JPS5990402A - Resonance frequency variable coaxial cavity for large power - Google Patents

Resonance frequency variable coaxial cavity for large power

Info

Publication number
JPS5990402A
JPS5990402A JP20073982A JP20073982A JPS5990402A JP S5990402 A JPS5990402 A JP S5990402A JP 20073982 A JP20073982 A JP 20073982A JP 20073982 A JP20073982 A JP 20073982A JP S5990402 A JPS5990402 A JP S5990402A
Authority
JP
Japan
Prior art keywords
conductor
ring
outer cylindrical
cavity
coaxial cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20073982A
Other languages
Japanese (ja)
Other versions
JPS6330803B2 (en
Inventor
Kazuhiko Harada
和彦 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP20073982A priority Critical patent/JPS5990402A/en
Publication of JPS5990402A publication Critical patent/JPS5990402A/en
Publication of JPS6330803B2 publication Critical patent/JPS6330803B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/04Coaxial resonators

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Abstract

PURPOSE:To operate stably a cavity without causing a problem such as improper contact by rotating a feeding screw for moving a ring conductor so as to move the position of the termination, in the construction of a termination plate of a coaxial cavity used for large power. CONSTITUTION:A feeding screw 9 screwed to a ring conductor 8 and a driver 11 to rotate the feeding screw 9 via a gear 10 are provided in order to move a slide termination comprising a ring insulator 7 and the ring conductor 8. An outer cylindrical conductor 5 and an inner conductor 6 are terminated by the series coupling of a capacitor C1 formed by the outer cylindrical conductor 5 and the ring conductor 8 and a capacitor C2 formed by the ring conductor 8 and the inner conductor 6. Thus, the substantially same effect as a conventional short-circuit plate using a short-circuit conductor is obtained.

Description

【発明の詳細な説明】 本発明は、共振周波数可変同軸キャビティ、さらに詳し
くは、大電力用に用いる同軸キャビティの終端板の構造
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resonant frequency variable coaxial cavity, and more particularly to the structure of a termination plate of a coaxial cavity used for high power applications.

同軸キャビティの共振周波数は、キャビティの長をに依
存する。これを利用して、キャピテイの共振周波数を、
キャピテイの長さを変化させることにより調整すること
が従来から行なわれている。すなわち例えば長さの異な
る複数の同軸管と、終端が短絡された同軸キャビティと
を組合わせて、希望する共振周波数を得たり、キャビテ
ィの終端を短絡する短絡板をキャビティの軸方向に可動
にし、上記短絡板の位置を変えて共振周波数を調整する
ことが行なわれている。
The resonant frequency of a coaxial cavity depends on the length of the cavity. Using this, the resonant frequency of the capity is
Conventionally, adjustment has been carried out by changing the length of the capity. That is, for example, a desired resonance frequency can be obtained by combining a plurality of coaxial tubes of different lengths and a coaxial cavity whose ends are short-circuited, or a shorting plate that short-circuits the ends of the cavities can be moved in the axial direction of the cavity. The resonant frequency is adjusted by changing the position of the shorting plate.

前者の方法では、周波数を連続的に変化させることか困
難であるとともに、キャビティの取付は及び取除きに長
い時間を必要とし、作業性に問題がある。
In the former method, it is difficult to continuously change the frequency, and it takes a long time to install and remove the cavity, resulting in problems in workability.

後者の方法では、キャビティの終端短絡部がタンク電流
の最大の位置であるので、L記終端短絡板と同軸管の接
触部に、接触不良等に起因して、スパークが発生したり
、損失が生じることが多々あり、キャビティの性能を劣
化させることがある。
In the latter method, the short circuit at the end of the cavity is the position where the tank current is at its maximum, so there is no risk of sparks or loss due to poor contact at the contact point between the end short circuit plate L and the coaxial pipe. This often occurs and can degrade the performance of the cavity.

この発明は、このような従来技術による致振周波数町変
同軸キャビティの問題点を解決することを目的とする。
It is an object of the present invention to solve the problems of the conventional coaxial cavity with variable vibration frequency.

以下、図面を参照しながら本発明を説明する。The present invention will be described below with reference to the drawings.

第1図は従来技術による終端短絡板可動形の共振周波数
可変同軸キャビティの一例の概念的断面図、第2図は本
発明による共振周波数可変同軸キャビティの実施例の概
念的断面図、第3図はそれのA−A断面図である。
FIG. 1 is a conceptual cross-sectional view of an example of a resonant frequency variable coaxial cavity with a movable end shorting plate according to the prior art, FIG. 2 is a conceptual cross-sectional view of an embodiment of a resonant frequency variable coaxial cavity according to the present invention, and FIG. is a sectional view taken along line A-A.

第1図の従来技術による同軸キャピテイは、外側円筒導
体1.内側導体2.および終端短絡板3とからなってお
り、該短絡板3は適当な手段4によってキャビティの軸
方向に動かすことができる。外側円筒導体1と内側導体
2の同図左端P、Qがキャピテイの入力端であって、上
記短絡板3を移動させて入力に共振させる。この場合前
述したように、短絡板3と外側円筒導体1あるいは内側
導体2との間に接触不良等があるとキャビティの動作に
問題が生じる。
The prior art coaxial capity of FIG. 1 has an outer cylindrical conductor 1. Inner conductor 2. and an end shorting plate 3, which can be moved in the axial direction of the cavity by suitable means 4. The left ends P and Q of the outer cylindrical conductor 1 and the inner conductor 2 in the figure are the input ends of the capity, and the shorting plate 3 is moved to cause resonance to the input. In this case, as described above, if there is poor contact between the shorting plate 3 and the outer cylindrical conductor 1 or the inner conductor 2, a problem will occur in the operation of the cavity.

本発明は、キャビティを直流的に短絡をせずに、外側円
筒導体と内側導体との容量性結合により高周波的に短絡
して、上記問題を解決するものである。
The present invention solves the above problem by short-circuiting the cavity at high frequency by capacitive coupling between the outer cylindrical conductor and the inner conductor without short-circuiting the cavity.

本発明の一実施例を示す第2図、第3図の同軸キャビテ
ィは、外側円筒導体5と、内側導体6と、上記外側円筒
導体の内周面および内側導体の外周面に接するテフロン
等のリング状絶縁体7と、上記絶縁体7を介して上記外
側円筒導体5および内側導体6に対向して配設されてい
るリング状導体8と、上記り/グ絶縁体7と上記り/グ
状導体8とからなるスライド終端部を移動させるために
上記リング状導体8に螺合する送りネジ9と、上記送り
ネジ9を歯車10を介して回転させるための駆動装置1
1とからなる。
The coaxial cavity shown in FIGS. 2 and 3 showing an embodiment of the present invention includes an outer cylindrical conductor 5, an inner conductor 6, and a material such as Teflon that is in contact with the inner circumferential surface of the outer cylindrical conductor and the outer circumferential surface of the inner conductor. A ring-shaped insulator 7, a ring-shaped conductor 8 disposed opposite to the outer cylindrical conductor 5 and the inner conductor 6 via the insulator 7, and the above-mentioned insulator 7 and the above-mentioned insulator 7. a feed screw 9 that is screwed into the ring-shaped conductor 8 in order to move the slide end portion consisting of the ring-shaped conductor 8; and a drive device 1 that rotates the feed screw 9 via a gear 10.
Consists of 1.

この構造においては、外側円筒導体5と内側導体6とが
、テフロン等のリング状絶縁体7を誘電体とするコノデ
フすにより終端きれている。
In this structure, an outer cylindrical conductor 5 and an inner conductor 6 are terminated by a conode having a ring-shaped insulator 7 such as Teflon as a dielectric.

さらに詳しく述べると、外側円筒導体5とリング状導体
8とで形成されるコツプ/すC1およびリング状導体8
と内側導体6とで形成されるコンデンサC2の直列結合
によって、外側円筒導体5と内側導体6とが終端されて
いる。第4図は上記短絡部の電気的等価回路である。な
お第2図および第3図の実施例において、外側円筒導体
5に接する絶縁体7と内側導体に接する絶縁体7とは一
体に形成され、上記リング状導体8を被覆する構造とな
っているが、これらを分離して形成することも当然に可
能である。
To explain in more detail, the tip/cell C1 formed by the outer cylindrical conductor 5 and the ring-shaped conductor 8 and the ring-shaped conductor 8
The outer cylindrical conductor 5 and the inner conductor 6 are terminated by series coupling of the capacitor C2 formed by the outer cylindrical conductor 5 and the inner conductor 6. FIG. 4 is an electrical equivalent circuit of the short circuit section. In the embodiments shown in FIGS. 2 and 3, the insulator 7 in contact with the outer cylindrical conductor 5 and the insulator 7 in contact with the inner conductor are integrally formed to cover the ring-shaped conductor 8. However, it is naturally possible to form these separately.

このように外側円筒導体5と内側導体6とはコンデンサ
C1,C,によって終端されているので。
In this way, the outer cylindrical conductor 5 and the inner conductor 6 are terminated by the capacitors C1 and C.

高周波において電気的に短絡される状態になり、5− 短絡導体による従来の短絡板3と実質的に同じ効果を得
ることができる。
It becomes electrically short-circuited at high frequencies, and can obtain substantially the same effect as the conventional shorting plate 3 using a 5-shorting conductor.

外部円筒導体の内側直径をり、、内部導体の外側直径を
D2とすると、円筒同軸キャビティの波動抵抗Wは次式
で表わきれる。
If the inner diameter of the outer cylindrical conductor is D2, and the outer diameter of the inner conductor is D2, the wave resistance W of the cylindrical coaxial cavity can be expressed by the following equation.

一2π 電磁波の波長をλ、その位相定数をβ(−丁)、キャビ
ティの入力端と終端の間の距離をθとすると、終端が短
絡をれているとき入力端から見たイノピーダンスZは次
式で表わされる。
-2π If the wavelength of the electromagnetic wave is λ, its phase constant is β (-d), and the distance between the input end and the end of the cavity is θ, then the inopedance Z seen from the input end when the end is short-circuited is It is expressed by the following formula.

Z == W tanβe ここでβをλの135  ・・・倍とすると、4 ” 
 4 ′  4 ′ janββが無限大となり、キャビティは共振状態とな
る。普通、周波数がIOMH2〜200MHz、出力電
力が500 KW〜2MWのとき、Wの値は加〜関Ωを
選定する。
Z == W tanβe Here, if β is 135 times λ, then 4”
4 ′ 4 ′ janββ becomes infinite, and the cavity enters a resonant state. Normally, when the frequency is IOMH2 to 200MHz and the output power is 500 KW to 2MW, the value of W is selected to be between Ω and Ω.

実験的および理論的に、第4図の静電容量に1 よるリアクタンスの値を波動抵抗Wの闇〜6− にすれば、外側筒状導体5と内側導体6とが高周波的に
短絡きれることが確められた。
Experimentally and theoretically, if the value of the reactance due to the electrostatic capacitance shown in Fig. 4 is set to 6 - the value of the wave resistance W, the outer cylindrical conductor 5 and the inner conductor 6 can be short-circuited at high frequencies. was confirmed.

例えば周波数を5Q MHz 、 Wを50Q、D、=
 l m、D2 = 0.606 m、テフロンの厚ざ
dを耐電圧性に必要なQ、 5 mm、テフロンの比誘
導率ε、=2、スライド導体の幅Wを0.15mとする
と、外部円筒導体とり/グ状導体との静電容量c1、お
よびリング状導体と内部導体との静電容量C2uそれぞ
れ次の値になる。
For example, if the frequency is 5Q MHz, W is 50Q, D, =
l m, D2 = 0.606 m, the thickness d of Teflon is Q required for voltage resistance, 5 mm, the specific inductivity of Teflon is ε, = 2, and the width W of the slide conductor is 0.15 m. The capacitance c1 between the cylindrical conductor and the ring-shaped conductor, and the capacitance C2u between the ring-shaped conductor and the internal conductor have the following values.

c、: 0.0167 ttF 、  c2 = 0.
01 fi Fしたがってその合成リアクタンスXcは
次の値になる。
c,: 0.0167 ttF, c2 = 0.
01 fi F Therefore, the composite reactance Xc becomes the following value.

Xc = 0.510 すなわちXcの値はWの約百である。つ捷りリアクタン
スXcによって外側円筒導体5と内部導体6とは高周波
的に実質的に短絡される。
Xc = 0.510, that is, the value of Xc is approximately 100 W. Due to the shunting reactance Xc, the outer cylindrical conductor 5 and the inner conductor 6 are substantially short-circuited at high frequencies.

上記リング状導体8は送りネジ9と、歯車10と駆動装
置11とによって外部から連続的に移動させることがで
きるので、上記リアクタンスによる終端の位置を動かす
ことができ、このとき従来の短絡板による終端と異なり
、金属部分が機械的に無接触であるので、接触不良等の
問題が生じず、安定にキャビティを動作させることがで
きる。
Since the ring-shaped conductor 8 can be continuously moved from the outside by the feed screw 9, the gear 10, and the drive device 11, the position of the termination caused by the reactance can be moved. Unlike the terminal end, the metal part is mechanically non-contact, so problems such as poor contact do not occur, and the cavity can be operated stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による終端蝮絡板可動形の共振周波数
可変同軸キャビティの一例の概念的断面図、第2図は本
発明による共振周波数可変同軸キャビディの実施例の概
念的断面図、第3図はそれのA−A断面図、第4図は終
端部の電気的等価回路である。 5・・・・・・外側円筒導体、6・・・・・・内側円筒
導体、7・・・・・・絶縁体、    8・・・・・・
リング状導体、9・・・・・・送りネジ。
FIG. 1 is a conceptual cross-sectional view of an example of a resonant frequency variable coaxial cavity with a movable termination plate according to the prior art, FIG. 2 is a conceptual cross-sectional view of an embodiment of a resonant frequency variable coaxial cavity according to the present invention, and FIG. The figure is a sectional view taken along the line AA, and FIG. 4 is an electrical equivalent circuit of the terminal end. 5...Outer cylindrical conductor, 6...Inner cylindrical conductor, 7...Insulator, 8...
Ring-shaped conductor, 9...Feed screw.

Claims (3)

【特許請求の範囲】[Claims] (1)  外側筒状導体と、内側導体と、ト記外仰1筒
状導体と上記内側導体に配設され、それぞれに絶縁体を
介して対向するリング状導体と、上記り/グに螺合する
送りネジとから成り、上記送りネジを回転させて一ト記
すノグ状導体を移動させることができる大電力用共振周
波数可変同軸キャビティ。
(1) An outer cylindrical conductor, an inner conductor, a ring-shaped conductor disposed on the outer cylindrical conductor and the inner conductor, and facing each other with an insulator in between, and a ring-shaped conductor that is screwed into the ring/g. A resonant frequency variable coaxial cavity for high power use, consisting of a mating feed screw, and capable of moving a nog-shaped conductor by rotating the feed screw.
(2)  上記外側筒状導体と内側導体とが同軸円筒体
構造をなすことを特徴とする特許請求の範囲第(1)項
記載の大電力用共振周波数可変同軸キャビティ。
(2) The variable resonant frequency coaxial cavity for high power use according to claim (1), wherein the outer cylindrical conductor and the inner conductor form a coaxial cylindrical structure.
(3)  上記リング状導体が一ヒ記絶縁体によって被
覆されていることを特徴とする特許請求の範囲第(1)
項記載の大電力用共振周波数可変同軸キャビティ。
(3) Claim No. (1) characterized in that the ring-shaped conductor is covered with the insulator described in (1) above.
Coaxial cavity with variable resonant frequency for high power as described in section.
JP20073982A 1982-11-16 1982-11-16 Resonance frequency variable coaxial cavity for large power Granted JPS5990402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20073982A JPS5990402A (en) 1982-11-16 1982-11-16 Resonance frequency variable coaxial cavity for large power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20073982A JPS5990402A (en) 1982-11-16 1982-11-16 Resonance frequency variable coaxial cavity for large power

Publications (2)

Publication Number Publication Date
JPS5990402A true JPS5990402A (en) 1984-05-24
JPS6330803B2 JPS6330803B2 (en) 1988-06-21

Family

ID=16429360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20073982A Granted JPS5990402A (en) 1982-11-16 1982-11-16 Resonance frequency variable coaxial cavity for large power

Country Status (1)

Country Link
JP (1) JPS5990402A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477003A (en) * 1987-06-30 1989-03-23 Furukawa Electric Co Ltd Simplified connector assembly jig for optical fiber

Also Published As

Publication number Publication date
JPS6330803B2 (en) 1988-06-21

Similar Documents

Publication Publication Date Title
US2964718A (en) Microwave circuits
US3573840A (en) Small bulk helically wound antennae and method for making same
US3943403A (en) Electrodeless light source utilizing a lamp termination fixture having parallel capacitive impedance matching capability
US2527608A (en) Constant impedance network
US4631506A (en) Frequency-adjustable coaxial dielectric resonator and filter using the same
WO2001028300A1 (en) Matching device and plasma processing apparatus
US4837534A (en) Ceramic block filter with bidirectional tuning
US5418509A (en) High frequency comb-like filter
US4184123A (en) Double-tuned output circuit for high power devices using coaxial cavity resonators
US3413577A (en) Absorption wavemeter
JPS5990402A (en) Resonance frequency variable coaxial cavity for large power
US4473807A (en) Coaxial K inverter
US4034320A (en) High power coaxial cavity resonator tunable over a broad band of frequencies
US4002957A (en) Trimmable fixed hermetically sealed capacitor
US5245625A (en) High-frequency-excited laser for high output powers, particularly a CO.sub.2
JPS6126724B2 (en)
US4532483A (en) Coaxial RF matching transformer having line sections simultaneous adjustable while retaining a fix transformer line length
JPS62252184A (en) Gas laser device
US3444485A (en) Single adjustment,variable selectivity-constant frequency coaxial transmission line filter
US2693582A (en) Variable coupling device
JP2005020231A (en) Stub element and impedance matching apparatus employing the same
US3842370A (en) Coaxial trapatt oscillator operable at a fixed frequency and at a high efficiency
EP0147499A2 (en) Broadband impedance transformer and resonator
US10673112B2 (en) Coaxial line, resonator, and filter
US12040139B2 (en) Variable capacitor with linear impedance and high voltage breakdown