる。
At this time, the shaft is unloaded. Therefore, the thermal change of 113 is two orders of magnitude different from the complete adiabatic change. This compression process stores heat in Nitinol, which serves as a heat source during the expansion process.

従ってニチノールは冷却器と熱源の二つの機能をもち且
つエネルず−の発生体となる。この熱の交換;!Miは
工率に関係するためニチノールを細い線または薄い板材
にして表面積を大きくする。またファン(10)等によ
)7熱伝達を速める9次に膨張過程a−c(細線)に移
る。 ao’cに温められたシリンダー内の温度を下げ
るためにストンの外圧をゆるめ圧力を下げるき、凝縮し
ている113はニチノールから熱を奪い蒸発する。即ち
、圧縮過程2逆の現象が時間的ずれをもって系内で行な
われ113はC点□において元の状態(42°C)にも
どり冷、’tst+jイクルが完了する。このときニチ
ノールは波形状に収縮し倉荷のある軸(6)を動かし力
学的エネルギーに変換される。
Therefore, Nitinol has the dual functions of a cooler and a heat source, and is also an energy generator. This exchange of heat;! Since Mi is related to processing efficiency, Nitinol is made into a thin wire or thin plate material to increase the surface area. Further, the process moves to the expansion process a-c (thin line) which speeds up the heat transfer (by means of a fan (10), etc.). In order to lower the temperature inside the cylinder, which has been heated to ao'c, the external pressure of the stone is relaxed and the pressure is lowered, and the condensed 113 absorbs heat from Nitinol and evaporates. That is, the opposite phenomenon of the compression process 2 takes place within the system with a time lag, and 113 returns to its original state (42° C.) at point C□ and cools down, completing the 'tst+j cycle. At this time, Nitinol contracts into a wave shape and moves the shaft (6) where the cargo is located and is converted into mechanical energy.

次に、冷凍サイクルについて述べる。第3図に示すp−
v線図の点線は2つの等濃緑a−b、c−dと2つの#
 熱11i b−c 、 d−aに示されたカルノーサ
イクルである。この発明による状態図は実線に示す変化
C−11L、細線で示すa−Cを基本サイクルとするも
のである。即ち1等温変化と断熱変化の中間をサイクル
する変化である。集線J:細線との差は熱が外部に伝導
し散逸した伊を示す、従って、理想的なサイクルに於℃
は圧縮、膨刃に過程は同一線上をサイクルする。この場
合は圧縮C−aに要する仕事量Wと膨1% a−cによ
り外部になす仕fS量Wetよ一小さな摩擦損失を除け
ば同じき考えてもよく、熱量又は仕事の消費がなくサイ
クルが完了し温度のサイクルのみがなされた事になる。
Next, the refrigeration cycle will be described. p- shown in FIG.
The dotted lines in the v diagram are two equal dark greens a-b, c-d and two #
The Carnot cycle is shown in heat 11i b-c, d-a. In the state diagram according to the present invention, the basic cycle is a change C-11L shown by a solid line and a-C shown by a thin line. That is, it is a change that cycles between one isothermal change and an adiabatic change. Concentrated line J: The difference from the thin line indicates that heat is conducted to the outside and dissipated.
The process of compression and expansion cycles on the same line. In this case, the work required for compression C-a and the expansion 1% can be considered the same except for the amount of work FS done externally by a-c, Wet, and a small friction loss, and there is no consumption of heat or work, and the cycle has been completed and only the temperature cycle has been completed.

このサイクルは熱力保第1法則に反するものではなl/
)、又、第2法I11から見れば上記のように圧縮過程
(実線)と膨張過程(III線)七の差が生じ仕事に於
てW>W、又は。
This cycle does not violate the first law of conservation of heat and power.
), and when viewed from the second method I11, there is a difference between the compression process (solid line) and the expansion process (line III) as described above, and W>W in work, or.

W=W、+(エンド0じ一変化量) となる、従って断
熱系内に外部よりエンド0じ一変化分の熱量または仕事
を与えなければ作業物質は元の状態にもどらないことに
なる。この発明はこの不可避的に       ・起る
温度変化をサイクルの途中に於て自由に修正する方法を
特徴とする。この調節はシリンダー内に通じる熱交換器
(8)によって行なわれる1例えば内部が熱量不足の場
合、膨張過程に於て内部温度が42°C,!l:なる近
傍で比較的低温度のfi量を与えることができる。また
熱量の除去もでき内部の熱量を一定に保ちサイクルを連
続させる。上記のように温度変化のサイクルはこの発明
の基本条件であり、熱源として最上も理想的な発隼方法
である。ここで113をI Kg使用したときニチノー
ル七の間になさtする仕事の実施例を述べる。
W=W, + (amount of change per end 0). Therefore, the working material will not return to its original state unless heat or work is applied from the outside to the adiabatic system for the amount of change equal to 0 end. This invention is characterized by a method for freely correcting this unavoidable temperature change during the cycle. This adjustment is carried out by a heat exchanger (8) that communicates with the inside of the cylinder. For example, if there is a lack of heat inside the cylinder, the internal temperature will rise to 42°C during the expansion process! It is possible to provide a relatively low temperature fi amount in the vicinity of l:. It can also remove heat, keeping the internal heat constant and allowing the cycle to continue. As mentioned above, the cycle of temperature change is a basic condition of this invention, and is the most ideal method for developing a hay fever as a heat source. Here we will give an example of the work done between Nitinol and nitinol when I kg of 113 is used.

T2=42°C9この蒸気エンタルご−i; = 14
4.50 Kca IT戸80°C1この液気エンタル
じ−i; = n7,82KcalEE ml過程に於
て42°C蒸気を80°C液にするために除去する熱量
、即ち、ニチノール材に蓄熱される熱量Qは。
T2=42°C9This steam ental -i; = 14
4.50 Kca IT door 80°C1 This liquid vapor enthal-i; = n7,82KcalEE ml The amount of heat removed to turn 42°C steam into 80°C liquid, that is, the heat stored in the Nitinol material. The amount of heat Q is.

g = j;−i’、= 144.5O−u7,82 
= 26.68 Kcal/Kgこの熱量を蓄熱するの
に必要なニチノール材の重量ソば、ニチノールの此重く
密m 6 = 7.5gJ/cmg比熱Cは、 0.1
2 cal/gまた変態温度に於て比熱の変化を4倍(
材質により変る)七する。
g = j;-i', = 144.5O-u7,82
= 26.68 Kcal/Kg The weight of the Nitinol material required to store this amount of heat So, this heavy density of Nitinol m 6 = 7.5 gJ/cmg The specific heat C is 0.1
2 cal/g Also, the change in specific heat at the transformation temperature is quadrupled (
(Varies depending on the material)

W’= Q / 4C(T、 −’I2) = 26,
680/ 0,48X38 = 1,462故に IA
62 gと41に相当する容積vば。
W'=Q/4C(T,-'I2)=26,
680/ 0,48X38 = 1,462 Therefore IA
The volume v corresponds to 62 g and 41 g.

V = W’/6= 1462 / 7,5 = 19
5.Ocm9断面積1mm2の線りにすると L= V / 0,01 = 19500 =195 
m/ mrn22なる。
V = W'/6 = 1462 / 7,5 = 19
5. If it is a wire with an Ocm9 cross-sectional area of 1mm2, L = V / 0,01 = 19500 = 195
m/mrn22.

又9回復可能な歪率を6メきし、復元力Fを60Kg/
 mm2としたときこの変化によって得られる仕事量w
ばl”jイクル/ secとして。
In addition, the 9 recoverable strain rate is increased to 6 meters, and the restoring force F is increased to 60 kg/
The amount of work obtained by this change when mm2 is w
As bal”j cycle/sec.

佇 W =(FXL )Xo、06で表すことができる故に
W3 = (60X 195) 0.06 = 702
 Kg−m /sec帽トQ、に棹算する七 0’+ =Ws / J =702 / 427 =1
,644 Kca 1重カニW3に換算すると W =O/ 860 = 1,644 /860 = 
0,00191 Kw/sea# #W3” 0.00
191 X3600 =6,88 KW 7’に1  
kなる。
Since it can be expressed as W = (FXL)Xo, 06, W3 = (60X 195) 0.06 = 702
Kg-m/sec 70'+ = Ws / J = 702 / 427 = 1
,644 Kca When converted to single crab W3, W = O / 860 = 1,644 /860 =
0,00191 Kw/sea# #W3” 0.00
191 X3600 = 6,88 KW 1 in 7'
It becomes k.

従って正味の仕事量ニジJ4は、小さな摩擦損失:W。Therefore, the net work amount Niji J4 is a small friction loss: W.

とすると・w、>w、故ζこ・ w=w−w   七なり結果2して。Then, ・w, > w, late ζko・ w=w-w 7, result 2.

30 W ) Oの仕事か得られる。30 W) I can get O's job.

又、を来の熱機関の効率上は意味が相違するか。Also, is there a difference in terms of the efficiency of the heat engine?

断熱系で移動する熱量:Q (26,68Kcal)が
作用しテ什事: O,(1,64/+ Kcal)とし
て得らイする比率は摩擦損失をOとして。
The amount of heat transferred in the adiabatic system: Q (26,68 Kcal) acts on the ratio obtained as O, (1,64/+ Kcal), assuming that the friction loss is O.

り= Q、 / Q = 1.64h/ 26,68 
= 0.0616 6,1メ参考にこの温度範囲でのカ
ルノーケイクルでは。
= Q, / Q = 1.64h/ 26,68
= 0.0616 6.1 For reference, Carnot Caicle in this temperature range.

’7 = T、−T2/ T、= 38 / 353 
= 0.1076約10メである力C1この場合は熱エ
ネル士−から力学陶工ネル下−えの変換であり前者とは
本質的に相違する。
'7 = T, -T2/T, = 38/353
= 0.1076 A force C1 of about 10 meters.This case is a conversion from a thermal energy engineer to a mechanical potter's neriter, and is essentially different from the former.

Jソ土この方法による効呆け、じストンとシリンダー間
の摩擦損失程度の小さな仕事量をもって。
The effectiveness of this method is small, with a small amount of work equivalent to the friction loss between the cylinder and the cylinder.

断熱糸内部においての熱移動量を任意に大きくすると七
ができる。従って、前記ニチノール材の歪率、復元力の
大きさ、比熱等の数値には特に関係なく、温度に対して
変化するものであれば動力として取り出せる可能性があ
ることを示すものである。このように材質固有の内部的
なエネルヂ−を熱作用によって引き出す基本的原理は+
KrT熱系内に仕事をする熱源と主要な要票を情成し、
内部に於てサイクル化することによフて可能としたもの
で半り、熱を利用するが熱量を消費しない方法は従来に
なく、■ネル千−に関する問題および経済土特に大きな
有益性をもつ、熱源に冷凍サイクルを用いて物質のもつ
内部的エネル千−を変換する方法である。
7 can be obtained by arbitrarily increasing the amount of heat transfer inside the insulation thread. Therefore, regardless of the numerical values of the nitinol material, such as its strain rate, magnitude of restoring force, and specific heat, this indicates that it is possible to extract it as motive power as long as it changes with temperature. The basic principle of extracting the internal energy inherent in a material through thermal action is +
Understand the heat sources and main points that work within the KrT heat system,
This has been made possible by cycling internally, and there is no conventional method that uses heat but does not consume heat, and is particularly useful for problems related to flannel and economic soil. This is a method of converting the internal energy of substances using a refrigeration cycle as a heat source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図本発明の構成を示す、第2図、ニチノール材の形
状図、第3図発明のサイクルを示す圧力。 体積線図(p−v線図)。 (1)シリンダー、(2)断熱材、(3)にストン、(
4)ニチノール、(5)固定材、(6)摺動軸、(7)
固定材、(8)熱交換器、(9)バイづ、(10)ファ
ン、 (11)711女)1゜ 特許出願人
Fig. 1 shows the structure of the present invention, Fig. 2 shows the shape of Nitinol material, and Fig. 3 shows the pressure of the cycle of the invention. Volume diagram (p-v diagram). (1) cylinder, (2) insulation material, (3) stone, (
4) Nitinol, (5) fixing material, (6) sliding shaft, (7)
Fixing material, (8) Heat exchanger, (9) Bye, (10) Fan, (11) 711F) 1゜Patent applicant

Claims (1)

【特許請求の範囲】 審器に形状記憶合金など、熱により形状変化または状態
変化を示す物質と冷媒を入れ、外界と隔絶し、断熱的圧
縮と断熱的膨張のサイクルを行ない、この熱的変化を該
物質に与え、形状変化または状態変化のサイクルを仕事
に変換するときを主な特徴キし、又、このサイクルを連
続させるに必要な熱の授受を外部と行なうことを特徴と
した。 主に冷凍サイクルによる熱的変化を用いて物質のもつ内
部的なエネルギーを仕事に変換する方法。
[Scope of Claims] A refrigerant and a substance that changes shape or state due to heat, such as a shape memory alloy, are placed in a refrigerant, isolated from the outside world, and adiabatic compression and adiabatic expansion cycles are performed. The main feature is that the cycle of shape change or state change is converted into work by imparting heat to the substance, and the heat necessary to continue this cycle is exchanged with the outside. A method of converting the internal energy of substances into work using mainly thermal changes caused by the refrigeration cycle.
JP57201328A 1982-11-16 1982-11-16 Converting method of internal energy possessed by substance into work by use of thermal change of refrigerating cycle Pending JPS5990777A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57201328A JPS5990777A (en) 1982-11-16 1982-11-16 Converting method of internal energy possessed by substance into work by use of thermal change of refrigerating cycle
PCT/JP1983/000412 WO1984001983A1 (en) 1982-11-16 1983-11-16 Method and apparatus for generating energy
AU22074/83A AU2207483A (en) 1982-11-16 1983-11-16 Method and apparatus for generating energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57201328A JPS5990777A (en) 1982-11-16 1982-11-16 Converting method of internal energy possessed by substance into work by use of thermal change of refrigerating cycle

Publications (1)

Publication Number Publication Date
JPS5990777A true JPS5990777A (en) 1984-05-25

Family

ID=16439185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57201328A Pending JPS5990777A (en) 1982-11-16 1982-11-16 Converting method of internal energy possessed by substance into work by use of thermal change of refrigerating cycle

Country Status (1)

Country Link
JP (1) JPS5990777A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101425A (en) * 2009-12-16 2011-06-22 通用汽车环球科技运作有限责任公司 Heat transport system and method
WO2014198934A3 (en) * 2013-06-13 2015-06-11 Exergyn Ltd. Pressure relief system and method in an energy recovery device
DE202023100127U1 (en) 2023-01-11 2023-02-03 Rüdiger Schloo Electricity and heat generation using so-called shape memory alloys by using the ambient temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101425A (en) * 2009-12-16 2011-06-22 通用汽车环球科技运作有限责任公司 Heat transport system and method
WO2014198934A3 (en) * 2013-06-13 2015-06-11 Exergyn Ltd. Pressure relief system and method in an energy recovery device
DE202023100127U1 (en) 2023-01-11 2023-02-03 Rüdiger Schloo Electricity and heat generation using so-called shape memory alloys by using the ambient temperature

Similar Documents

Publication Publication Date Title
Kongtragool et al. Thermodynamic analysis of a Stirling engine including dead volumes of hot space, cold space and regenerator
Tlili Finite time thermodynamic evaluation of endoreversible Stirling heat engine at maximum power conditions
Chen et al. Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle
Kaushik et al. Finite time thermodynamic evaluation of irreversible Ericsson and Stirling heat engines
Cheng The ecological optimization of an irreversible Carnot heat engine
Bodvarsson et al. The exergy of thermal water
Chen et al. Optimum distribution of heat exchanger inventory for power density optimization of an endoreversible closed Brayton cycle
Miller et al. Integrated dual-cycle energy recovery using thermoelectric conversion and an organic Rankine bottoming cycle
Wu et al. Work and power optimization of a finite-time Brayton cycle
Ibrahim Design considerations for ammonia-water Rankine cycle
Tyagi et al. Ecological optimization and parametric study of irreversible Stirling and Ericsson heat pumps
CA1059325A (en) Hot-gas engine
JPS5990777A (en) Converting method of internal energy possessed by substance into work by use of thermal change of refrigerating cycle
Kaushik et al. Performance evaluation of irreversible cascaded refrigeration and heat pump cycles
Subbiah et al. Thermodynamic analysis of binary-fluid Rankine cycles for geothermal power plants
Vargas et al. Power extraction from a hot stream in the presence of phase change
Kaushik et al. Performance evaluation of irreversible Stirling and Ericsson heat pump cycles
Saxena et al. Automobile exhaust gas heat energy recovery using stirling engine: thermodynamic model
Lin et al. Influence of quantum degeneracy and regeneration on the performance of Bose-Stirling refrigeration-cycles operated in different temperature regions
Zhou et al. Cooling load density characteristics of an endoreversible variable‐temperature heat reservoir air refrigerator
Chen et al. Effect of a complex generalised heat transfer law on the ecological performance of an endoreversible Carnot heat pump
Su et al. Exergetic efficiency optimization of a refrigeration system with multi-irreversibilities
Ait‐Ali Maximum power and thermal efficiency of an irreversible power cycle
Tyagi et al. Irreversible modified complex Brayton cycle under maximum economic condition
Hèyihin et al. Thermodynamic analysis of the Stirling Duplex machine