JPS5989093A - Display device of color picture with thin thickness - Google Patents

Display device of color picture with thin thickness

Info

Publication number
JPS5989093A
JPS5989093A JP19745482A JP19745482A JPS5989093A JP S5989093 A JPS5989093 A JP S5989093A JP 19745482 A JP19745482 A JP 19745482A JP 19745482 A JP19745482 A JP 19745482A JP S5989093 A JPS5989093 A JP S5989093A
Authority
JP
Japan
Prior art keywords
color
memory
signal
green
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19745482A
Other languages
Japanese (ja)
Inventor
Fumio Inoue
文夫 井上
Masafumi Oki
大木 雅史
Kunio Ando
久仁夫 安藤
Hiroshi Jitsukata
実方 寛
Hitoshi Maekawa
均 前川
Nobuaki Kabuto
展明 甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19745482A priority Critical patent/JPS5989093A/en
Publication of JPS5989093A publication Critical patent/JPS5989093A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/16Picture reproducers using cathode ray tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Storing Facsimile Image Data (AREA)

Abstract

PURPOSE:To reproduce the picture of a high color saturation degree by circulating three times the storage contents delivered in parallel from the 1st line memory in the form of a serial output/serial input and displaying said contents on a CRT after reading them in a writing speed triple as high as the 1st line memory. CONSTITUTION:The video signal supplied to a terminal 15 is fed in series to the 1st line memory 16 which stores the signal information of a 1H period formed by a CCD. Then this stored information is delivered in parallel to the 2nd line memory 17. The reading speed of the memory 17 is set at a level triple as high as the writing speed of the memory 16. The read-out information is supplied again to the memory 17 via a feedback loop 18. This information is written twice, and the video signal impressed to the terminal 15 is compressed down to 1/3 in terms of time to be delivered three times to the output terminal of the memory 17. This output is supplied to a signal processing circuit 19. The circuit 19 reproduces only red, green and blue chrominance signals at the 1st, 2nd and 3rd times respectively. These reproduced chrominance signals are sent to a thin color CRT20 and displayed on the screen.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄形カラー陰極線管を用いた画像表示装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an image display device using a thin color cathode ray tube.

〔従来技術〕[Prior art]

れり形カラー陰極線管を用いた画像表示装置は第1図に
示すモノクローム管の構造全基本としたものが既に提唱
されている。第1図(A)は正面図、(B)は側断面図
である。陰極線管のノくルブ1のネック部に電子銃2が
装着され、電子銃から放出された電子ビーム3は図(A
)に示すX、Y方向には通常のテレビ受像管の場合と同
様に偏向コイル4により偏向される0このX、Y偏向を
静電偏向で行うこともできる。X、Y偏向領域を出た電
子ビーム6ば、薄形パルプ1の側面56間に印加された
電位差により、Z方向の偏向を受け、螢光体が塗布され
た11I+1而5に射突し螢光体を発光させる。陰極線
管に表示された画像は側面5の方から見ることができ、
壕だ側面6を透明導電膜で構成し側面5と間に′電圧を
印加するようにして側面6の側から再生画像を見ること
もできる。
An image display device using a rectangular color cathode ray tube based on the monochrome tube structure shown in FIG. 1 has already been proposed. FIG. 1(A) is a front view, and FIG. 1(B) is a side sectional view. An electron gun 2 is attached to the neck of the knob 1 of the cathode ray tube, and the electron beam 3 emitted from the electron gun is shown in Figure (A).
) is deflected by a deflection coil 4 in the same way as in the case of a normal television picture tube. This X and Y deflection can also be performed by electrostatic deflection. The electron beam 6 that has exited the X and Y deflection areas is deflected in the Z direction due to the potential difference applied between the side surfaces 56 of the thin pulp 1, and strikes the 11I+1 layer 5 coated with a fluorescent material, causing a fluorophore. Make a light body emit light. The image displayed on the cathode ray tube can be viewed from the side 5.
It is also possible to view the reproduced image from the side surface 6 by constructing the trench side surface 6 with a transparent conductive film and applying a voltage between it and the side surface 5.

上記薄形隙極緋肯全用いた画像表示装置でカラー画像を
表示するのに以下に述べる手段が考えられるが、いずれ
もそれぞれ説明する理由により困難である。
The following methods are conceivable for displaying a color image on an image display device using the above-mentioned thin-type image forming apparatus, but each method is difficult for the reasons explained below.

シャドウマスク方式にしようとすると、電子ビームの偏
向にX、Y、Z3方向の偏向を要し螢光面に対し電子ビ
ームが斜めに入射するという複雑な軌跡を巾、子ビーム
が描くため、正確なビームランティングの期待できる螢
光面塗布促および発光面塗布構造とシャドウマスク設計
が極めて困難である。
If you try to use the shadow mask method, the electron beam must be deflected in three directions: It is extremely difficult to design a coating structure and a shadow mask for the fluorescent surface and the luminescent surface, which can be expected to achieve good beam running.

次にインデックス方式にするには走査に伴って光インデ
ックス信号を採光する必要があるが薄形陰極線管では、
電子銃から螢光面各部までの距離が、螢光面上の位置に
よって大きく異なることによる偏向デフォーカスが大き
く、また電子ビームが螢光面に斜めに入射することによ
るフォーカス劣化もあって、有効画面全面にわたって正
4&iに元インデックス信号を得ることは極めて難しい
。インデックス方式では有効画面全面にわたって十分微
細な電子ビームが得られなければ、インデックス信号が
得られず、またシャドウマスクの様な色選択機4%tが
ないから放線、青色螢光体が同時に発光し、色飽オ[」
度の高いカラー画像を再現することができない。
Next, in order to use the index method, it is necessary to collect an optical index signal during scanning, but with a thin cathode ray tube,
The distance from the electron gun to each part of the phosphor surface varies greatly depending on the position on the phosphor surface, resulting in large deflection defocus, and the electron beam is obliquely incident on the phosphor surface, which degrades focus. It is extremely difficult to obtain an original index signal of 4&i over the entire screen. In the index method, an index signal cannot be obtained unless a sufficiently fine electron beam is obtained over the entire effective screen, and since there is no color selector such as a shadow mask, the radiation and blue phosphors emit light at the same time. , Colorful o[''
Unable to reproduce high-quality color images.

以上の他に薄形カラー画像表示装置を実現する手段とし
て、プラズマディスプレイパネル。
In addition to the above, a plasma display panel is used as a means for realizing a thin color image display device.

電界発光形(E L )パネル、螢光表示管形パネル等
が考えられるが、これらはいずれも陰極線管を用いた表
示装置σに比べて効率1価格、天然色再生等の点で欠点
を有する。
Electroluminescent (EL) panels, fluorescent display tube panels, etc. are conceivable, but these all have drawbacks in terms of efficiency, cost, natural color reproduction, etc. compared to display devices using cathode ray tubes. .

上記問題を解決すべく第2図に螢光面構造を拡大して示
す様な、赤、緑、青色螢光体を縦ストライプ状に配列し
、各螢光体ストライプごとに電気的に分離した上で同一
色螢光体ストライプをそれぞれ電気的に束ねて陰極線管
外に印加電圧供給端子を設けた構造のカラー画像衣示用
薄形陰極線管装置が考えられる。第2図中、RG、Bは
それぞれ々ζ、緑、緑色青色螢光体ストライプし、7,
8.9はそれぞれ赤、緑、青色螢光体ストライプに印加
する電圧を陰極線管外で供給するだめの端子である。電
子ビームスポット10の径が図示の如く複数の螢光体ス
トライプを覆っていても、例えば端子7,9には低い1
1、圧を印加し、端子8には高い電圧を印加することに
よって緑色螢光体だけを発光させることができる。しか
し、螢光体を縦ストライプ状に塗布した場合には赤、緑
、青の色切換を行うために端子7,8.9への電圧印加
を極めて茜速で切換える必要がある。例えば十分高い水
平解像度を得るためにR,G、Bの色螢光体組数を20
0組設け、これを1水平走査期間(約50μs)で電子
ビーム走査するとすれば、80nSの)Z)レス幅で端
子7,8.9の印加電圧を切換える必要がハ′)る0色
ゆJ換えのだめに端子7,8.9に妄求される市、正振
幅は、ビームスポット径その他の条件から少なくとも数
百■が必要であるが数百■の1し圧を80118程度で
切換えるのに適したスイッチング素子が得られないため
、第2図に示した方式を実現するのは極めて難しい。壕
だこの方式は仮に適当なスイッチング素子が入手できた
としても、色螢光体ストライプ間の漂遊容量を高い周波
数で駆動するために大きな電力が必要であり、簡単な試
算によってもv十Wないし百Wもの値となり現実的では
ない、〔発明の目的〕 本発明の目的は、上記従来技術の欠点を解決し、薄形カ
ラー陰極線管を用いたカラー画像表示装置トjを提供す
ることにある。
In order to solve the above problem, red, green, and blue phosphors were arranged in vertical stripes, and each phosphor stripe was electrically separated, as shown in Figure 2, which shows an enlarged view of the phosphor surface structure. A thin cathode ray tube device for displaying a color image is conceivable, in which the phosphor stripes of the same color are electrically bundled together and an applied voltage supply terminal is provided outside the cathode ray tube. In Figure 2, RG and B are respectively ζ, green, green and blue phosphor stripes, 7,
Terminals 8 and 9 are for supplying voltages to be applied to the red, green and blue phosphor stripes outside the cathode ray tube, respectively. Even if the diameter of the electron beam spot 10 covers a plurality of phosphor stripes as shown, for example, the terminals 7 and 9 may
1. By applying pressure and applying a high voltage to the terminal 8, only the green phosphor can be caused to emit light. However, when the fluorescent material is applied in vertical stripes, it is necessary to switch the voltage application to the terminals 7, 8, and 9 extremely rapidly in order to switch colors between red, green, and blue. For example, to obtain a sufficiently high horizontal resolution, the number of R, G, and B color phosphor sets is 20.
If a set of 0 is provided and this is scanned with an electron beam in one horizontal scanning period (approximately 50 μs), it is necessary to switch the voltage applied to terminals 7 and 8.9 with a response width of 80 nS. The positive amplitude required for terminals 7, 8, and 9 in order to change J requires at least several hundreds of square meters due to the beam spot diameter and other conditions, but it is necessary to switch the voltage of several hundred squares at about 80118. It is extremely difficult to implement the system shown in FIG. 2 because suitable switching elements are not available. Even if a suitable switching element could be obtained, this method requires a large amount of power to drive the stray capacitance between the color phosphor stripes at a high frequency, and a simple calculation shows that the amount of power required is around 10 W or more. [Object of the Invention] An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a color image display device using a thin color cathode ray tube. .

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明においては赤、緑、青
色螢光体を、電子ビーム走査とほぼ平行な水平方向に塗
布して横ストライプとし、同一色螢光体ストライプをそ
れぞれ互いに接続して管外の色選択電圧印加端子にまと
めた薄形カラー陰極線管を用い、またラインメモリで1
水平周期間の映像情報を記憶し、この記憶し/ζ情報を
香込み時の6倍の速度で6回繰返し′〔読出し、読出し
た情報を各回ごとに、それぞれ赤緑、′ホ色情報に復調
し、この復調に同期して、前記陰極線管外の色選択電圧
印加端子に印加する電圧を切換え、6培の速IWで6原
色の横ストライプの走査を1水平周期内に行うようにし
た。
In order to achieve the above object, in the present invention, red, green, and blue phosphors are coated in a horizontal direction substantially parallel to the electron beam scanning to form horizontal stripes, and the phosphor stripes of the same color are connected to each other. We use thin color cathode ray tubes connected to color selection voltage application terminals outside the tube, and one line memory
The video information during the horizontal period is stored, and this memorization/ζ information is repeated 6 times at a speed 6 times faster than the scenting process. It demodulated, and in synchronization with this demodulation, the voltage applied to the color selection voltage application terminal outside the cathode ray tube was switched, so that horizontal stripes of six primary colors were scanned within one horizontal period at a speed of 6 times IW. .

さらに、この赤、緑、青色情報の読出し11.[i1序
を循環的に順次変更することにより、横螢光体ストライ
プの本毅が少なくても垂直解像度の劣化を防止すること
ができる。なお横ストライプとすることにより色選択電
圧印加端子への印加電圧切換え回数が大幅に低減され、
現存のスイッチング素子で十分切換え可能となるー 〔発明の実施例〕 第5図は本発明に係る薄形カラー陰極線管の螢光面の一
部拡大構造図で、R,G、Bはそれぞれ赤、緑、青色螢
光体の横ストライプで、これらストライプは互いに絶縁
された水平細条電極(第1図の側面5方向から見る場合
は透明電極とする)上に塗布されており、同一色のスト
ライプ電極は互いに接続され束ねられて管外の色選択電
圧印加端子11,12.13に引出されている。薄形陰
極線管では有効画面全面にわたって’5A 、(tel
 1ビームスポツト径が得られず、ビームスポット14
は図示の如く、複数色螢光体ストライプを覆うことにな
る。しかし、例えば端子11゜13には低′眠圧を、端
子12にだけ高電圧を印加すれば、緑色螢光体ストライ
プにだけ、高速、高エネルギーの電子が射突し、緑色螢
光体ストライプのみが発光する。また、この様にストラ
イプ印加%i圧に差があると螢光面付近に静電レンズが
形成され、当初R,Bストライプに向って来た電子もG
ストライプ方向に曲げられる^このだめシャドウマスク
方式よりは勿論、ビームインデックス方式よりも電子ビ
ーム利用効率が高くなる。なお螢光体ストライプの発光
の強さの制御は、色信号ラミ子銃のカソード又は第1グ
リツドなどに印加して電子ビーム量を制御して行う。
Furthermore, reading out this red, green, and blue information 11. [By changing the i1 order cyclically and sequentially, it is possible to prevent deterioration of vertical resolution even if the number of horizontal phosphor stripes is small. In addition, by using horizontal stripes, the number of times the voltage applied to the color selection voltage application terminal is changed is greatly reduced.
Existing switching elements are sufficient for switching - [Embodiment of the invention] Fig. 5 is a partially enlarged structural diagram of the fluorescent surface of the thin color cathode ray tube according to the present invention, where R, G, and B are red, respectively. , green, and blue phosphors. These stripes are coated on mutually insulated horizontal strip electrodes (transparent electrodes when viewed from side 5 in Figure 1), and are coated with phosphors of the same color. The stripe electrodes are connected to each other, bundled, and led out to color selection voltage application terminals 11, 12, and 13 outside the tube. For thin cathode ray tubes, '5A, (tel.
1 beam spot diameter could not be obtained, beam spot 14
will cover the multicolor phosphor stripes as shown. However, if, for example, a low voltage is applied to terminals 11 and 13 and a high voltage is applied only to terminal 12, high-speed, high-energy electrons will strike only the green phosphor stripe, causing the green phosphor stripe to Only the light emits light. In addition, if there is a difference in the %i pressure applied to the stripes like this, an electrostatic lens is formed near the fluorescent surface, and the electrons that initially went toward the R and B stripes are also
The electron beam can be bent in the stripe direction, and the electron beam utilization efficiency is higher than that of the beam index method as well as the shadow mask method. The intensity of the light emitted by the phosphor stripes is controlled by controlling the amount of electron beam applied to the cathode or first grid of a color signal lamina gun.

第4図は本発明第1笑施例の信号を処理する回路のブロ
ック図である。端子15に受信した映像信号が印加され
、CCD等で構成された1水平期間の・1ぎ号情報を記
憶する第1ラインメモリ16へ直列入力され、記憶され
た情報は第2ラインメモリ17へ並列出力される。すな
わち#!1ラインメモリは情報を時間的に直列−並列変
換する 第2ラインメモリは並列入力した情報を直列出
力して時間的に並列−直列変換するが、第2ラインメモ
リの読出し速題(伏第1ラインメモリへの書込み速度の
6倍で、かつ読出した情報はフィードバックループ1B
を経て再度第2ラインメモリへ入力され、この第2ライ
ンメモリへの同一情報の再書込みは2度行なわれ、第2
ラインメモリ17の出力端子には、端子15に印加され
た映像信号が時間的に1/6に圧縮されて、3回出力さ
れることになる。この出力は、基本的には通常のカラー
テレビ受信機の色信号および輝+= <=号の処理回路
と同様な構成の信号処理回路19に入力される。ただし
信号処理回路19は、6回入力される映像信号から、第
1.2.3回目に、それぞれ、赤色信号だけ、緑色信号
だけ青色信号だけ、を再生して出力する。この赤。
FIG. 4 is a block diagram of a signal processing circuit according to the first embodiment of the present invention. The received video signal is applied to the terminal 15, and is serially input to a first line memory 16 that stores 1st signal information for one horizontal period, which is composed of a CCD, etc., and the stored information is sent to a second line memory 17. Output is done in parallel. i.e. #! The first line memory converts information from serial to parallel in time.The second line memory serially outputs the information input in parallel and converts it from parallel to serial in time. 6 times the writing speed to line memory, and the read information is fed back to feedback loop 1B
The same information is input to the second line memory again through the process, and the same information is rewritten twice to the second line memory.
The video signal applied to the terminal 15 is temporally compressed to 1/6 and output to the output terminal of the line memory 17 three times. This output is input to a signal processing circuit 19 having basically the same configuration as the color signal and brightness +=<= processing circuit of a normal color television receiver. However, the signal processing circuit 19 reproduces and outputs only the red signal, the green signal, and the blue signal from the video signals input six times at the 1st, 2nd, and 3rd times, respectively. This red.

緑、青色信号は、順次、第3図に示した螢光面構造の薄
形カラー陰極線管20の′電子銃の六ンード又は第1グ
リツドに印加される。この薄形ソyラー陰極線管20の
水平偏向周波数は受信映像信号のそれの6倍になってお
り、上記それぞれ1/3に時間圧縮された赤、緑、青色
信号が、受信信号6″)1水平期間中に裟示される。信
号処理回路19が、赤、緑、青のうちのどの色信号を出
力しているかに対応、同期して陰極線管20の色選択市
、圧印加端子11.12.13への印加電圧の切換えを
行う必要がある。本発明に係るカラー陰極線管では第6
図に示す様に横ストライプ金用いているから、通常の水
平周波数の6倍、すなわちNTSC方式では約47kl
lzに相当する周期で切換えればすみ、これが可1化な
スイッチング素子は容易に入手できるofだ、CODを
用いたラインメモリ、ビデオ周波数の3倍広帯域化水平
偏向周波数の6倍化等の技術はいずれも既に実用的な段
階に入っている。なお第2図に示した組ストライプの場
合に比し、本発明の如く横ストライプを用いると高電圧
のスイッチング回数が極めて少なくなるのでスイッチン
グロスもまた極めて少なくなる。
The green and blue signals are sequentially applied to the sixth node or first grid of the electron gun of the thin color cathode ray tube 20 having the fluorescent surface structure shown in FIG. The horizontal deflection frequency of this thin solar cathode ray tube 20 is six times that of the received video signal, and the red, green, and blue signals, each time-compressed to 1/3, are the received signal 6''). The signal processing circuit 19 outputs the color selection signal of the cathode ray tube 20, pressure application terminal 11. It is necessary to switch the voltage applied to 12.13.In the color cathode ray tube according to the present invention, the voltage applied to 6th
As shown in the figure, horizontal striped gold is used, so it is 6 times the normal horizontal frequency, or about 47kl in the NTSC system.
It is only necessary to switch at a cycle corresponding to 1z, and switching elements that can do this are easily available. Technologies such as line memory using COD, 3x wideband video frequency, 6x horizontal deflection frequency, etc. Both have already entered the practical stage. It should be noted that compared to the case of the set stripes shown in FIG. 2, when horizontal stripes are used as in the present invention, the number of times of high voltage switching is extremely small, so that the switching loss is also extremely small.

以上の説明では薄形カラー陰極線管の同一色螢光体スド
ライブはすべて互いに゛電気的に結合するように述べた
が、ビームスポット径が過大で垂直解像度が不十分とな
る恐れがある場合には、同一色螢光体スドライブのうち
例えば互いに近距離の第1と第2の同一色螢光体スドラ
イブ、及び第5.WJ6の同一色螢光体ストラ・イブ・
・という様に、第(4n−3)番目、第(4n−2)番
目の同一色螢光体スドライブ群と、第(+n−1)、第
4n番目の同一色螢光体スドライブ群とに分け、各群ご
とに印加電圧切換端子を設け、各端子ごとに印加電圧を
制御すればビームスボッ) <’!=過大の場合にも垂
直解像度の劣化を防止できる。スポット径が更に大きい
場合には同一色ノドライブ群の分割数を更に大きくすれ
はよい。
In the above explanation, all of the same color phosphor strips of a thin color cathode ray tube are electrically coupled to each other. of the same color phosphor strips, for example, first and second same color phosphor strips that are close to each other, and a fifth phosphor strip of the same color. Same color phosphor Stra Eve of WJ6
・And so on, the (4n-3)th and (4n-2)th same-color phosphor stripe groups, and the (+n-1)th and 4nth same-color phosphor stripe groups. If you separate the applied voltage into two groups, provide an applied voltage switching terminal for each group, and control the applied voltage for each terminal, the beam will be turned off) <'! = It is possible to prevent deterioration of vertical resolution even if the value is too large. If the spot diameter is even larger, it is better to further increase the number of divisions of the drive group of the same color.

第5図は第2実施例の信号を処理する回路のブロック図
である。端子21には映像信号が印加され、通常の色復
調回路22によ#)R,G、Bの6つの出力が同時に得
られる。これら出力はそれぞれ第1ラインメモリ23.
24.25に印加され1水平期間の情報を貯えた後、そ
れぞれ第2ラインメモリ26.27.28に転送される
。第2ラインメモリからの読出し速度は第1ラインメモ
リへの書込み速度の3倍で、かつ読出し時期は、例えば
メモリ26は1水平期間の始め1/6.メモリ27は中
央1/6.メモリ28は終り1/ろの如く時間的に重な
らないように制御される。第2ラインメモリ26.27
.28の出力は加算回路29で時間的に直列に並べ直さ
れ、薄形カラー陰極線管20に供給される。第1実施例
に比しラインメモリ数は増加するが色復調回路22の構
成では通常の3.58 M Ilzの周波数で処理でき
るだめ極めて簡単になる。
FIG. 5 is a block diagram of a circuit for processing signals according to the second embodiment. A video signal is applied to the terminal 21, and six outputs of R, G, and B are obtained simultaneously by a normal color demodulation circuit 22. These outputs are respectively output from the first line memory 23.
24, 25 to store information for one horizontal period, and then transferred to second line memories 26, 27, and 28, respectively. The read speed from the second line memory is three times the write speed to the first line memory, and the read timing is, for example, 1/6 at the beginning of one horizontal period for the memory 26. The memory 27 is located in the center 1/6. The memories 28 are controlled so that they do not overlap in time, such as at end 1/ro. 2nd line memory 26.27
.. The outputs of 28 are temporally rearranged in series by an adder circuit 29 and supplied to a thin color cathode ray tube 20. Although the number of line memories is increased compared to the first embodiment, the configuration of the color demodulation circuit 22 is extremely simple because it can process at the normal frequency of 3.58 M Ilz.

3原色信号印加の順序としては捷ずR,G。The order of application of the three primary color signals is R, G.

Bの繰返しが考えられる。この場合、例えばN ’l”
 S C方式のカラー画像をほぼ完全に表示するために
は、螢光体の横ストライプ本数として約480 X 3
 =1.440本必要となる。従って大画面の場合は問
題ないが、例えば6形程度の小画面の場合は、垂直方向
寸法が約45mmなので、螢光体ストライプ相互間隔と
ストライプ幅を同一とすれば、ストライプ幅は約15μ
m(45g、、−−−1,440X2 156μm)となり、螢光体粒径が約1oμmである事
や、各ストライプ間の耐電圧を考えると、かかる多数の
横ストライプを配設することは、事実上不可能に近い。
It is possible to repeat B. In this case, for example, N'l”
In order to almost completely display a color image using the SC method, the number of horizontal stripes of the phosphor must be approximately 480 x 3.
=1.440 pieces are required. Therefore, there is no problem in the case of a large screen, but in the case of a small screen of about 6 inches, for example, the vertical dimension is about 45 mm, so if the phosphor stripe spacing and stripe width are the same, the stripe width is about 15 μm.
m (45g, ---1,440X2 156μm), and considering that the phosphor particle size is about 1oμm and the withstand voltage between each stripe, arranging such a large number of horizontal stripes is as follows. Virtually impossible.

もしインタレースを断念すればストライプ本数は約24
0 X 3 = 720本となり、ストライプ幅は約6
0μmとなるので実現性はでてくるが、垂直解像度の劣
化はさけられない。この問題の対策をした第3実施例と
してろ原色信号の順序を変えて、奇数フィールドの第n
Tf目の水平走査期間ではR,G、Bの順、第n + 
i番目ではB、R,Gの順、第n+2番目ではG、]3
.Hの順としてこれを繰返し、偶数フィールドの第n番
目(NTSC方式では奇数フィールドの第n + 26
3査目)では、G、BRの順、第n+1番目ではR,G
、Hの順、第n+2番目ではB、R,GのJllIlt
としてこれをKm返すことにすれば、この信号順序に対
応して端子11.12.13の印加電圧を切換えると、
第6図に示すように、必要なストライプ本数は約240
X 2 = 480本となり、ストライプ幅は45μm
と広くなり、しかもインクレース走査となるので垂直解
像度は劣化しない。この第3実施例ではB、G、R,・
・・・・R,G、Bの順に1同−横壁光体スドライブを
2回繰返して励起する必要があり、垂直偏向に工夫がい
るが、これは第1図に示す薄形陰極線管の側面5.6の
間に印加する電圧波形を若干変更するだけで実現可能で
ある。またビーム径が、KGBトリプレットピッチPに
対して11/36P以上であれば、特別な工夫をしなく
ても、第7図に示すように正しい色再現ができる。
If you abandon interlacing, the number of stripes will be about 24.
0 x 3 = 720 lines, and the stripe width is approximately 6
Since it is 0 μm, it becomes more practical, but deterioration in vertical resolution cannot be avoided. As a third embodiment to solve this problem, the order of the primary color signals is changed, and the n-th signal of the odd field is
In the Tfth horizontal scanning period, R, G, B in the order of n+
In the i-th order, B, R, G, in the n+2-th order, G, ]3
.. This is repeated in the order of H, and the nth even field (in the NTSC system, the n+26th odd field
In the 3rd test), G, BR in the order, and in the n+1st test, R, G
, in the order of H, at the (n+2)th, B, R, G JllIlt
If we decide to return this in Km, then if we switch the voltages applied to terminals 11, 12, and 13 in accordance with this signal order, we get
As shown in Figure 6, the number of stripes required is approximately 240.
X 2 = 480 lines, and the stripe width is 45 μm
Moreover, because it uses ink-lace scanning, the vertical resolution does not deteriorate. In this third embodiment, B, G, R, .
...It is necessary to repeat the excitation of R, G, and B by repeating the horizontal wall optical drive twice, and the vertical deflection must be devised, but this is not possible with the thin cathode ray tube shown in This can be achieved by only slightly changing the voltage waveform applied between the side surfaces 5 and 6. Further, if the beam diameter is 11/36P or more relative to the KGB triplet pitch P, correct color reproduction can be achieved as shown in FIG. 7 without any special measures.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電子ビーム利用効
率が高く、スイッチングロスも少い状態で、高い色飽和
度の画像を、垂直解像度の劣化を伴わずに表示できる薄
形カラー画像表示装置が得られる。
As explained above, according to the present invention, a thin color image display device is capable of displaying an image with high color saturation with high electron beam utilization efficiency and low switching loss without deterioration of vertical resolution. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)はモノクローム薄形陰極線管の正面図、(
B)は側断面図、第2図は従来の薄形カラー陰極線管提
案の一例の螢光面拡大構造図、第6図は本発明に係る薄
形カラー陰極線管の螢光面の一部拡大構造図、第4図は
本発明第1実施例の信号を処理する回路のブロック図、
第5図は第2実施例の信号を処理する回路のブロック図
第6図、第7図は第6実施例の動作説明図である0 11、12.13・・・色選択電圧印加端子 16,2
3゜24.25・・・第1ラインメモリ 17.26.
27.28・・第2ラインメモリ 18・・・フィード
バックループ 19・・・信号処理回路 2o・・・薄
形カラー陰極線管 22・・・色復調回路 29・・・
加算器 RlG、B・・・それぞれ赤、緑、青色螢光体
ストライプ第 1 図 婢 2 図 第 3 図 第 4 図 第 5図
Figure 1 (A) is a front view of a monochrome thin cathode ray tube, (
B) is a side sectional view, FIG. 2 is an enlarged structural view of the fluorescent surface of an example of a conventional thin color cathode ray tube proposal, and FIG. 6 is a partially enlarged view of the fluorescent surface of the thin color cathode ray tube according to the present invention. Structure diagram: FIG. 4 is a block diagram of a circuit for processing signals according to the first embodiment of the present invention;
FIG. 5 is a block diagram of a circuit for processing signals of the second embodiment. FIGS. 6 and 7 are explanatory diagrams of the operation of the sixth embodiment. ,2
3゜24.25...First line memory 17.26.
27.28... Second line memory 18... Feedback loop 19... Signal processing circuit 2o... Thin color cathode ray tube 22... Color demodulation circuit 29...
Adder RlG, B... Red, green, and blue phosphor stripes, respectively.Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)電気的に互いに絶縁して電子ビームの走査方向に
ほぼ平行に配列した各水平細条電極の上に、それぞれ、
赤、緑、青色螢光体を塗布したものの絹の繰返しよりな
る色螢光体ストライプ群を設け、これら螢光体ストライ
プの同一色のものそれぞれを互いに電気的に接続し、管
外の色選択電圧印加端子にまとめた薄形カラー陰極線管
と;映像信号を直列に入力して記憶し並列に出力する第
1ラインメモリと、第1ラインメモリから並列に入力さ
れた記憶内容を、第1ラインメモリへの書込み速度の3
倍の速度で直列出力し、かつ直列出力−直列入力の形で
記憶内容を循環させて同一情報が6回その出力端子に得
られるようにした第2ラインメモリとよりなる時間軸圧
縮用メモリ回路と;前記第2ラインメモリの6回の出力
に対し、それぞれ赤、緑、青の色信号を復調する回路と
;入力映像信号の水平周期に対して1/口の周期で偏向
する水平偏向回路と;前記加、緑、青の色信号復調に同
期して前期陰極紛営外の色選択電圧印加端子に印加する
電圧を切換える手段を飼えたことを特徴とする薄形カラ
ー画像表示装置。
(1) On each horizontal strip electrode that is electrically insulated from each other and arranged approximately parallel to the scanning direction of the electron beam,
A group of colored phosphor stripes consisting of repeating silk coated with red, green, and blue phosphors is provided, and each of these phosphor stripes of the same color is electrically connected to each other, allowing for color selection outside the tube. A thin color cathode ray tube that is connected to a voltage application terminal; a first line memory that inputs video signals in series, stores them, and outputs them in parallel; 3 speeds of writing to memory
A time axis compression memory circuit consisting of a second line memory that serially outputs at twice the speed and circulates the memory contents in the form of serial output - serial input so that the same information can be obtained six times at its output terminal. a circuit that demodulates red, green, and blue color signals for the six outputs of the second line memory; and a horizontal deflection circuit that deflects the input video signal at a period of 1/vertical to the horizontal period of the input video signal. and; a thin color image display device characterized in that it is equipped with means for switching the voltage applied to the color selection voltage application terminal outside the cathode switching in synchronization with the demodulation of the color signals of the above-mentioned addition, green and blue.
(2)  メモリ回路により時間軸圧縮を行う以前に色
復調動作を行ない、この復調後の色差信号または原色信
号の段階で時間軸圧縮を行ないかつ赤、緑、青の色信号
を時間的に直列に並べ直すようにしたことを特徴とする
特許請求の範囲第1項記載の薄形カラー画像表示製的。
(2) Color demodulation is performed before time-base compression is performed using a memory circuit, and time-base compression is performed at the stage of the color difference signal or primary color signal after this demodulation, and the red, green, and blue color signals are temporally serialized. 2. A thin color image display device according to claim 1, wherein the thin color image display device is arranged in such a manner that the display device is rearranged into two shapes.
(3)  電気的に互いに絶縁して電子ビームの走査方
向にほぼ平行に配列した各水平細条電極の上に、それぞ
れ、赤、緑、青蛍光体を塗布したものの組の繰返しより
なる色螢光体ストライプ群を設け5、これら螢光体スト
ライプの同一色のものそ1tぞれを互いに電気的に接続
し管外の色選択電圧印加端子に捷とめた薄形カラー陰極
線管と:入力映像信号から赤、緑。 背の色信号全復調する回路と;時間軸圧縮用メモリ回路
と:入力映像信号の水平周期に対し1/3の周期で偏向
する水平偏向回路と;色信号の入力に同期して、かつ、
それぞれの色に応じて前記陰極線管外の色選択電圧印加
端子に印加する電圧を切換える手段とを備え:前記色信
号Tn R’A1回路とメモリ回路とは協働して、入力
映像信号に対し、各原色信号を入力速朋の3倍の出力速
製で、かつ、各原色信号をそれぞれCI 、 C2+ 
C3とするとき、奇数フィールドの第n@目の水平走査
期間ではCI + C2C5の11直、第n +11f
目ではC3,C1,C2の順、第n+2番目で1l−1
:C2,C3、Csの順に、1だ偶数フィールドの第n
番目ではC2,C3,C1の順第n+i番目ではC1、
C2、C3の順、第n+2企目ではC3,C1,C2の
順に、入力映像信号の6水平走査期間を1周期にして繰
返し出力して、前記色選択電圧を切換える手段を作動さ
せるようにしたことを特徴とする薄形カラー画像表示装
置。
(3) A colored phosphor consisting of a repeating set of red, green, and blue phosphors coated on each horizontal strip electrode that is electrically insulated from each other and arranged approximately parallel to the scanning direction of the electron beam. A thin color cathode ray tube is provided with a group of light stripes 5, each of which has the same color of these phosphor stripes is electrically connected to each other, and connected to a color selection voltage application terminal outside the tube: an input image. Red and green from traffic lights. a circuit for fully demodulating the back color signal; a memory circuit for time axis compression; a horizontal deflection circuit that deflects at a period of 1/3 with respect to the horizontal period of the input video signal; synchronized with the input of the color signal, and
means for switching the voltage applied to the color selection voltage application terminal outside the cathode ray tube according to each color; the color signal Tn R'A1 circuit and the memory circuit cooperate to , each primary color signal has an output speed that is three times the input speed, and each primary color signal has a CI, C2+, respectively.
When C3, in the n@th horizontal scanning period of the odd field, the 11th shift of CI + C2C5, the nth +11f
In the order of C3, C1, C2, 1l-1 at the n+2th
: C2, C3, Cs in order, 1, nth even field
In the th order, C2, C3, C1, in the n+i th case, C1,
The means for switching the color selection voltage is operated by repeatedly outputting the input video signal in the order of C2 and C3, and in the order of C3, C1, and C2 in the (n+2)th project, with 6 horizontal scanning periods of the input video signal being one cycle. A thin color image display device characterized by:
JP19745482A 1982-11-12 1982-11-12 Display device of color picture with thin thickness Pending JPS5989093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19745482A JPS5989093A (en) 1982-11-12 1982-11-12 Display device of color picture with thin thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19745482A JPS5989093A (en) 1982-11-12 1982-11-12 Display device of color picture with thin thickness

Publications (1)

Publication Number Publication Date
JPS5989093A true JPS5989093A (en) 1984-05-23

Family

ID=16374774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19745482A Pending JPS5989093A (en) 1982-11-12 1982-11-12 Display device of color picture with thin thickness

Country Status (1)

Country Link
JP (1) JPS5989093A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977447A (en) * 1985-04-19 1990-12-11 Kabushiki Kaisha Toshiba Color cathode ray tube
US5117159A (en) * 1988-11-04 1992-05-26 Matsushita Electric Industrial Co., Ltd. Flat panel type display and method for driving the display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977447A (en) * 1985-04-19 1990-12-11 Kabushiki Kaisha Toshiba Color cathode ray tube
US5117159A (en) * 1988-11-04 1992-05-26 Matsushita Electric Industrial Co., Ltd. Flat panel type display and method for driving the display

Similar Documents

Publication Publication Date Title
KR0169962B1 (en) Display device
CA1180108A (en) Image display apparatus
US2605434A (en) Single beam three color cathoderay tube
US2879442A (en) Direct view storage tube
US3892998A (en) Gas discharge device for multicolor information display
JPS5989093A (en) Display device of color picture with thin thickness
JPH0332175B2 (en)
US2614231A (en) Cathode-ray tube for polychrome television apparatus
US2967262A (en) Multi-color display tube
US6903519B2 (en) Multi-element field emission cathode
US2674704A (en) Storage tube for color television signals, etc.
US2739260A (en) Cathode-ray tube for color television
KR0149853B1 (en) Crt-matrix type video display system
US2830111A (en) Storage type electron tube systems
US4794449A (en) Electron multiplier flat CRT display apparatus providing successive color scanning lines for each scanning line of a received color video signal
US5621276A (en) Cathode ray tube
JPH0135463B2 (en)
JPS59180942A (en) Flat cathode ray tube
US3388283A (en) Electron tube device for image transmission and reception
US2951895A (en) Systems for separating and combining monochrome pictures
JPH0537877A (en) Index tube
SU1368998A1 (en) Color television receiver
RU1804699C (en) Device for reproduction of color tv images
JPH0537945A (en) Index tube
JPH0244636A (en) Display device