JPS5990693A - Method for controlling injection of chemical in water purification plant - Google Patents

Method for controlling injection of chemical in water purification plant

Info

Publication number
JPS5990693A
JPS5990693A JP20008482A JP20008482A JPS5990693A JP S5990693 A JPS5990693 A JP S5990693A JP 20008482 A JP20008482 A JP 20008482A JP 20008482 A JP20008482 A JP 20008482A JP S5990693 A JPS5990693 A JP S5990693A
Authority
JP
Japan
Prior art keywords
chlorine
injection
water
point
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20008482A
Other languages
Japanese (ja)
Other versions
JPH0242559B2 (en
Inventor
Kohei Urano
紘平 浦野
Toshiaki Kobayashi
小林 敏昭
Mitsuo Maeda
満雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20008482A priority Critical patent/JPS5990693A/en
Publication of JPS5990693A publication Critical patent/JPS5990693A/en
Publication of JPH0242559B2 publication Critical patent/JPH0242559B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To maintain treated water under an oxidizable atmosphere by injecting chlorine or an oxidative chlorine compound at the point downstream from an ozone injection point and upstream from a rapid filtration basin, and keeping the oxidizability of drainage at the downstream from filtration basin and at the filtration basin. CONSTITUTION:The water quality at the point 14 upstream from the injection point 20 of chlorine or the like is measured by a water quality tester 13, and on the other hand the treated water after injection of chlorine or the like at the point 16 downstream from the injection point of chlorine or the like is examined by the water quality tester 15. The injection rate of an oxidant such as chlorine or the like injected at point 20 upstream from a rapid filtration basin 5 is decided, calculating the analytical value of the oxidant such as chlorine or the like by a computer 17. The injection rate is converted to the injection volume by an operator 18 in proportion to the filtration flow rate measured by a flowmeter 12, and a prescribed quantity of chlorine is injected by controlling the opening of the valve of a chlorine injection quantity controller 19. The computer 17 also has a function capable of setting up the injection rate by the manual operation from an operation disc or the like.

Description

【発明の詳細な説明】 この発明は着水井付近でオゾンを注入する浄水場におい
て、急速ろ通油より手前の点で塩素などの酸化剤を注入
する薬品注入制御方法に関する一般に表流水等を取水源
とする浄水場においては、取水した原水の殺菌・消毒、
原水中のマンガン・鉄化合物等の酸化番勢等爵雫噛、汚
濁有機物無機物、有機物の酸化、アンモニア性窒素の分
解などにも優れ、また水中において長時間残留して殺菌
効果を持続する。しかし、近年、塩素処理によって処理
水中にクロロホルムをはじめとするトリハロメクン(T
x)など多数の有機塩素化合物が存在することが見出さ
れてきた。公衆衛生学的ジハロ/タンの最大濃度レベル
なo、 t my / tとする規胸を公告した。また
、わが国でもiqgi年3月の厚生省通達により水道水
中の総トリハロメタンの制御目標値をo、 1my /
 l以下とするように行政指導している。このように浄
水場における塩素処理によってトリハロメタン等の有害
な塩素化合物の生成が明らかになり、その対策が各方面
で研究されている。
[Detailed Description of the Invention] This invention relates to a chemical injection control method that injects an oxidizing agent such as chlorine at a point before the rapid filtration oil in a water purification plant where ozone is injected near the landing well. At the water treatment plant that serves as the water source, sterilization and disinfection of the raw water taken,
It is also excellent in oxidizing manganese and iron compounds, etc. in raw water, oxidizing organic and inorganic pollutants, and decomposing ammonia nitrogen, and remains in water for a long time to maintain its bactericidal effect. However, in recent years, chlorine treatment has introduced trihalomecnes (T), including chloroform, into the treated water.
It has been discovered that a large number of organochlorine compounds exist, such as x). The public health maximum concentration level for dihalo/tan was announced as o, t my / t. In addition, in Japan, the control target value for total trihalomethane in tap water was set at o, 1 my /
Administrative guidance is being given to keep the number below 1. As described above, it has become clear that chlorine treatment at water treatment plants produces harmful chlorine compounds such as trihalomethane, and countermeasures are being researched in various fields.

これらのうち、塩素に代替する酸化・殺菌剤としてオゾ
ンによる浄水処理プロセスがいくつか提案されている。
Among these, several water purification processes using ozone as an oxidizing/sterilizing agent to replace chlorine have been proposed.

オゾンによる浄水方法は前記トリハロメタン等の生成防
止のみならず、水質悪化の進む上水道水源の脱臭・味、
脱色などの目的にも活用できるため、今後その普及が期
待される処理方法である。
The water purification method using ozone not only prevents the formation of trihalomethanes, etc., but also deodorizes and improves the taste of tap water sources, where water quality continues to deteriorate.
It is a treatment method that is expected to become more widespread in the future, as it can also be used for purposes such as decolorization.

塩素法とオゾン法の浄水工程における特性を比較してま
とめると表に示すようになる。
A comparison and summary of the characteristics of the chlorine method and ozone method in the water purification process is shown in the table below.

表  塩素とオゾンの処理特性比較表 来 四層で明らかなように塩素法と比較してオゾン法の欠点
として、処理水中での残留効果がないこと及びアンモニ
ア性窒素を酸化分解できないことの2点が挙げられる。
Table Comparison of treatment characteristics of chlorine and ozone As is clear from the four-layer table, the two disadvantages of the ozone method compared to the chlorine method are that there is no residual effect in the treated water and that ammonia nitrogen cannot be oxidized and decomposed. can be mentioned.

このように塩素とオゾンはその処理効果に長短があるた
め、塩素処理をオゾン処理に変更した場合に従来の塩素
注入方法をそのままオゾン注入方し; 法厨適用することには問題がある。
As described above, chlorine and ozone have advantages and disadvantages in their treatment effects, so when changing chlorine treatment to ozone treatment, there is a problem in applying the conventional chlorine injection method to the ozone injection method.

第一にオゾンに残留効果がないことに関しては、着水井
付近でオゾン注入しても処理水が薬品混和池、フロック
形成池、沈殿池と進むにつれて残留オゾン濃度がゼロに
なってしまう。残留オゾンが消滅すると処理水または急
速ろ通油の酸化状態が保持されなくなり、急速ろ通油で
捕捉されるべきマンガン酸化物や酸化鉄などが還元され
て再び可溶化しろ通油から漏出してくる可能性が生じる
First, regarding the fact that ozone has no residual effect, even if ozone is injected near the receiving well, the residual ozone concentration will become zero as the treated water progresses through the chemical mixing pond, floc formation pond, and settling pond. When the residual ozone disappears, the oxidation state of the treated water or rapidly filtered oil is no longer maintained, and manganese oxides, iron oxides, etc. that should be captured by the rapidly filtered oil are reduced and become solubilized again and leak out from the rapidly filtered oil. There is a possibility that this will happen.

第二にオゾンは中性付近においてはアンモニア性窒素を
酸化分解する能力が殆んどないので、取水原水中に含ま
れるアンモニア性窒素はそのまま浄水プロセスを進み、
浄水池手前で後塩素が注入されるまで分解されない。し
たがって、後塩素の注入率を適正に維持することが、ア
ンモニア性窒素を分解し、かつ処理水中の残留@素濃度
を保持する上で重要な要因となる。
Second, since ozone has almost no ability to oxidize and decompose ammonia nitrogen in the vicinity of neutrality, the ammonia nitrogen contained in the raw water that is taken will proceed through the water purification process as it is.
It is not decomposed until post-chlorine is injected before the water purification pond. Therefore, maintaining the post-chlorine injection rate appropriately is an important factor in decomposing ammonia nitrogen and maintaining the residual @ element concentration in the treated water.

ここでの後塩素注入率がアンそニア性窒素の分解に必要
な量より少ないと遊離残留塩素がゼロとなり、配水途中
で細菌・ウィルス等の汚染を受けるなどの衛生上の問題
を引き起こす可能性が生じる。
If the post-chlorine injection rate here is lower than the amount required to decompose anthonia nitrogen, free residual chlorine will be zero, which may cause sanitary problems such as contamination with bacteria and viruses during water distribution. occurs.

上述のように着水井付近で注入されている塩素をオゾン
に変更した場合忙は、オゾンの残留効果がないためKろ
通油が必らずしも酸化状態に保持されないため、マンガ
ン・鉄などのろ通油からの漏出や細菌−微生物類の繁茂
の可能性があり、また原水中に含まれるアンモニア性窒
素が分解されないなどの欠点がある。
As mentioned above, if the chlorine injected near the landing well is replaced with ozone, there is no residual effect of ozone, so the K-filtered oil is not necessarily kept in an oxidized state, so it is difficult to replace manganese, iron, etc. There is a possibility of leakage from slowly flowing oil and the growth of bacteria and microorganisms, and there are disadvantages such as the ammonia nitrogen contained in the raw water is not decomposed.

この発明は浄水場へのオゾン処理導入にあたって前述の
欠点を除去して浄水プロセスを安全に運用するためにな
されたもので、急速ろ通油の手前の点で塩素などの酸化
剤を注入することによって、急速ろ通油をつねに酸化雰
囲気に保持するとともにアンモニア性窒素を酸化分解す
ることを特徴とする薬品注入制御方法を提供することを
目的としている。
This invention was made in order to eliminate the above-mentioned drawbacks and operate the water purification process safely when introducing ozone treatment to water purification plants. An object of the present invention is to provide a chemical injection control method characterized by constantly maintaining rapidly filtered oil in an oxidizing atmosphere and oxidizing and decomposing ammonia nitrogen.

この発明は着水井付近において酸化・殺菌剤としてオゾ
ンを注入する浄水場において、前記オゾンを注入する点
より下流でかつ急速ろ通油より上流で塩素又は酸化性塩
素化合物を注入すること嫁よって、ろ消電及びろ通油以
降の処理水の酸化力の保持及びアンモニア性窒素の酸化
分mの少くとも一方を行なう浄水場の薬品注入制御方法
に存する。
In a water treatment plant where ozone is injected as an oxidizing/sterilizing agent near a receiving well, chlorine or an oxidizing chlorine compound is injected downstream from the point where the ozone is injected and upstream from the rapid filtration oil. The invention resides in a chemical injection control method for a water purification plant which performs at least one of maintaining the oxidizing power of treated water after filtration dissipation and filtration and reducing the oxidation content m of ammonia nitrogen.

塩素又は酸化性塩素化合物の注入は上記の地点で行なえ
るが、好適には沈殿池、より好適には急速ろ通油前で行
なう。また塩素又は酸化性塩素化合物の注入量制御は、
沈殿池の水質及び急速ろ過電を出た処理水の水質により
注入率を定め、急速ろ過電入口のろ過流量に応じて注入
量を変更して処理水中の残留塩素0度を設定値に維持す
ることにより行う。
Injection of chlorine or oxidizing chlorine compounds can be carried out at the points mentioned above, but is preferably carried out in the settling tank, more preferably before the rapid oil filtration. In addition, the injection amount of chlorine or oxidizing chlorine compounds can be controlled by
The injection rate is determined based on the water quality of the settling tank and the quality of the treated water exiting the rapid filtration station, and the amount of injection is changed according to the filtration flow rate of the rapid filtration station to maintain the residual chlorine in the treated water at the set value of 0 degrees. To do this.

着水井付近でオゾンを注入すると原水中に含まれている
鉄、マンガン等は酸化されて懸濁状の水酸化鉄や二酸化
マンガンとなって、その一部は凝集フロックに取り込ま
れ分離除去される。しかし、残留オゾンが消滅したろ過
電において鉄やマンガンを溶出させないためには塩素な
どの酸化剤を加えてろ過電を酸化状態に維持する必要が
ある。二価の鉄イオンおよび二価のマンガンイオンの塩
素による酸化反応として次式が知られている。
When ozone is injected near the landing well, iron, manganese, etc. contained in the raw water are oxidized and become suspended iron hydroxide and manganese dioxide, some of which are incorporated into flocs and separated and removed. . However, in order to prevent iron and manganese from eluting in the filtrate where residual ozone has disappeared, it is necessary to maintain the filtrate in an oxidized state by adding an oxidizing agent such as chlorine. The following equation is known as the oxidation reaction of divalent iron ions and divalent manganese ions by chlorine.

xFd++ Hczo+、tH,o→2Fe (OH%
 + −tH” + CJ−・・・= (1)また、オ
ゾンで分解されなかったアンモニア性窒素はブレークポ
イント点以上すなわち酸化分解に盟要な充分量の塩素注
入によって次式のように酸化分解される。
xFd++ Hczo+,tH,o→2Fe (OH%
+ -tH" + CJ-...= (1) In addition, ammonia nitrogen that was not decomposed by ozone is oxidized and decomposed by injecting a sufficient amount of chlorine that is necessary for oxidative decomposition beyond the break point point, as shown in the following equation. be done.

、2NH+JCI−=Nコ+AHCJ   ・・−・(
3)3            コ この場合、ブレークポイント点以下の注入量の場合には
アンモニアをクロラミンとして結合塩素の形で処理水中
に残留させることもできる。
, 2NH+JCI-=Nko+AHCJ...-(
3) In this case, if the injection amount is below the breakpoint point, ammonia can be left in the treated water in the form of combined chlorine as chloramine.

以下、この発明を図九基いて詳細に説明する。Hereinafter, this invention will be explained in detail with reference to FIG.

図はこの発明による浄水場の薬品注入制御方式を示す概
略図である。図において、河川等からの取水原水に着水
井lにおいてオゾンを注入し酸化・殺菌・脱臭等を行な
う。オゾンの注入方法は現在性なわれている塩素注入方
法と同様であり、計算機7で決定されたオゾン注入率を
演算器ざにおいて流量計6で測定した取水量に応じたオ
ゾン注入量に換算し、オゾン発生器ioの放電電圧等を
調節するとと建より設定されたオゾン量を発生させ、オ
ゾン注入機りから注入する制御方式である。
The figure is a schematic diagram showing a chemical injection control system for a water purification plant according to the present invention. In the figure, ozone is injected into raw water taken from a river, etc. at a landing well L to perform oxidation, sterilization, deodorization, etc. The ozone injection method is similar to the current chlorine injection method, and the ozone injection rate determined by the calculator 7 is converted into the ozone injection amount according to the water intake amount measured by the flowmeter 6 at the calculator. This control method generates a preset amount of ozone by adjusting the discharge voltage of the ozone generator io, and injects it from an ozone injector.

薬品混和池2で凝集剤、凝集助剤が注入された後、フロ
ック形成池3を経て沈殿池グで大部分の懸濁物が沈降分
離される。引き続き急速ろ過電Sで上澄水に少量含まれ
る微小浮遊物を除去するが、それに先立ちろ過電5の手
前の点20において塩素などの酸化剤を注入する。
After the flocculant and coagulation aid are injected in the chemical mixing tank 2, most of the suspended matter is sedimented and separated in the sedimentation tank via the flocculation tank 3. Subsequently, a small amount of suspended matter contained in the supernatant water is removed by a rapid filtration cell S, but prior to this, an oxidizing agent such as chlorine is injected at a point 20 in front of the filtration cell 5.

次に本発明の薬品注入制御方法について図に基づいて説
明する。
Next, the chemical injection control method of the present invention will be explained based on the drawings.

塩素等の注入点コθより上流側の点/グにおける水質を
水質計器13で測定する。水質計器/3は、たとえば酸
化還元電位(ORP )計、残留オゾンn度計、紫外吸
光度(Uv)計、過マンガン酸カリウム消費量計など塩
素注入量と関連のある水質計器である。この水質計器/
3によってたとえばORP計を用いた場合には水中の液
性が還元側にシフトした場合には塩素注入率を増加し、
逆の場合は塩素注入率を減少させるといったフイードフ
オ一り−ド制御を行なう。
The water quality at a point /g upstream of the injection point of chlorine etc. is measured by a water quality meter 13. Water quality meter/3 is a water quality meter related to the amount of chlorine injection, such as an oxidation-reduction potential (ORP) meter, a residual ozone n meter, an ultraviolet absorbance (Uv) meter, and a potassium permanganate consumption meter. This water quality meter/
According to 3, for example, when using an ORP meter, if the liquid property of the water shifts to the reducing side, the chlorine injection rate is increased,
In the opposite case, feed feed control is performed to reduce the chlorine injection rate.

一方、塩素等の注入点コθより下流側の点/6における
塩素等注入後の処理水を水質計器13で測定する。水質
計器15は、たとえば残留塩素濃度計、ORP計など塩
素消費量やろ過電の酸化還元状態等と関連のある水質計
器である。この水質計器13によってたとえば残留塩素
濃度計を用いた場合に処理水中の残留塩素の増減に応じ
てP動作(比例動作)やPI動作(fat分動作)塩素
注入率を増減させるといったフィードバック制御を行な
う。
On the other hand, the water quality meter 13 measures the treated water after injection of chlorine, etc. at point /6 on the downstream side of the injection point θ. The water quality meter 15 is a water quality meter, such as a residual chlorine concentration meter or an ORP meter, which is related to the amount of chlorine consumed, the oxidation-reduction state of filtration power, and the like. For example, when using a residual chlorine concentration meter, this water quality meter 13 performs feedback control such as increasing or decreasing the chlorine injection rate in P operation (proportional operation) or PI operation (fat operation) according to the increase or decrease of residual chlorine in the treated water. .

急速ろ過電りよりも上流側の点コQで注入される塩素等
の酸化剤の注入率は、上記で求めた両塩素等酸化物の分
析値を計算機17で演算して塩素等の注入率とする。こ
の注入率を流量計12で測定されたろ過流量に応じて演
算器/jで注入量に変換し、塩素注入量調節器17でバ
ルブで開度などを調節して所定量の塩素を注入するーま
た計算機/りでは注入率をCRTやオペレーションデス
クなどから手動で設定できる機能も有するものである。
The injection rate of oxidizing agents such as chlorine to be injected at point Q on the upstream side of the rapid filtration power supply is determined by calculating the analytical values of both chlorine and other oxides obtained above using the calculator 17. shall be. This injection rate is converted into an injection amount by a calculator /j according to the filtration flow rate measured by the flow meter 12, and a predetermined amount of chlorine is injected by adjusting the opening degree etc. with a valve in the chlorine injection amount regulator 17. The computer also has a function that allows the injection rate to be manually set from the CRT or operation desk.

以上述べたように、水質計器/3および水質計器/りの
設置によりろ過電および処理水質を安定に制御すること
ができるが、水質計器/Jを設置しない場合でも、ろ過
電を酸化状態に保持できるため鉄・マンガンの溶出や細
菌・微生物の繁殖を防止し、およびアンモニア性窒素を
酸化分解するという基本的な要求は満足することができ
る。
As mentioned above, it is possible to stably control the filtration current and the quality of the treated water by installing the water quality meter/3 and the water quality meter/2, but even if the water quality meter/J is not installed, the filtration current can be maintained in an oxidized state. Therefore, the basic requirements of preventing the elution of iron and manganese and the proliferation of bacteria and microorganisms, and oxidizing and decomposing ammonia nitrogen can be satisfied.

なお、本方法ではろ過温!以降の処理水質を4で採水し
て設定水質となるようにフィードバック制御しているた
め、従来ろ過電!より下流側の塩素混和池で注入されて
いる後塩素の注入を省略することができる− なお、上記の例では急速ろ過電について述べたが、活性
戻光てん塔などについても同様の方法が適用できる。ま
た本例は浄水賜について述べたが、他の水処理プラント
においてもこの発明方法を同様に適用することができる
。着水井近傍/lに注入する酸化・殺菌剤もオゾンに限
らず、たとえば過酸化水素のようにオゾンと同様に残留
効果の小さい薬剤についても同様に適用することができ
る。
In addition, in this method, the filtration temperature! Since the subsequent treated water quality is sampled in Step 4 and feedback control is performed to achieve the set water quality, conventional filtration is not possible! It is possible to omit the injection of chlorine after it has been injected in the chlorine mixing pond further downstream.Although the above example describes a rapid filtration cell, the same method can be applied to an activated return light tower, etc. can. Further, although this example describes a water purification plant, the method of the present invention can be similarly applied to other water treatment plants. The oxidizing/sterilizing agent to be injected into the vicinity of the water receiving well/liter is not limited to ozone, but may also be applied to a chemical having a small residual effect like ozone, such as hydrogen peroxide.

以上のように、この発明によれば着水井付近で注入され
たオゾンによって処理水の脱臭、味の改善、脱色などが
行われ、急速ろ過電の前の点で注入する塩素などの酸化
剤によって、着水井付近で注入されたオゾンがろ通油手
前で残留していなくても、ろ過電及びろ適地以降の処理
水を酸化的雰囲気に維持することが出来、ろ過電からの
鉄・マンガンの溶出防止や細菌・微生物の繁殖を抑制す
るとともに、アンモニア性窒素をも酸化分解できるとい
う効果をもつ。また、着水井付近で注入されるオゾンに
よってアンモニア性窒素以外の大部分の物質は酸化分解
されるため、急速ろ過電の手前で注入する塩素量はアン
モニア性窒素を分解できる量よりわずかに多い量だけで
充分なので、トリハロメタン類等の有害な塩素化合物の
生成量を減少できるという効果をもつ。
As described above, according to the present invention, the ozone injected near the landing well deodorizes, improves the taste, and decolorizes the treated water, and the oxidizing agent such as chlorine injected at a point before the rapid filtration Even if the ozone injected near the landing well does not remain in front of the filtration oil, it is possible to maintain the filtration current and the treated water after the filtration site in an oxidizing atmosphere, and remove iron and manganese from the filtration current. In addition to preventing elution and inhibiting the growth of bacteria and microorganisms, it also has the effect of oxidizing and decomposing ammonia nitrogen. In addition, most substances other than ammonia nitrogen are oxidized and decomposed by ozone injected near the landing well, so the amount of chlorine injected before rapid filtration is slightly greater than the amount that can decompose ammonia nitrogen. Since this is sufficient, it has the effect of reducing the amount of harmful chlorine compounds such as trihalomethanes produced.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明による浄水場の薬品注入制御方式を示す概
略図である。図中、 l・・着水井、2・・薬品混和池、3・・フロック形成
池、ψ・・沈殿池、5・・急速ろ過電、6・・流量計、
り・・計算機、ざ・・比率演算器、?・・オゾン注入機
、lθ・・オゾン発生機、/l・・オゾン注入点、/コ
・・流量計、13・・水質計器、/F・・採水地点、1
3・・水質計器、16・・採水地点、/り・・計算機、
/1・・比率演算器、l?・・塩素注入量調節器、コO
・・塩素注入点。 代理人  葛  野  信  −
The figure is a schematic diagram showing a chemical injection control system for a water purification plant according to the present invention. In the figure, l...water landing well, 2...chemical mixing pond, 3...floc formation pond, ψ...sedimentation basin, 5...rapid filtration current, 6...flow meter,
ri...calculator, za...ratio calculator, ?・・Ozone injection machine, lθ・・Ozone generator, /l・・Ozone injection point, /・・Flowmeter, 13・・Water quality meter, /F・・Water sampling point, 1
3...Water quality meter, 16...Water sampling point, /ri...Calculator,
/1...Ratio calculator, l?・・Chlorine injection amount regulator, KO
...Chlorine injection point. Agent Shin Kuzuno −

Claims (3)

【特許請求の範囲】[Claims] (1)  着水井付近において酸化・殺菌剤としてオゾ
ンを注入する浄水場において、前記オゾンを注多 大する点より下流でかつ急速濾過池より上流で塩素又は
酸化性塩素化合物を注入することによって、ろ通油及び
ろ通油以降の処理水の酸化力の保持及びアンモニア性窒
素の酸化分解の少くとも一方を行なうことを特徴とする
浄水場の薬品注入制御方法。
(1) In water treatment plants where ozone is injected as an oxidizing/sterilizing agent near the receiving well, chlorine or oxidizing chlorine compounds are injected downstream from the point where the ozone is injected and upstream from the rapid filtration basin. A method for controlling chemical injection in a water purification plant, characterized by performing at least one of maintaining the oxidizing power of treated water after oil passing and filtering, and oxidizing and decomposing ammonia nitrogen.
(2)塩素又は酸化性塩素化合物の注入を沈殿池の水質
及び急速ろ通油を出た処理水の水質により注入率を定め
、急速ろ通油入口のろ過流量に応じて注入量を変更して
処理水中の残留塩素濃度な設定値に維持することにより
行う特許請求の範囲第1項記載の浄水場の薬品注入制御
方法。
(2) The injection rate of chlorine or oxidizing chlorine compounds is determined based on the water quality of the settling tank and the water quality of the treated water exiting the rapid filtration oil, and the injection amount is changed according to the filtration flow rate at the rapid filtration oil inlet. 2. A method for controlling chemical injection in a water purification plant according to claim 1, wherein the residual chlorine concentration in the treated water is maintained at a set value.
(3)処理水の水質を酸化還元電位計を用いて酸化状態
を検出する特許請求の範囲第2項記載の浄水場の薬品注
入制御方法。
(3) A chemical injection control method for a water purification plant according to claim 2, wherein the oxidation state of the treated water is detected using an oxidation-reduction electrometer.
JP20008482A 1982-11-15 1982-11-15 Method for controlling injection of chemical in water purification plant Granted JPS5990693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20008482A JPS5990693A (en) 1982-11-15 1982-11-15 Method for controlling injection of chemical in water purification plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20008482A JPS5990693A (en) 1982-11-15 1982-11-15 Method for controlling injection of chemical in water purification plant

Publications (2)

Publication Number Publication Date
JPS5990693A true JPS5990693A (en) 1984-05-25
JPH0242559B2 JPH0242559B2 (en) 1990-09-25

Family

ID=16418583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20008482A Granted JPS5990693A (en) 1982-11-15 1982-11-15 Method for controlling injection of chemical in water purification plant

Country Status (1)

Country Link
JP (1) JPS5990693A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161786A (en) * 2011-01-19 2012-08-30 Air Water Safety Service Inc Apparatus for treating infectious waste liquid
JP2012161785A (en) * 2011-01-19 2012-08-30 Air Water Safety Service Inc Inactivation method of pathogenic microorganism
WO2022168948A1 (en) * 2021-02-08 2022-08-11 栗田工業株式会社 Water treatment device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161786A (en) * 2011-01-19 2012-08-30 Air Water Safety Service Inc Apparatus for treating infectious waste liquid
JP2012161785A (en) * 2011-01-19 2012-08-30 Air Water Safety Service Inc Inactivation method of pathogenic microorganism
WO2013099333A1 (en) * 2011-12-27 2013-07-04 エア・ウォーター防災株式会社 Processing device for liquid infectious waste
WO2013099332A1 (en) * 2011-12-27 2013-07-04 エア・ウォーター防災株式会社 Method for inactivating pathogenic microorganism
WO2022168948A1 (en) * 2021-02-08 2022-08-11 栗田工業株式会社 Water treatment device and method
JP2022121110A (en) * 2021-02-08 2022-08-19 栗田工業株式会社 Water treatment device and method

Also Published As

Publication number Publication date
JPH0242559B2 (en) 1990-09-25

Similar Documents

Publication Publication Date Title
CA2439927C (en) Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
US6146524A (en) Multi-stage ozone injection water treatment system
Arslan-Alaton et al. Electrocoagulation of a real reactive dyebath effluent using aluminum and stainless steel electrodes
US5460702A (en) Apparatus and method for the purification of water
JP6326230B2 (en) Wastewater treatment device for obtaining Class B biosolids using chlorine dioxide
EP1084002B1 (en) Method and system for cleaning semiconductor elements
KR102311904B1 (en) a soluble manganese treatment method using the permanganate and the water treatment system using thereof
JPS5990693A (en) Method for controlling injection of chemical in water purification plant
KR101099889B1 (en) Apparatus for waste-water reuse using advanced oxidation process
JP3321876B2 (en) Ozone treatment apparatus, ozone treatment method, and water purification treatment method
JP4334404B2 (en) Water treatment method and water treatment system
US6274053B1 (en) Ozonation process
JP4660211B2 (en) Water treatment control system and water treatment control method
Govorova et al. Evaluation of barrier functions of traditional water supply facilities in relation to toxic trihalomethanes
JP3803590B2 (en) Hydrogen peroxide residual concentration controller
JPH1034171A (en) Method for treating drainage by ultraviolet ray
KR200228702Y1 (en) A Device for Producing Potable Water
KR101317949B1 (en) Waste water disposal plant for factory wastes with decolorizer and public sewage
JPH11347576A (en) Method and apparatus for treating water
DE102013000712A1 (en) Process and device for the treatment of bathing water
KR100882228B1 (en) Waste-water treatment apparatus comprising perchlorate, and treatment method thereof
JPS5939198B2 (en) Wastewater ozone treatment equipment
JP4628660B2 (en) Accelerated oxidation treatment method
JPS58174288A (en) Method for controlling feeding of ozone in water purification plant
JP2000107778A (en) Method and apparatus for treating water