JPS5990347A - Saddle type deflection coil - Google Patents

Saddle type deflection coil

Info

Publication number
JPS5990347A
JPS5990347A JP19999482A JP19999482A JPS5990347A JP S5990347 A JPS5990347 A JP S5990347A JP 19999482 A JP19999482 A JP 19999482A JP 19999482 A JP19999482 A JP 19999482A JP S5990347 A JPS5990347 A JP S5990347A
Authority
JP
Japan
Prior art keywords
electron beam
coil
axis
angle
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19999482A
Other languages
Japanese (ja)
Inventor
Seiichi Nakagawa
中川 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP19999482A priority Critical patent/JPS5990347A/en
Publication of JPS5990347A publication Critical patent/JPS5990347A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To reduce deflective distortion even during large angle deflection by setting a winding angle (estimated angle from the axis of electron beam) theta of a coil which is parallel to the axis of electron beam to the value near the specific value. CONSTITUTION:A winding angle (estimated angle from the axis of electron beam) theta of the coil 1a, which is parallel to the axis of electron beam, of the saddle type deflection coil 1 which is placed coaxially with the axis of electron beam and is composed of the coil 1a parallel to the axis of electron beam and the coil 1b along the circle about the axis of electron beam, it set to an angle near 103 degrees. Thereby, distortion can be kept small even when the electron beam is deflected by a large angle and a sample picture can be observed without distortion up to ultralow-multiplication factor by fully utilizing the merits in application of saddle type coil.

Description

【発明の詳細な説明】 本発明は走査電子顕微鏡等の電子線走査に使用する鞍型
偏向コイルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a saddle-shaped deflection coil used for electron beam scanning in a scanning electron microscope or the like.

走査電子顕微鏡に用いられている電子線走査用の偏向コ
イルとしてはトロイダル巻が主流をなしている。該トロ
イダル巻の偏向コイルはフェライト等の強磁性体製のコ
ア上に一定角度コイルを巻回したもので、構造的には簡
単で装置内への設置も容易である等の利点はあるが、電
子線を偏向させるに必要な磁界以外に該コイルの外側に
まで磁界が漏れ、それが対物レンズのヨーク等に流れ込
み、次のような問題を生ずる。
Toroidal windings are the mainstream deflection coil for electron beam scanning used in scanning electron microscopes. The toroidal-wound deflection coil is a coil wound at a fixed angle on a core made of ferromagnetic material such as ferrite, and has the advantage of being simple in structure and easy to install within the device. In addition to the magnetic field required to deflect the electron beam, a magnetic field leaks to the outside of the coil and flows into the yoke of the objective lens, etc., causing the following problems.

1 > T V走査の様な高速度の走査電流を流すと、
対物レンズの純鉄ヨークの周波数特性が悪いため、電子
線を偏向させるための磁界が歪んでしまい、最終的に陰
極線管に得られる画像に歪みをもたらす。
1 > When a high-speed scanning current such as TV scanning is applied,
Due to the poor frequency characteristics of the pure iron yoke of the objective lens, the magnetic field used to deflect the electron beam is distorted, which ultimately causes distortion in the image obtained by the cathode ray tube.

2)前記対物レンズの純鉄ヨークはヒステリシスがある
ため、走査電子顕微鏡の倍率を切換えたとき電子線の照
射位置がずれる結果となる。
2) Since the pure iron yoke of the objective lens has hysteresis, the irradiation position of the electron beam shifts when the magnification of the scanning electron microscope is changed.

3)li!i束の漏れが多いため有効に偏向磁界が電子
線通路に導入されず、電子線の偏向特性が良くない。
3) li! Since there is a lot of i flux leakage, the deflection magnetic field is not effectively introduced into the electron beam path, and the electron beam deflection characteristics are not good.

これに対し、鞍型コイルはコイル外への磁界の漏洩が少
ないので、前記トロイダル巻に比べ偏向特性が著しく優
れているが、電子線を大停向(偏向角度10°以上)す
ると磁束の歪みにより偏向歪みが発生する。この偏向歪
みは諺向角喰の3乗に比例するので走査電子顕微鏡にお
いては低(さ又は極低倍観察で問題となる。
On the other hand, saddle-shaped coils have significantly better deflection characteristics than the toroidal coils because there is less leakage of the magnetic field to the outside of the coil, but when the electron beam is stopped significantly (deflection angle of 10° or more), the magnetic flux becomes distorted. This causes deflection distortion. Since this deflection distortion is proportional to the cube of the angular deviation, it becomes a problem in low (or extremely low magnification) observation in a scanning electron microscope.

第1図及び第2図は一般の鞍型仰向コイルを示し、第1
図はコイル部分のみの斜視図、第2図は強磁性体製コア
を含めI:断面図である。1はコイルであり、電子線軸
に平行な部分1aと電子線軸を中心にした円に沿う部分
1hとからなっており、強(i ’l’1体製コア2の
内側に張付(号られている。該両コイル部分の内、電子
線軸に平行な部分1aが電子線の陥向に寄与づる磁界を
発生し、第2図に視号3で示すような磁束が流れる。実
路の装置においては、前記コイルは単一ではなくX、Y
両鰯同コイル及び軸合せ用のコイル等が幾つか重ねて3
− 巻回される。第2図において、θは巻回角度であり、前
記電子線軸に平行なコイル部分18両端の電子線軸から
の見込み角度である。該巻回角θは従来120度が最も
良いとされていたが、本発明者の実験によると前記の如
き大偏向角では120度巻は偏向歪みが3%〜7%程度
に大きくなり、低倍又は極低倍観察では実用的でないこ
とが判明した。
Figures 1 and 2 show a general saddle-shaped supine coil;
The figure is a perspective view of only the coil portion, and FIG. 2 is a cross-sectional view including the ferromagnetic core. Reference numeral 1 denotes a coil, which consists of a part 1a parallel to the electron beam axis and a part 1h along a circle centered on the electron beam axis. Of the two coil parts, the part 1a parallel to the electron beam axis generates a magnetic field that contributes to the deflection of the electron beam, and a magnetic flux as shown by the symbol 3 in Fig. 2 flows.Actual device In this case, the coil is not single but X, Y
The same coils for both sardines and several coils for axis alignment are stacked 3 times.
- rolled. In FIG. 2, θ is the winding angle, which is the viewing angle from the electron beam axis of both ends of the coil portion 18 parallel to the electron beam axis. Conventionally, it was considered that the best winding angle θ was 120 degrees, but according to the inventor's experiments, at such a large deflection angle, 120 degrees winding causes deflection distortion to be as large as 3% to 7%, resulting in low It was found that magnification or very low magnification observation was not practical.

而して、本発明は大角度偏向を行なっても偏向歪みの小
さい鞍型偏向コイルを提供することを目r+5とするも
ので、その構成は電子線軸4.T同軸に置かれ、該電子
線中11に平行な方向のコイル部分と該電子線軸を中心
にした円に沿うコイル部分とからなる鞍型偏向コイルに
おいて、前記電子線軸に平行なコイル部分の巻回角(電
子線軸からの見込み角)θを103度付近に設定した鞍
型偏向コイルに特徴がある。
The purpose of the present invention is to provide a saddle-shaped deflection coil with small deflection distortion even when deflecting at a large angle, and its configuration is such that the electron beam axis 4. In a saddle-shaped deflection coil that is placed coaxially with the electron beam and consists of a coil portion that runs parallel to the electron beam 11 and a coil portion that runs along a circle centered on the electron beam axis, the winding of the coil portion that is parallel to the electron beam axis is The saddle-shaped deflection coil has a turning angle (angle of view from the electron beam axis) θ set around 103 degrees.

本発明者は鞍型コイル■111角と偏向歪みとの関係に
ついて種々実験を行なったところ第3図の曲線に示すよ
うな結果を得た。実験1.t l向歪みの 4− h°11°認できないような高精度陰極線管を使用し、
試わ1上で゛電子線を10mmX 10mmの領域に走
査し、10倍の観察倍率で陰極線管上の画像から歪を測
定したもので、縦軸は巻回角度θ、横軸は偏向歪みを示
しである。該偏向歪みの正は樽型歪みを、又ガは糸巻型
歪みを示すものである。
The present inventor conducted various experiments regarding the relationship between the saddle-shaped coil 111 angle and deflection distortion, and obtained results as shown in the curve of FIG. 3. Experiment 1. Using a high-precision cathode ray tube with distortion in the tl direction of 4-h°11°,
On Trial 1, the electron beam was scanned over an area of 10 mm x 10 mm, and the distortion was measured from the image on the cathode ray tube at 10x observation magnification. The vertical axis is the winding angle θ, and the horizontal axis is the deflection distortion. This is an indication. A positive deflection distortion indicates a barrel distortion, and a positive deflection distortion indicates a pincushion distortion.

図から解るように大角度に偏向した場合には偏向歪みは
巻回角度に依存し、イの曲線は巻回角が1031f付近
で正負の反転を生じ、従ってこの付近の巻回角を使用す
れば偏向歪みは著しく小さいことが即断できる。実際に
巻回角を103度にしTJo、3%以下の偏向歪みに押
えることに成功しでいる。観察倍率が10倍程度の極低
倍では画像に若干の歪みがあっても許容され、その大き
さを1.5%程度とすると、第3図に点線で囲った領域
が実用的な巻回角度範囲になる。即ち、巻回角Oが97
庶から110度程度の間では大角度の偏向に拘わらず殆
んど偏向歪みなしで試料像の観察が可能どなるわけであ
る。
As can be seen from the figure, when the deflection is made at a large angle, the deflection distortion depends on the winding angle, and the curve (A) shows a positive/negative reversal when the winding angle is around 1031f, so a winding angle around this area should be used. It can be immediately determined that the deflection distortion is extremely small. In fact, we succeeded in setting the winding angle to 103 degrees and suppressing the deflection distortion to TJo and 3% or less. At extremely low observation magnifications of around 10x, it is acceptable even if there is some distortion in the image, and assuming that the distortion is around 1.5%, the area surrounded by the dotted line in Figure 3 is the practical winding. angle range. That is, the winding angle O is 97
Within a range of about 110 degrees from the normal angle, it is possible to observe the sample image with almost no deflection distortion, regardless of the large angle of deflection.

尚、上記曲線は常に第3図に示す形とは限らず、コイル
の形状・大きさや巻回の仕方等により多少の違いは生ず
る。しかし、前記第3図の傾向、特に巻回角θが103
度付近で正負反転すると云う傾向には変りがない。
Note that the above-mentioned curve is not always in the shape shown in FIG. 3, and some differences may occur depending on the shape, size, winding method, etc. of the coil. However, the tendency shown in FIG. 3, especially when the winding angle θ is 103
There is no change in the tendency for the sign to change around the degree.

実際の装置へ組込む場合にはコイルは単一ではなく、×
方向走査並びにY方向走査用、X、Yファインシフト用
等が重ねて巻回されるが、各コイル共上記角度範囲に設
定しておけば夫々による電子線の偏向歪みは非常に小さ
くできる。
When incorporating into an actual device, the coil is not a single coil, but ×
The coils for direction scanning, Y direction scanning, X, Y fine shift, etc. are wound in an overlapping manner, but if each coil is set within the above angle range, the deflection distortion of the electron beam caused by each coil can be made very small.

以上説明したように巻回角θを103度付近に設定した
ことにより大角度に電子線を国内(7てもその歪力をわ
ずh\1.5%以内に押えることがでさ、鞍型コイルを
用いた場合の利点を活かして極低ig reでの試料像
の観察を歪みなしで観察できるという効果を有する。
As explained above, by setting the winding angle θ to around 103 degrees, it is possible to suppress the distortion force within h\1.5% even when the electron beam is placed at a large angle within 1.5%. By taking advantage of the advantages of using a molded coil, it is possible to observe a sample image at extremely low igre without distortion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般の鞍型偏向コイルの主要部の斜視図、第2
図はその鞍型偏向コイルの断面図、第3図は本発明の説
明図である。 1:鞍411コイル 1a :電子線軸と平行なコイル部分 ib :fi電子線軸中心にした円に沿ったコイル部分 2゛強磁性体製コア 3:磁束 特許出願人 日本電子株式会社 代表者 9藤 −夫
Figure 1 is a perspective view of the main parts of a general saddle-type deflection coil, Figure 2
The figure is a sectional view of the saddle-shaped deflection coil, and FIG. 3 is an explanatory diagram of the present invention. 1: Saddle 411 Coil 1a: Coil portion parallel to the electron beam axis ib: fi Coil portion along the circle centered on the electron beam axis 2゛Ferromagnetic core 3: Magnetic flux Patent applicant JEOL Ltd. Representative 9 Fuji - husband

Claims (1)

【特許請求の範囲】 1、電子線軸に同軸に置かれ、該電子線軸に平行な方向
のコイル部分と該電子線軸を中心にした円に沿うコイル
部分とからなる鞍型偏向コイルにおいて、前記電子線軸
に平行なコイル部分の巻回角(電子線軸からの見込み角
)θをi03度付近に設定したことを特徴とする鞍型偏
向コイル。 2、前記巻回角θを97度乃至110度の範囲に設定し
た特許請求の範囲第1項記載の鞍型偏向コイル。 3、複数のコイルを略同−巻回角で重ね合わせて巻回し
た特許請求の範囲第1項又は第2項記載の鞍型偏向コイ
ル。 4、該コイルの外側に強磁性体製コアが配置される特許
請求の範囲第1項乃至第3項のいずれかに記載の鞍型偏
向コイル。
[Scope of Claims] 1. A saddle-shaped deflection coil that is placed coaxially with the electron beam axis and includes a coil portion in a direction parallel to the electron beam axis and a coil portion along a circle centered on the electron beam axis, wherein the electron A saddle-shaped deflection coil characterized in that the winding angle (angle of view from the electron beam axis) θ of the coil portion parallel to the wire axis is set to around i03 degrees. 2. The saddle-shaped deflection coil according to claim 1, wherein the winding angle θ is set in a range of 97 degrees to 110 degrees. 3. A saddle-shaped deflection coil according to claim 1 or 2, wherein a plurality of coils are wound one on top of the other at substantially the same winding angle. 4. The saddle-shaped deflection coil according to any one of claims 1 to 3, wherein a ferromagnetic core is arranged outside the coil.
JP19999482A 1982-11-15 1982-11-15 Saddle type deflection coil Pending JPS5990347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19999482A JPS5990347A (en) 1982-11-15 1982-11-15 Saddle type deflection coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19999482A JPS5990347A (en) 1982-11-15 1982-11-15 Saddle type deflection coil

Publications (1)

Publication Number Publication Date
JPS5990347A true JPS5990347A (en) 1984-05-24

Family

ID=16417026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19999482A Pending JPS5990347A (en) 1982-11-15 1982-11-15 Saddle type deflection coil

Country Status (1)

Country Link
JP (1) JPS5990347A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272523A (en) * 1975-12-15 1977-06-17 Rikagaku Kenkyusho Device for deflecting charged particle beam
JPS5788659A (en) * 1980-11-21 1982-06-02 Jeol Ltd Electron ray device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272523A (en) * 1975-12-15 1977-06-17 Rikagaku Kenkyusho Device for deflecting charged particle beam
JPS5788659A (en) * 1980-11-21 1982-06-02 Jeol Ltd Electron ray device

Similar Documents

Publication Publication Date Title
US4431915A (en) Electron beam apparatus
KR100464706B1 (en) A saddle shaped deflection winding having a winding space within a predetermined angular range
US4961021A (en) Convergence apparatus and convergence yoke used therefor
JPS5990347A (en) Saddle type deflection coil
JPH0865691A (en) Deflection yoke and cathode-ray tube device
JPH02204947A (en) In-line type color deflection yoke device
JPH0560212B2 (en)
KR0140009Y1 (en) Collection coil of elecro collection type cathode ray tube
KR950003276Y1 (en) Focus magnet for projection television
JP3334378B2 (en) Deflection yoke
SU894815A1 (en) Electromagnetic deflection system
JPH1064449A (en) Deflection yoke
JPH0136284Y2 (en)
JPS63143727A (en) Deflecting yoke device
JPS5933162Y2 (en) Electron microscope or similar equipment
JPH06119884A (en) Correcting coil for deflection yoke
JPS59112556A (en) Electron beam deflection unit for scanning electron microscope
JPS5851661B2 (en) electronic lens
JPS6318300B2 (en)
JPH01169853A (en) Convergence device
JPH01292731A (en) Deflecting yoke
JPH08129971A (en) Deflection yoke
JPS60148037A (en) Deflection yoke device
JPH0388244A (en) Color picture tube and deflection device
JPH02129846A (en) Deflection apparatus