JPS5988773A - Magnetic recording method - Google Patents

Magnetic recording method

Info

Publication number
JPS5988773A
JPS5988773A JP19876582A JP19876582A JPS5988773A JP S5988773 A JPS5988773 A JP S5988773A JP 19876582 A JP19876582 A JP 19876582A JP 19876582 A JP19876582 A JP 19876582A JP S5988773 A JPS5988773 A JP S5988773A
Authority
JP
Japan
Prior art keywords
magnetic
latent image
array
heat
heat sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19876582A
Other languages
Japanese (ja)
Inventor
Nobuo Mochizuki
望月 延雄
Teruyuki Onuma
大沼 照行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP19876582A priority Critical patent/JPS5988773A/en
Publication of JPS5988773A publication Critical patent/JPS5988773A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G19/00Processes using magnetic patterns; Apparatus therefor, i.e. magnetography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To improve the resolution, by making the dot diameter of a magnetic latent image smaller than the diameter of exothermic resistive body elements by variably controlling an input to a heat sensitive head array or an external inversional magnetic field and combining magnetic latent images of such dot diameter. CONSTITUTION:In a heat sensitive head array 9 is arranged so that, for instance, exotermic resistive body elements 11 are realized 4dots/mm. are and is set under an oscillation- and displacement-free condition as shown by the arrow. When, for instance, recording is to be performed in a dot density of 8dots/mm. with a signal frequency of 5ms/line, the frequency and pulse width of picture electric signals are set so as to make the dot diameter 125mum. This signal frequency becomes 2.5ms/line which is two times of that at the time of 4dots/mm. and the oscillation frequency of the heat sensitive head array 9 becomes 1/5ms. Therefore, only half of a magnetic latent image 12 is formed and, after the heat sensitive head array 9 oscillates, the remaining half of the latent image 12 is formed in such a manner that the blank part of the image 12 is filled with the latter half, and thus recording of 8dots/mm. is performed. Therefore, the resolution can be improved in this way.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、磁気記録方法、よシ具体的には感熱へラドア
レイを用いた熱磁気書込みによる磁気記録方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a magnetic recording method, and more particularly to a magnetic recording method by thermomagnetic writing using a heat-sensitive RAD array.

し従来技術〕 従来、@気記録方法としては、たとえは第1図(eLl
に示すようにガラス等の基板(1)上にTb−Fe等に
よる強磁性体層(2)を設けてなる磁気記録体(3)を
磁石(4)によυ一様に磁化した後、第1図(旬に示す
ように画像部分に熱源(5〕によシ熱を加えてその部分
の強磁性体層(2)をキュリ一点温度以上にしてその部
分の保磁力Haを下げて磁化をなくす一方、磁石(6)
により逆向きの外部磁界を印加しておくことによシ、室
温に冷却される過程で画像部分の再磁化を行なわせ磁気
潜像を形成するようにしだ熱磁気記録方式が知られてい
る。そして、この方式をプリンタに応用することも知ら
れておシ、第1図(C,)に示すように磁気潜像上に磁
性トナー(7ンを摺擦させると、この磁性トナー(7)
が磁化反転部上に付着するものであり、これを転写・定
着させれはよいものである。ここで、熱源(5)として
感熱ヘッドアレイを用いることが知られている。また、
第1図では強磁性層(2)としてTb−Fe等を用いた
垂直記録用として説明したが、Cr(h等による長手記
録用も知られている。
[Prior art] Conventionally, as a @ki recording method, the example shown in Fig. 1 (eLl
As shown in the figure, after a magnetic recording body (3) comprising a ferromagnetic layer (2) of Tb-Fe etc. provided on a substrate (1) of glass etc. is uniformly magnetized by a magnet (4), Figure 1 (As shown in Figure 1), heat is applied to the image area from a heat source (5) to raise the ferromagnetic layer (2) in that area to a temperature higher than the Curie point, lowering the coercive force Ha in that area and magnetizing it. While eliminating the magnet (6)
A thermomagnetic recording method is known in which a magnetic latent image is formed by applying an external magnetic field in the opposite direction to remagnetize the image area during the cooling process to room temperature. It is also known that this method can be applied to printers; as shown in Figure 1 (C), when a magnetic toner (7) is rubbed on a magnetic latent image, this magnetic toner (7) is
is attached to the magnetization reversal portion, and it is good to transfer and fix this. Here, it is known to use a thermal head array as the heat source (5). Also,
Although the ferromagnetic layer (2) in FIG. 1 is for perpendicular recording using Tb--Fe or the like, longitudinal recording using Cr(h or the like) is also known.

ところが、感熱へラドアレイを見ると、現在8ドツト/
mの解像度であり構造的により一層の高解像度化は難し
く、また、高密度になる程コスト・アップになるもので
ある。
However, when I look at the heat sensitive RAD array, it is currently showing 8 dots/
m resolution, it is structurally difficult to further increase the resolution, and the higher the density, the higher the cost.

〔目的〕〔the purpose〕

本発明は、このような点に鑑みなされたもので、現状の
感熱へラドアレイを利用しつつ、よシ高解像度化するこ
とができる磁気記録方法を得ることを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a magnetic recording method that can achieve higher resolution while utilizing the current heat-sensitive RAD array.

〔構成〕〔composition〕

本発明の実施例を第2図ないし第7図に基づいて説明す
る。まず、感熱ヘッドによる書込み実験を行なった結果
、次のことがわかったものである。
Embodiments of the present invention will be described based on FIGS. 2 to 7. First, as a result of conducting a writing experiment using a thermal head, the following was found.

すなわち、感熱ヘッドへの通電電流を大小変化させたと
き、または電流一定で通電時間を変えたとき、書込まれ
た磁気潜像の大きさが変化し、エネルギー(=(電流)
×(通電時間))の値が大きい程ドツト径が大きくなっ
たものである。これは、感熱ヘッドの下にある磁気記録
体に温度分布があるからであると考えられ、感熱ヘッド
の各発熱抵抗素子の中心に近い磁気記録体の部分の温度
が高く周囲にいく程低い。また、感熱ヘッド自身も同様
に各発熱抵抗素子の中心程温度が尚く周囲程低い。この
ように温度差があると、第2因に示すように保磁力He
が変わシ、温度が高い部分はど保磁力Heが低くて磁化
反転し易くなる。したがって、感熱ヘッドに与えるエネ
ルギーの大きさ、あるいは外部から印加する反転磁界の
強さが変わると形成される磁気潜像のドツト径が変化す
ることになp、その−例が第3図に示される。
In other words, when the magnitude of the current applied to the thermal head is changed, or when the current is kept constant and the current applied time is changed, the size of the written magnetic latent image changes, and the energy (=(current)
The larger the value of x (current application time), the larger the dot diameter. This is thought to be due to the temperature distribution in the magnetic recording body under the thermal head, with the temperature of the portion of the magnetic recording body near the center of each heating resistive element of the thermal head being higher and lower toward the periphery. Similarly, the temperature of the heat-sensitive head itself is lower toward the center of each heating resistive element, and lower toward the periphery. If there is a temperature difference like this, the coercive force He
The coercive force He is low in areas where the temperature is high and magnetization is easily reversed. Therefore, if the amount of energy applied to the thermal head or the strength of the reversing magnetic field applied from the outside changes, the dot diameter of the magnetic latent image formed will change, an example of which is shown in Figure 3. It will be done.

このような実験結果によれば、逆に感熱ヘッドに与える
エネルギーの大きさまたは反転磁界の強さを適当に選べ
は、感熱ヘッドにおける発熱抵抗体素子の径よシも小さ
い適当なドツト径の磁気潜像を自由に形成できることに
なる。
According to these experimental results, on the other hand, it is important to appropriately select the amount of energy applied to the thermal head or the strength of the reversal magnetic field, so that the magnetic dot has an appropriate diameter that is smaller than the diameter of the heating resistor element in the thermal head. This means that latent images can be formed freely.

しかして1本発明はこのような点に着目し、感熱へラド
アレイの高解像度化の構造的な限界を補うために、基本
的には、第3図に示したような特性に基づき感熱へラド
アレイへの入力または外部反転磁界を可変制御して、磁
気潜像のドツト径を感熱へラドアレイの発熱抵抗体素子
の径よりも小さくし、このようなドツト径の磁気潜像を
組合せることにより、よp高解像度化が可能になるよう
にしたものである。
Therefore, the present invention focuses on such points, and in order to compensate for the structural limitations of increasing the resolution of heat-sensitive RAD arrays, the present invention basically develops heat-sensitive RAD arrays based on the characteristics shown in FIG. By variably controlling the input to or the external reversal magnetic field to make the dot diameter of the magnetic latent image smaller than the diameter of the heating resistor element of the heat-sensitive RAD array, and by combining the magnetic latent images with such dot diameters, This makes it possible to achieve even higher resolution.

今、よシ具体的な一例を第4図ないし第6図に示す。ド
ラム状の磁気記録体(8)の内外には感熱へラドアレイ
(9)と磁界発生源となる磁石αQとが設けられている
ものであるが、感熱へラドアレイ(9)は第6図に示す
ように、たとえば発熱抵抗体素子(11)が4ドツト/
w、すなわちJ = 0.5 waxとなるよう並べら
れた通常のものであシ、この感熱へラドアレイ(9ンが
第4図に矢印で示すように揺動変位自在に設定されてい
る。したがって、このままの状態で4ドツト/慎の信号
情報が入ってくれは、従来通シ発熱抵抗体素子αVに従
った4ドツト/mの磁気潜像が形成される。しかして、
今、たとえば5m5Z行で8ドツト/瓢(すなわち、ド
ツト径125μ)の記録を行ないたい場合を考える。こ
の場合、前述した第3図の熱エネルギー−ドツト径の関
係図からドツト径が125μとなるように感熱ヘッドプ
レイ(9)に対する入力が制御セットされる。ここで、
セットするとは、実際の装置の中で予め設計されておシ
、釦一つで切換わることを意味する。これによシ、各発
熱抵抗体素子αηに加えられる画像電気信号の周波数、
パルス幅がセットされる。このパルス幅はドツト径が1
25μとなるように関係図から決められ、信号周波数は
4ドツ)7wのときのb倍であシ、2.5 m s 7
行となシ、感熱へラドアレイ(9)の揺動周波数は15
mm=200Hzとなる。したがって、まず第6図(a
+に示すように半分の磁気潜像(6)が形成され、つづ
いて感熱へラドアレイ(9)揺動後第6図(南に示すよ
うに残りの半分の磁気潜像(6)が間を埋めるように形
成され、8ドツ) / tsmの記録が行なわれる。な
お、第6図においては対応関係を示すため、A1、El
・・・等の添字を付して示す。この結果、感熱へラドア
レイ(9)が8ドツト/lll1.16ドツト/slI
のものであれば、それぞれ16ドツト/恒、32ドツト
/Wとよp高解像度化が可能となるものである。
Now, a concrete example is shown in Figs. 4 to 6. A heat-sensitive RAD array (9) and a magnet αQ serving as a magnetic field generation source are provided inside and outside the drum-shaped magnetic recording body (8), and the heat-sensitive RAD array (9) is shown in FIG. For example, the heating resistor element (11) has 4 dots/
w, that is, J = 0.5 wax, and this heat-sensitive RAD array (9) is set to be able to swing freely as shown by the arrow in Fig. 4. If signal information of 4 dots/m is input in this state, a magnetic latent image of 4 dots/m is formed according to the conventional heating resistor element αV.
Now, let us consider a case where, for example, it is desired to record 8 dots/gourd (that is, dot diameter 125 .mu.) in 5 m, 5 Z rows. In this case, the input to the thermal head play (9) is controlled and set so that the dot diameter is 125 .mu. from the thermal energy-dot diameter relationship diagram of FIG. 3 described above. here,
Setting means that it is designed in advance in the actual device and can be switched with a single button. Accordingly, the frequency of the image electric signal applied to each heating resistor element αη,
Pulse width is set. This pulse width has a dot diameter of 1
It is determined from the relationship diagram that it will be 25 μ, and the signal frequency is b times that of 4 dots) 7W, 2.5 m s 7
The oscillation frequency of the thermal array (9) is 15.
mm=200Hz. Therefore, first of all, Fig. 6 (a
As shown in +, half of the magnetic latent image (6) is formed, and then, after the RAD array (9) is swung to the heat-sensitive surface, the remaining half of the magnetic latent image (6) is formed in between as shown in Figure 6 (south). 8 dots)/tsm are recorded. In addition, in FIG. 6, to show the correspondence relationship, A1, El
It is indicated with a subscript such as .... As a result, the thermal radiation array (9) was 8 dots/1.16 dots/slI.
If it is the same, it becomes possible to achieve higher resolutions of 16 dots/constant and 32 dots/W, respectively.

第7図は他側を示すもので、1つのコイル(図示せず)
中に2つの感熱へラドアレイ(91X9g )を所定量
ずらして2列に配列してなるヘッドを用いるものである
。したがって、4ドツト/■の記録のときには感熱へラ
ドアレイ(91)のみ使用され、8ドツト/簡の記録の
ときには切換釦によシ2つの感熱ヘッドアレイ(91)
(9g )を使うと同時に前述例と同様にパルス幅が変
えられる。この第7図に斜線を付してモデル化して示す
磁気潜像(12A1)(tZAX)・・・等の組合せに
よシ高解像度化される。
Figure 7 shows the other side, one coil (not shown).
A head is used in which two heat-sensitive RAD arrays (91 x 9 g) are arranged in two rows, shifted by a predetermined amount. Therefore, when recording at 4 dots/square, only the thermal head array (91) is used, and when recording at 8 dots/square, two thermal head arrays (91) are used by pressing the switch button.
At the same time as (9g) is used, the pulse width can be changed as in the previous example. High resolution is achieved by a combination of magnetic latent images (12A1) (tZAX), etc., which are modeled and shown with diagonal lines in FIG.

なお、ドツト径を小さくするため、感熱へラドアレイ(
9)側の入力は一定とし、磁石αqとして電磁石等を用
い、その外部反転磁界の強さを変えるように制御しても
よい。
In addition, in order to reduce the dot diameter, a heat-sensitive RAD array (
The input on the 9) side may be constant, an electromagnet or the like may be used as the magnet αq, and the intensity of the external reversal magnetic field may be controlled to be varied.

〔効果〕〔effect〕

本発明は、上述したように感熱へラドアレイへの入力ま
たは磁界発生源による磁界を可変制御して、磁気潜像の
ドツト径を感熱へラドアレイの発熱抵抗体素子の径よシ
も小さくしたので、現状の感熱へラドアレイを用いても
、ドツト径の小さくされた磁気潜像の組合せによシ、よ
υ高解像度化を達成することができるものである。
In the present invention, as described above, the input to the heat-sensitive RAD array or the magnetic field from the magnetic field generation source is variably controlled to make the dot diameter of the magnetic latent image smaller than the diameter of the heating resistor element of the heat-sensitive RAD array. Even if the current heat-sensitive RAD array is used, a much higher resolution can be achieved by combining magnetic latent images with smaller dot diameters.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a1〜(Olは熱磁気記録方式を示す説明図、
第2図ないし第7図は本発明の実施例を示すもので、第
2図および第3図は測定結果を示す特性図第4図は正面
図、第5図はその側面図、第6図(a)(町は説明図、
第7図は他側を示す説明図である。 9・・・感熱へラドアレイ、10・・・磁石(磁界発住
源)、11・・・発熱抵抗体素子、12・・・磁気潜像
用 願 人   株式会社リコー Xも6必 凛/7図 手 続 補 正 書 (自発) 昭和57年12月28日 特願昭57−198765号 2 発明の名称 磁気記録方法 3 補正をする者 事件との関係  特許出願人 4 代  理  人  〒107 な   し 6 補正の対象 明細書 12倍」に補正する。
FIG. 1 (a1-(Ol is an explanatory diagram showing the thermomagnetic recording method,
Figures 2 to 7 show examples of the present invention, Figures 2 and 3 are characteristic diagrams showing measurement results, Figure 4 is a front view, Figure 5 is a side view, and Figure 6 is a characteristic diagram showing measurement results. (a) (The town is an explanatory map,
FIG. 7 is an explanatory diagram showing the other side. 9... Heat-sensitive Radar array, 10... Magnet (magnetic field generation source), 11... Heating resistor element, 12... For magnetic latent image Applicant Ricoh Co., Ltd. Procedures Amendment (spontaneous) December 28, 1981 Japanese Patent Application No. 198765 2 Name of the invention Magnetic recording method 3 Relationship with the case of the person making the amendment Patent applicant 4 Agent 〒107 None 6 The specification to be amended shall be amended 12 times.

Claims (1)

【特許請求の範囲】[Claims] 感熱へラドアレイと外部反転磁界を与える磁界発生源と
を用いて熱磁気書込みする磁気記録方法ニオイて、感熱
へラドアレイへの入力または磁界発生源による磁界を可
変制御して、磁気潜像のドツト径を感熱へラドアレイの
発熱抵抗体素子の径よりも小さくしたことを特徴とする
磁気記録方法。
In this magnetic recording method, thermomagnetic writing is performed using a heat-sensitive RAD array and a magnetic field source that provides an external reversal magnetic field.The dot diameter of the magnetic latent image is determined by variable control of the input to the heat-sensitive RAD array or the magnetic field from the magnetic field source. A magnetic recording method characterized in that the diameter of the heat-sensitive RAD array is smaller than the diameter of the heating resistor element.
JP19876582A 1982-11-12 1982-11-12 Magnetic recording method Pending JPS5988773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19876582A JPS5988773A (en) 1982-11-12 1982-11-12 Magnetic recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19876582A JPS5988773A (en) 1982-11-12 1982-11-12 Magnetic recording method

Publications (1)

Publication Number Publication Date
JPS5988773A true JPS5988773A (en) 1984-05-22

Family

ID=16396565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19876582A Pending JPS5988773A (en) 1982-11-12 1982-11-12 Magnetic recording method

Country Status (1)

Country Link
JP (1) JPS5988773A (en)

Similar Documents

Publication Publication Date Title
US3521294A (en) Magneto thermal recording process and apparatus
JPH0695404B2 (en) Magneto-optical recording method
JPH02108206A (en) Spurious suppressing method and device
US4520409A (en) Thermal and magnetic recording head
US6982843B2 (en) Assembly comprising adjustable heat flux mechanism for thermally assisted/thermal information processing and control
US4503438A (en) Method of erasing magnetic latent image in thermo-magnetic recording
JPS5988773A (en) Magnetic recording method
JPH08180483A (en) Magnet-optical storage medium
US3245062A (en) Magnetic annealing for information storage
JPH0139584B2 (en)
JPH0138312B2 (en)
US3611421A (en) Recording by varying the location of a magnetic spot
US4397929A (en) Process for generating a latent magnetic image
JPS6322989B2 (en)
JPS5988772A (en) Magnetic recording method
JPS60194483A (en) Magnetic recording method
US5909411A (en) Magnetically coupled apparatus for inverting a bias field for magneto-optic recording and erasing
US3631508A (en) Thermomagnetic recording whereby image reversal is achieved magnetically
JPH0242228B2 (en)
JPS58111071A (en) Thermomagnetic recording device
JPH0242227B2 (en)
JPS5953855A (en) Thermomagnetic recording body
JPS6325950B2 (en)
JPS60194482A (en) Magnetic latent image formation device
JPH0139114B2 (en)