JPS5989768A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS5989768A
JPS5989768A JP19929182A JP19929182A JPS5989768A JP S5989768 A JPS5989768 A JP S5989768A JP 19929182 A JP19929182 A JP 19929182A JP 19929182 A JP19929182 A JP 19929182A JP S5989768 A JPS5989768 A JP S5989768A
Authority
JP
Japan
Prior art keywords
target
thin film
sputtering
chamber
targets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19929182A
Other languages
Japanese (ja)
Other versions
JPS6321749B2 (en
Inventor
Toyokazu Onishi
豊和 大西
Naoki Yokoyama
直樹 横山
Hiroyuki Onodera
小野寺 裕幸
Shoichi Suzuki
正一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19929182A priority Critical patent/JPS5989768A/en
Publication of JPS5989768A publication Critical patent/JPS5989768A/en
Publication of JPS6321749B2 publication Critical patent/JPS6321749B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To form a thin film having an optional compsn. ratio on a substrate with good reproducibility by disposing plural targets which permit independent impression of a voltage in a chamber, measuring the intensity ratio of the excitation light from each target in the stage of sputtering and adjusting the sputtering condition of each target. CONSTITUTION:A W target 12 and an Si target 13 are disposed in a chamber 4, and are connected respectively to power sources 18, 19 which are adjustable in voltage. A GaAs substrate 8 is mounted, via a slide shutter 11, to a holder 7. The inside of the chamber 4 is evacuated to high vacuum and gaseous Ar is introduced therein. An electric field is applied between the holder 7 and the targets 12, 13 to generate a sputtering phenomenon. The radiation light of a W atom and an Si atom is measured with an ammeter 17, via a monochromator 15 and a photoelectron multiplier 16 on the outside of a quartz window 14 provided on the side wall of the chamber and the voltage of the power sources 18, 19 on the targets 12, 13 is regulated according to the intensity ratio of the light radiated from W and Si. A thin film consisting of the metal having a specified compsn. ratio is thus formed on the substrate 8.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本元明は任意の成分比をもつ薄膜の形成方法に関する。[Detailed description of the invention] (a) Technical field of the invention The present invention relates to a method for forming a thin film having an arbitrary component ratio.

(b)  技術の背景 半導体IO或はFET(電界効果トランジスタ)の電極
金属としてシリコン(Si )と高融点金属例えはタン
グステン(W)、モリブデン(MoJ、チタン(Ti 
)などと結合してできた硅化物(シリサイド)例えばW
8i、、Mo811、TiSi2が用いられている。
(b) Technical background Silicon (Si) and high melting point metals are used as electrode metals for semiconductor IO or FET (field effect transistor), such as tungsten (W), molybdenum (MoJ, and titanium).
) etc., such as W
8i, Mo811, and TiSi2 are used.

か\る硅化物は抵抗率が低く、また融点が高く、半導体
の高温処理においても拡散しにく\安定なため、熱処理
が必要な工程において有用でアリ、広く用いられる。こ
こで8iは蛍鵜と化合する際殆んど金属元素として振舞
うため上記の組成のものく は少数各棟の成分比のものが得られそれにより抵抗率お
よび融点を異にする。本発明はこのような多成分金属か
らなる薄膜をスパッタ法で形成する場合に所足の成分比
のものt再机性よく形成する方法に関するものでるる。
Such silicides have low resistivity, high melting points, and are stable and difficult to diffuse even during high-temperature processing of semiconductors, so they are useful and widely used in processes that require heat treatment. Here, since 8i behaves almost as a metallic element when combined with the fireflies, the above composition or a small number of component ratios can be obtained, resulting in different resistivities and melting points. The present invention relates to a method for forming such a thin film made of multi-component metals by sputtering with sufficient component ratios and with good flexibility.

(C)  従来技術と問題点 第1図は従来の薄alK造に用いられているスパッタ装
置の構成図でるる。
(C) Prior Art and Problems FIG. 1 is a block diagram of a sputtering apparatus used for conventional thin AlK construction.

以後ガリウム砒素(GaAs)単結晶基板上W58i3
の組成をとるタングステン硅化物の薄膜を形成する場合
全実施例として説明する。
Hereafter, W58i3 on gallium arsenide (GaAs) single crystal substrate
A case of forming a thin film of tungsten silicide having a composition will be described as an example.

本装置の排気糸はソーグショ/ホ/ノlとクラィオボン
プ2との組み合わせからなり、まず荒引き用パルプ8全
開いてチャンバ内を排気した後止排気用パルプ5に切り
換え、クジイオポンプ2を用いてチャンバ4内を尚真空
に排気する。
The exhaust line of this device consists of a combination of Sogusho/Ho/Nol and a cryo pump 2. First, the roughing pulp 8 is fully opened to exhaust the inside of the chamber, and then the chamber is switched to the final exhaust pulp 5. Evacuate the inside to vacuum.

次にコツクロ′(i−開いて微量のアルゴン(Ar)ガ
ス全チャンバ4に導入することによりチャンバ内の真空
度かスパッタ中を通じてlO〜10(torr)の範囲
に保たれるようにする。
Next, a small amount of argon (Ar) gas is introduced into the entire chamber 4 by opening it so that the vacuum level in the chamber is maintained within the range of 10 to 10 (torr) throughout the sputtering.

なお、W、Stsからなる硅化物薄膜を堆積させるGa
As基板8は、水冷構造上とり陽極に接続されたサンプ
ルホルダ7の上に予め載置され、一方W。
Note that the Ga
The As substrate 8 was previously placed on the sample holder 7 connected to the anode in a water-cooled structure, while the As substrate 8 was placed on the sample holder 7 connected to the anode in a water-cooled structure.

Si1からなるターゲット9はこれに対向して設けられ
て電源lOの陰極側に接続されている〇またGaAs基
板8の前にスライドシャッタ11が設けられているが、
これはスパッタ開始前においてはターゲット90表面が
ガス吸着などにより汚染されておりそのため異質な或は
不安定な析出が起り易いのでスパッタ開始時にGaAs
基板8を保護しこの析出を防ぐためでるる。
A target 9 made of Si1 is provided opposite to this and connected to the cathode side of a power supply lO.Also, a slide shutter 11 is provided in front of the GaAs substrate 8.
This is because before the start of sputtering, the surface of the target 90 is contaminated by gas adsorption, etc., and as a result, foreign or unstable precipitation is likely to occur.
It comes out to protect the substrate 8 and prevent this precipitation.

このようなスパッタ装置を用いてGaAs基板8の上へ
W、Si3よりなる硅化物の薄膜を形成するには、サン
プルホルダ7とターゲット9との間に電圧を印加してA
rよりなるガスプラズマ全土じさせ、Ar イオンの鴨
Siターゲット9への衝突により W68js k原子
状で飛散させGaAs基板s上に堆積させている。
In order to form a thin film of silicide made of W and Si3 on the GaAs substrate 8 using such a sputtering device, a voltage is applied between the sample holder 7 and the target 9, and the A
The gas plasma consisting of R is spread throughout the entire area, and Ar ions collide with the duck-Si target 9, scattering W68js in the form of K atoms and depositing them on the GaAs substrate s.

か\るスパッタ装置において従来のターゲットはこの構
成余端の粉末を焼結して用いていた。
Conventional targets in such sputtering apparatuses have been used by sintering powder left over from this configuration.

例えは本実施例においてはW、SiBの組成比となるよ
うに両者を混合し焼結してターゲット9として用いてい
た。
For example, in this embodiment, W and SiB were mixed and sintered so as to have the same composition ratio, and used as the target 9.

然し乍らこの場合、ターゲット9が多孔質であるため酸
素(0)、窒素(N)などが多量に吸着されており、高
純にの薄膜を形成することは困難でめった。またそれぞ
れの金属原子によってスパッタ率が異るためスパッタ過
程でターゲットの表面組成かターゲット内部と異るよう
になり、従ってGaAs基板上に形成されて薄膜の組成
も異ってくると云う問題点がめった。
However, in this case, since the target 9 is porous, a large amount of oxygen (0), nitrogen (N), etc. is adsorbed, making it difficult and rare to form a highly pure thin film. Additionally, since the sputtering rate differs depending on each metal atom, the surface composition of the target during the sputtering process will be different from the inside of the target, resulting in the problem that the composition of the thin film formed on the GaAs substrate will also be different. Rarely.

このような問題点全解決する方法として、独立に電圧制
御が可能な複数個のターゲット (この場合Wターゲッ
トとSiターゲット) とすると共にそれぞれの金属を
融解してインゴットの状態で便用°rることも行われた
A method to solve all of these problems is to create multiple targets (in this case, a W target and a Si target) whose voltage can be controlled independently, and to melt each metal and use it in the form of an ingot. This was also done.

然しこの場合はターゲット間の相互汚染があり、またス
パッタ進行による表面の荒れの状態がターゲット構成金
属により異るためにスパッタ率が当初の状態から徐々に
変化し、そのため形成される薄膜の組成が所定のものと
異ってくると云う問題点があった。
However, in this case, there is mutual contamination between the targets, and the roughness of the surface due to the progress of sputtering differs depending on the target constituent metal, so the sputtering rate gradually changes from the initial state, resulting in a change in the composition of the thin film formed. There was a problem that it was different from the prescribed one.

(d)  発明の目的 本発明は一定の組成比で多成分の金属からなる薄膜をス
パッタ法により基板上に形成する方法を提供することを
目的とする〇 (e)  発明の構成 本発明の目的は薄膜を形成すべき基板をそれぞれ独立し
て電圧印加が可能な複数個のターゲットに対向してチャ
ンバ内に配置し、不活性ガス1オンの衝突により前記タ
ーゲットをスパッタする際に、各ターゲットからの励起
光強度比t−I11定して各ターゲットのスパッタ条件
を調整することにより任意の組成比をもつ薄膜を析出す
ることにより達成することがで春る。
(d) Purpose of the Invention The purpose of the present invention is to provide a method for forming a thin film made of multi-component metals in a fixed composition ratio on a substrate by sputtering.〇(e) Structure of the Invention Purpose of the Present Invention In this method, a substrate on which a thin film is to be formed is placed in a chamber facing a plurality of targets to which voltages can be applied independently, and when the targets are sputtered by collision with one ounce of inert gas, a This can be achieved by depositing a thin film having an arbitrary composition ratio by fixing the excitation light intensity ratio t-I11 and adjusting the sputtering conditions for each target.

(f)  発明の実施例 本発明は薄膜構成金属からなる複数のターゲットからの
励起光強度を測定し、この強度比全規定の値に保つこと
により一定の組成比の薄膜音形成するものである。
(f) Embodiments of the Invention The present invention measures the intensity of excitation light from a plurality of targets made of thin film constituent metals, and forms a thin film sound with a constant composition ratio by keeping the intensity ratio at a specified value. .

第2図は本発明を実施するスパッタ装置の構成図であっ
て、スライドシャッタ11と複数個のターゲラ)12.
18との間のチャンバ側壁に石英窓14が69、その外
側にモノクロメータ15と光電子増信管16があり、電
流計17によって各ターゲットのスパッタ強度を測定す
ることができる。
FIG. 2 is a block diagram of a sputtering apparatus implementing the present invention, which includes a slide shutter 11 and a plurality of target blades 12.
A quartz window 14 is disposed on the side wall of the chamber between the quartz window 18 and the quartz window 18, and a monochromator 15 and a photomultiplier tube 16 are disposed outside the quartz window 69, and an ammeter 17 can measure the sputtering intensity of each target.

なお、第2図においては複数のターゲットすなわち本実
施例の場合Wターゲット12とSiターゲット1Bの2
つがあり、それぞれ電圧の調整可能な電源18.19を
備えている。
In addition, in FIG. 2, there are a plurality of targets, that is, in this example, two targets, the W target 12 and the Si target 1B.
There are two power supplies, each equipped with an adjustable voltage power supply 18,19.

チャンバ4内へアルゴン(Ar)ガスTh4人しつ\、
電源18.19の陽極に接続され、GaAs基板8が載
置、保持されているサンプルホルタ7とWターゲット1
2およびSiターゲッ)13の間に電源18及び19を
用いて電界を加えて放rt起さぜると、Arづオンから
なるガスプラズマを生じ、ArイオンのWターゲット1
2およびS1ターゲツト1Bへの衝突によりスパッタ現
象が起る。それと共に一部のW原子および8i原子は高
い皿子位置への励起が起り、次に基底の鍵子位置に戻る
ために各原子に固有な波長の元金放射する。
Inject argon (Ar) gas into chamber 4 for 4 people.
A sample holter 7 and a W target 1 are connected to the anode of a power source 18 and 19, and a GaAs substrate 8 is mounted and held thereon.
When an electric field is applied between the power supplies 18 and 19 between the W target 1 and the Si target 13, a gas plasma consisting of Ar ions is generated, and the W target 1 of Ar ions is generated.
2 and S1, a sputtering phenomenon occurs due to the collision with the S1 target 1B. At the same time, some W atoms and 8i atoms are excited to the high platelet position, and then emit the original metal at a wavelength unique to each atom in order to return to the base key position.

本発明はか\る放射光を検出するためにスライドシャッ
タ11とターゲット12.18の中間のチャンバ側壁に
石英窓14’を設け、これを通る光にエクスバッタレイ
ト (速度)t−モニタする〇すなわち、チャンバ4の
内部にはWSSiよりの放射光以外にArからの光など
各種の波長のものが含まれるが本発8Aはモノクロメー
タ15により、WおよびSiからの固有の光全分離し、
その光強度を光強度を光電子増信管1t1通して電波計
17により計測する。
In order to detect such emitted light, the present invention provides a quartz window 14' on the side wall of the chamber between the slide shutter 11 and the target 12.18, and monitors the exbattery rate (velocity) of the light passing through the window 14'. That is, although the interior of the chamber 4 contains light of various wavelengths such as light from Ar in addition to light emitted from WSSi, the present light source 8A uses a monochromator 15 to completely separate the unique light from W and Si.
The light intensity is measured by a radio meter 17 through a photomultiplier tube 1t1.

なお、WとSiの放射光強度比とそれに対する合金の組
成比の関係は予め求めておく必要がある。
Note that the relationship between the emitted light intensity ratio of W and Si and the composition ratio of the alloy with respect to the ratio must be determined in advance.

このようにスパッタ中を通じて構成成分の放射光強度比
を測定し、これが所定の値を下すように各ターゲット1
2.18の電源18.19の電圧を調量すれば組成変動
のない薄膜全作ることができる。
In this way, the emitted light intensity ratio of the constituent components is measured throughout the sputtering, and each target is
By adjusting the voltage of the power supply 18 and 19 in 2.18, it is possible to make a thin film without compositional fluctuation.

また本発明に係る放射光測定装置はシャッタ11と各タ
ーゲラ)12.18の間に設けであるためプレスパツタ
の時点でこの放射光の強度比を所定の値に設定した後、
スライドシャッタ1ft−開き本スパッタを行えばよい
Furthermore, since the synchrotron radiation measuring device according to the present invention is installed between the shutter 11 and each target lens (12.18), after setting the intensity ratio of the synchrotron radiation to a predetermined value at the time of press sputtering,
Slide shutter 1ft-open book sputtering may be performed.

なお、本実施例は2元合金の#換金半導体基板上に形成
する場合について述べたがターゲットの数を増せば多元
の合金薄膜の形成することができるO (g)  発明の効果 多元合金からなる薄膜をスパッタ法を用いて形成する場
合スパッタ率が異るためスパッタ開始時と終了時とでは
成分組成の異る薄膜が生じ易かったが本発明の実施によ
り任意の成分死金もつ薄膜を安定に得られるようになっ
た。
Although this example describes the case where a binary alloy is formed on a # conversion semiconductor substrate, by increasing the number of targets, a multi-component alloy thin film can be formed. When a thin film is formed using a sputtering method, the sputtering rate is different, which tends to result in a thin film with a different component composition at the start and end of sputtering. However, by implementing the present invention, it is possible to stably form a thin film with any component dead metal. Now you can get it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のスノ(ツタ装置の構成図、また第2図は
本発明に係るスノくツタ装置の構成図でるる。 図において、 4はチャンバ、7はサンプルホルタ“、8はGaAs基
板、9.12.18はターゲット、lU、lB、19は
′亀源0 見 1 図 蔦20
FIG. 1 is a block diagram of a conventional Sunokutsuta device, and FIG. 2 is a block diagram of a Sunokutsuta device according to the present invention. In the figure, 4 is a chamber, 7 is a sample holder, and 8 is a GaAs substrate. , 9.12.18 is the target, lU, lB, 19 is 'Kamegen 0 Mi 1 Tsutsuta 20

Claims (1)

【特許請求の範囲】[Claims] 被薄膜形成基板を、それぞれ独立して電圧印加が可能な
複数個のターゲットに対向してチャンバ内に配置し、不
活性カスイオンの衝突により前記ターゲラ)t−スパッ
タする際に、各ターゲットからの励起光強度比を測定し
て各ターゲットのスパッタ条件vI−稠整することによ
り任意の組成比をもつ薄膜を前記基板上に形成すること
を特徴とする薄膜の形成方法。
A substrate on which a thin film is to be formed is placed in a chamber facing a plurality of targets to which voltages can be applied independently, and when performing T-sputtering by collision with inert gas ions, excitation from each target is generated. A method for forming a thin film, characterized in that a thin film having an arbitrary composition ratio is formed on the substrate by measuring the light intensity ratio and carefully adjusting the sputtering conditions vI of each target.
JP19929182A 1982-11-12 1982-11-12 Formation of thin film Granted JPS5989768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19929182A JPS5989768A (en) 1982-11-12 1982-11-12 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19929182A JPS5989768A (en) 1982-11-12 1982-11-12 Formation of thin film

Publications (2)

Publication Number Publication Date
JPS5989768A true JPS5989768A (en) 1984-05-24
JPS6321749B2 JPS6321749B2 (en) 1988-05-09

Family

ID=16405355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19929182A Granted JPS5989768A (en) 1982-11-12 1982-11-12 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS5989768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839926A1 (en) * 1996-11-04 1998-05-06 The BOC Group plc Sputtering processes and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153791A (en) * 1978-05-24 1979-12-04 Gould Inc Method and apparatus for watching and controlling sputtering adhesion
JPS5597467A (en) * 1979-01-18 1980-07-24 Citizen Watch Co Ltd Ion plating equipment
JPS55107234A (en) * 1979-02-13 1980-08-16 Hitachi Ltd Method of monitoring deposition film quality
JPS56133466A (en) * 1980-03-24 1981-10-19 Anelva Corp Plasma spectrum monitoring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153791A (en) * 1978-05-24 1979-12-04 Gould Inc Method and apparatus for watching and controlling sputtering adhesion
JPS5597467A (en) * 1979-01-18 1980-07-24 Citizen Watch Co Ltd Ion plating equipment
JPS55107234A (en) * 1979-02-13 1980-08-16 Hitachi Ltd Method of monitoring deposition film quality
JPS56133466A (en) * 1980-03-24 1981-10-19 Anelva Corp Plasma spectrum monitoring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839926A1 (en) * 1996-11-04 1998-05-06 The BOC Group plc Sputtering processes and apparatus

Also Published As

Publication number Publication date
JPS6321749B2 (en) 1988-05-09

Similar Documents

Publication Publication Date Title
Slevin et al. The hollow cathode discharge as a spectrochemical emission source
Wagatsuma et al. Observation of Cu Ni alloy surfaces by low wattage glow discharge emission spectrometry
KR930021814A (en) Continuous thin film formation method
JP3351843B2 (en) Film formation method
Schwebel et al. Growth of silicon homoepitaxial thin films by ultrahigh vacuum ion beam sputter deposition
Nunoue et al. Mass Spectrometric Study of the Phase Boundaries of the CdS‐CdTe System
Bethge et al. Photo-electron emission microscopy of work function changes
Malyshev et al. Diagnostics of inductively coupled chlorine plasmas: Measurement of Cl 2+ and Cl+ densities
Drobyshev et al. A review of spectroanalytical investigations and applications of a cooled hollow cathode discharge
JPS5989768A (en) Formation of thin film
Burns et al. Evaporation coefficient of graphite
JP4127435B2 (en) Atomic radical measurement method and apparatus
JP3143252B2 (en) Hard carbon thin film forming apparatus and its forming method
JP3398596B2 (en) Flash lamp and trigger probe electrode for flash lamp
Biloiu et al. Spectral plasma temperature determination of thermionic vacuum arc in the titanium vapors
Verlinden et al. Applications of spark-source mass spectrometry in the analysis of semiconductor materials. A review
Adler et al. Investigation of the plasma of a magnetron discharge during titanium deposition
Kułakowska et al. Spectroscopic study of a pulse plasma used for production and deposition of TiN films
Sasaki et al. Gas phase doping at room temperature
Jakubowski et al. Space-resolved studies of X-ray spectra within Plasma-Focus system
Okimura et al. Optical absorption measurements of sputtered titanium ions in RF magnetron sputtering
Borisenko et al. Nonself-sustained arc discharge in anode material vapors
Mentel The influence of vaporization upon the roots of a high current arc. II: Spectroscopic determination of the composition and temperature of a plasma in the neighbourhood of a graphite cathode
Zhang et al. Diagnostics for femtosecond and nanosecond laser-ablation discharge plasmas as used in thin film growth
Metzger et al. Effects of O2 Ion Bombardment of Y-Ba-Cu-Oxide during Thin Film Growth