JPS5988641A - Rapid evaluation of crack development speed - Google Patents

Rapid evaluation of crack development speed

Info

Publication number
JPS5988641A
JPS5988641A JP19910582A JP19910582A JPS5988641A JP S5988641 A JPS5988641 A JP S5988641A JP 19910582 A JP19910582 A JP 19910582A JP 19910582 A JP19910582 A JP 19910582A JP S5988641 A JPS5988641 A JP S5988641A
Authority
JP
Japan
Prior art keywords
load
crack
displacement
speed
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19910582A
Other languages
Japanese (ja)
Inventor
Nobuyuki Takeda
竹田 信之
Mamoru Hishida
菱田 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19910582A priority Critical patent/JPS5988641A/en
Publication of JPS5988641A publication Critical patent/JPS5988641A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To rapidly estimate a crack development speed with good accuracy under an optically and directly non-observable environmental condition such as the interior of an autoclave, by measuring load and a change curve with the elapse of time in the displacement of a loading point. CONSTITUTION:A crack speed is shown by a formula wherein (a) is a crack length, P is load, V is the displacement of a loading point, B is the thickness of a test piece, E is young modulas and K is coefficient of stress enlargement. Because K is an amount uniquely determined by (a), P, the crack speed can be analyzed theoretically. Load is applied to the breaking dynamics type test piece at a definite low tensile speed by a tensile testing machine and load P and the displacement V of the loading point are measured by a load meter and a displacement meter to be inputted to a computer while subjected to AD conversion while the time differentiation curves of the load P and the displacement V are fabricated. Succeedingly, a program for calculating coefficient K of stress enlargement is used to successively calculate a crack development speed, a crack development amount and the coefficient K of stress enlargement and the relation of the coefficient of stress enlargement and the crack development speed is calculated to be drawn by an XY-plotter.

Description

【発明の詳細な説明】 〔発明の技術分野〕 〔発明の技術的背景とその問題点〕 破壊力学型試験片を用いたt裂進展試験の一手量あるい
は速度を破壊力学パラメータである応力拡大係数あるい
はJ積分値等によシ記述する材料強度の評価法であるが
、本手法を原子炉等の構造え 本発明はオートクレーブ中のような、き裂進展供するこ
とを目的とする。
[Detailed Description of the Invention] [Technical Field of the Invention] [Technical Background of the Invention and Problems Therewith] The amount or speed of a T-crack growth test using a fracture mechanics type specimen is determined by the stress intensity factor, which is a fracture mechanics parameter. Alternatively, it is an evaluation method of material strength described in terms of J-integral value, etc., but the present invention is intended to apply this method to structures such as nuclear reactors, etc., and to provide crack propagation as in an autoclave.

とされる情報は、基本的には、荷重及び荷重点変位の経
時変化曲線だけであし、bずれも材料の機械強度試験に
おいては基本的な量で、測定も簡単なものである。即ち
今荷重P、荷重点変位■を用すてコンプライアンスλは
、λ=■/Pで定義される。両辺を時間tで微分すると
次式が得られる。
Basically, the only information that can be used is the time-course curve of load and load point displacement, and b deviation is also a basic quantity in mechanical strength testing of materials and is easy to measure. That is, using the load P and the load point displacement ■, the compliance λ is defined as λ=■/P. By differentiating both sides with respect to time t, the following equation is obtained.

dλ  dV     dP TV= ””iu” ”Ti:” )/”’     
(1)dλ dλ da dt  da  −;IU            f
2)するコンプライアンスの変化率を意味し、一般に破
壊力学型試験片では計算可能であυ、例えばCT試験片
の場合次式ご表わされる。
dλ dV dP TV= ””iu” ”Ti:” )/”'
(1) dλ dλ da dt da −; IU f
2) means the rate of change in compliance, which can generally be calculated for fracture mechanics type test specimens, and is expressed by the following formula in the case of CT test specimens, for example.

μシ(2B、に2)/(B−P”)       (3
1a ここにBは試験片厚さ、Eはヤング率、Kは応力拡大係
数である。以上よシ(2)式右辺第2因子に表われる)
裂速度社次式で整理できる。
μshi(2B, ni2)/(B-P”) (3
1a where B is the specimen thickness, E is Young's modulus, and K is the stress intensity factor. The above appears in the second factor on the right side of equation (2))
It can be organized using the following formula for crack velocity.

d a      d ’V       d P週〒
=E・(■・P−V−il−T−)/(2J3・K’)
   +41(4)式においてP、Vの時間微分は各々
の経時変化図1にCT試験片を用いた5RLTにおける
本手法の適用例をフローチャートによシ示す。まず試る
d a d 'V d P week〒
=E・(■・P-V-il-T-)/(2J3・K')
+41 In equation (4), the time derivatives of P and V change over time. Fig. 1 shows a flowchart of an example of application of this method in 5RLT using a CT test piece. Try it first.

以上本技術の原理及びCT試験片を用いた8几LTにお
ける手順を述べたが、さらに本技術を計算機を利用した
自動処理システムとして構成することにより、データ処
理の迅速化、省力化が計れる。
The principle of this technology and the procedure for an 8-box LT using CT test pieces have been described above, but by configuring this technology as an automatic processing system using a computer, it is possible to speed up data processing and save labor.

次にシステム構成の一例を図2に示す。構成は引張試験
機に付属した荷重計、変位計、X−tレコーダー及びデ
ータ解析側のA/D−!ンバータ、計算ffl、時tt
、X−Yプロッター、及びカセット・レコーダーより成
る。
Next, an example of the system configuration is shown in FIG. 2. The configuration includes a load cell attached to the tensile testing machine, a displacement meter, an X-t recorder, and an A/D on the data analysis side! converter, calculation ffl, time tt
, an X-Y plotter, and a cassette recorder.

次にこのシステムの機能を説明する。引張試験機にセッ
トされた破壊力学型試験片に一定の低引張シ速度で負荷
する。このとき荷重及び荷重点変位はそれぞれ荷重計、
変位計に与り連続的に測定され、これら2ケのアナログ
データは1つの流れとしてはモニター用としてX−tレ
コーダーに荷重、荷重点変位の経時変化曲線として描か
れる。
Next, the functions of this system will be explained. A fracture mechanics type test piece set in a tensile testing machine is loaded at a constant low tensile rate. At this time, the load and load point displacement are measured by a load cell, respectively.
These two pieces of analog data are continuously measured by a displacement meter, and these two pieces of analog data are plotted on an X-t recorder for monitoring as a time-dependent change curve of load and load point displacement.

またもう1つの流れとして、この2ケのデータをA/D
コンバータに入力し、A/11変換の後、計算機に呼び
込み、既に述べた手順に従って、荷重の時間微分曲線、
変位の時間微分曲線を作成し、これ関係を求める。これ
らの結果はX −’Yプロッタにおいて描かせると同時
に、データとしてカセットなる。
Another flow is to convert these two data to A/D.
input into the converter, after A/11 conversion, call it into the computer, and according to the procedure already described, calculate the time differential curve of the load,
Create a time differential curve of displacement and find its relationship. These results are plotted on an X-'Y plotter and at the same time are cassetted as data.

〔発明の実施例〕[Embodiments of the invention]

次に本発明を用いたシステムにより、オーステ動の解析
を行なった例を示す。試験片は0.8インよシ計算され
たえ裂進展速度のK = 60 kgf 7mm  、
および100kgf//+1+++37”第1表は、本
発明を用いたシステムによりSU8よ 定した速度と対比して示した。(ただしに−60kgf
/mm”、および100 kgf/mm3=での値)的
良い一致を示すと同時に、試験片破面より求める場合に
は、全試験時間を通しての平均値が一つい精度及び再現
性をもって得られることがわかる。
Next, an example will be shown in which auste motion was analyzed using a system using the present invention. The test piece has a crack growth rate K = 60 kgf 7 mm, calculated from 0.8 inches.
and 100kgf//+1+++37'' are shown in Table 1 in comparison with the speed determined by SU8 by the system using the present invention (with the exception of -60kgf
/mm” and 100 kgf/mm3=) shows good agreement, and at the same time, when determined from the fracture surface of the test piece, the average value over the entire test time can be obtained with the highest accuracy and reproducibility. I understand.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係わるえ裂進展速度評価法
によれば、オートクレーブ中のよりす専よく求めること
ができる。また、計算機を利用した自動処理システムを
構成することにより、さらにデータ処理の迅速化、省力
化が可能となる。
As explained above, according to the crack growth rate evaluation method according to the present invention, it is possible to accurately determine the crack growth rate in an autoclave. Further, by configuring an automatic processing system using a computer, it becomes possible to further speed up data processing and save labor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本手法をCT試験片を用いたS几LTにおいて
適用した場合の手順を示した模式図であQ、第2図は計
算機を利用した自動処理システムとして構成した場合の
一例を示すブロック図である。
Figure 1 is a schematic diagram showing the procedure when this method is applied to S-LT using CT specimens, and Figure 2 shows an example of the case configured as an automatic processing system using a computer. It is a block diagram.

Claims (1)

【特許請求の範囲】 艷 (1)き裂長さaに対して、応力拡大係数Kか一意に決
定される破壊力学部試験片において、荷重の場合に荷重
及び荷重点変位の時間微分(それぞdP   dV れ、、a−「、−aT)の経時変化を求め、da   
    dV       dP=F”C4’ L−a
−T)/(2i+−K”)(t t        d
 t
[Scope of Claims] (1) In the case of a load, the time derivative of the load and the load point displacement (each Find the change over time of dP dV , a-",-aT), and da
dV dP=F"C4' L-a
−T)/(2i+−K”)(t t d
t
JP19910582A 1982-11-15 1982-11-15 Rapid evaluation of crack development speed Pending JPS5988641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19910582A JPS5988641A (en) 1982-11-15 1982-11-15 Rapid evaluation of crack development speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19910582A JPS5988641A (en) 1982-11-15 1982-11-15 Rapid evaluation of crack development speed

Publications (1)

Publication Number Publication Date
JPS5988641A true JPS5988641A (en) 1984-05-22

Family

ID=16402201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19910582A Pending JPS5988641A (en) 1982-11-15 1982-11-15 Rapid evaluation of crack development speed

Country Status (1)

Country Link
JP (1) JPS5988641A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189538A (en) * 1989-12-20 1991-08-19 Hitachi Ltd Corrosive environment cracking progress testing device
JP2007218826A (en) * 2006-02-20 2007-08-30 Toshiba Corp Method and system for evaluating stress corrosion cracking
CN112903443A (en) * 2021-01-28 2021-06-04 中国科学院武汉岩土力学研究所 Method and device for determining propagation speed of fracture process zone of rock material crack tip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189538A (en) * 1989-12-20 1991-08-19 Hitachi Ltd Corrosive environment cracking progress testing device
JP2007218826A (en) * 2006-02-20 2007-08-30 Toshiba Corp Method and system for evaluating stress corrosion cracking
CN112903443A (en) * 2021-01-28 2021-06-04 中国科学院武汉岩土力学研究所 Method and device for determining propagation speed of fracture process zone of rock material crack tip
CN112903443B (en) * 2021-01-28 2021-12-14 中国科学院武汉岩土力学研究所 Method and device for determining propagation speed of fracture process zone of rock material crack tip

Similar Documents

Publication Publication Date Title
US3983745A (en) Test specimen crack correlator
EP0750186A3 (en) Apparatus and method for the simultaneous measurement of rheological and thermal characteristics of materials and measuring cell therefor
JP2938302B2 (en) Blood coagulation time measuring method and apparatus
Maigre et al. Dynamic fracture detection using the force-displacement reciprocity: application to the compact compression specimen
Kageyama et al. Analytical compliance method for Mode I interlaminar fracture toughness testing of composites
JPS5988641A (en) Rapid evaluation of crack development speed
Pearse et al. Measurement of section thickness in quantitative microscopy with special reference to enzyme histochemistry
Ashbaugh et al. EXPERIMENTAL AND ANALYTICAL ESTIMATES OF FATIGUE CRACK CLOSURE IN AN ALUMINIUM‐COPPER ALLOY PART I: LASER INTERFEROMETRY AND ELECTRON FRACTOGRAPHY
EP0222346A2 (en) Method of measuring a sound pressure distribution in a solid body due to a ultrasonic probe by using photoelasticity
JPS5961779A (en) Automatic chemical analytical apparatus
US4464937A (en) Extensometer readout circuit
Xu et al. Measurement, analysis and modeling of the dynamic properties of materials
SU977991A1 (en) Concrete long-term strength determination method
JPS63277910A (en) Detection signal processing method for infrared thickness gauge
JPS63234105A (en) Measurement system using infrared thickness gauge
JPH034139A (en) Hardness meter
BALDIN et al. Experimental evaluation of the main strain components of a material under plane stress
JP2822502B2 (en) Material testing machine
SU1608521A1 (en) Apparatus for determining structural inhomogeneity of moving sheet dispersed material
JPS6126015B2 (en)
JPS6097238A (en) Crack measuring apparatus
JPH0532752Y2 (en)
JPH095261A (en) Automatic verification system of moisture meter by moisture content curve in manufacture of ready mixed concrete
JPH03170840A (en) Material tester
Nessler et al. Journal of the International Measurement Confederation