JPS5988319A - Method for recovering zinc carbonate from matter containing zn - Google Patents

Method for recovering zinc carbonate from matter containing zn

Info

Publication number
JPS5988319A
JPS5988319A JP19568382A JP19568382A JPS5988319A JP S5988319 A JPS5988319 A JP S5988319A JP 19568382 A JP19568382 A JP 19568382A JP 19568382 A JP19568382 A JP 19568382A JP S5988319 A JPS5988319 A JP S5988319A
Authority
JP
Japan
Prior art keywords
zinc carbonate
solution
zinc
carbonate
containing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19568382A
Other languages
Japanese (ja)
Other versions
JPH0235693B2 (en
Inventor
Tatsuyuki Kasai
河西 達之
Tatsuo Niikura
達雄 新倉
Yoshimasa Kawami
佳正 川見
Minoru Morita
稔 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP19568382A priority Critical patent/JPS5988319A/en
Publication of JPS5988319A publication Critical patent/JPS5988319A/en
Publication of JPH0235693B2 publication Critical patent/JPH0235693B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain zinc carbonate of high quality by bringing matter contg. Zn as well as Fe and Pb into contact with an aqueous soln. contg. NH4OH and (NH4)2CO3 to dissolve Zn, removing the remaining insoluble matter, and crystallizing zinc carbonate. CONSTITUTION:Matter contg. Zn as well as Fe, Pb, etc. recovered from kiln dust produced in the reduced iron equipment of an iron mill is brought into contact with an aqueous soln. contg. 5-40wt% NH4OH and 5-40wt% (NH4)2CO3 to dissolve Zn. It is preferable that NH4SCN is further contained in the soln. After removing the undissolved residue, zinc carbonate is crystallized from the filtrate. In order to crystallize zinc carbonate, the filtrate is heated to evaporate ammonia, or gaseous CO2 is blown. The crystallized zinc carbonate is taken out by filtration to obtain the desired zinc carbonate. This zinc carbonate is suitable for use as a starting material for zinc oxide for a pigment, etc.

Description

【発明の詳細な説明】 本発明は、Zn含有物からの炭酸亜鉛の回収方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering zinc carbonate from Zn-containing materials.

塗料の顔料やタイヤの加硫促進剤として用いられる酸化
亜鉛(ZnO)は一般に次のような製法によって得られ
る。
Zinc oxide (ZnO), which is used as a pigment in paints and a vulcanization accelerator in tires, is generally obtained by the following manufacturing method.

(1)乾式法 この乾式法には、亜鉛地金を原料とするフランス法と、
亜鉛鉱石から製造するアメリカ法とがある○フランス法
は、亜鉛地金をるつほに入れ約1000℃に加熱気化し
、熱空気で酸化するものである。他方、アメリカ法は、
(ZnMn)Fe04などの揮発分の少い鉱石に、石炭
などの還元剤を加え、レトルトまたは反射炉等で焙焼す
ると亜鉛が還元さ扛て蒸気となって揮発するので、これ
を熱空気で酸化するものである0 (2)湿式法 この湿式法は、金属典鉛を塩酸に溶解し、20度ボーメ
とし、これに20度ボーメの炭酸ソーダ溶液を加え、炭
酸亜鉛を沈澱させ、これを水洗乾燥後約600℃で■焼
するものである。
(1) Dry method This dry method includes the French method using zinc metal as raw material,
There is an American method for producing zinc ore.The French method involves placing zinc ingots in a melting pot, heating them to about 1000°C, vaporizing them, and oxidizing them with hot air. On the other hand, American law
When a reducing agent such as coal is added to a low-volatile ore such as (ZnMn)Fe04 and roasted in a retort or reverberatory furnace, the zinc is reduced and evaporated as steam. (2) Wet method In this wet method, metallic lead is dissolved in hydrochloric acid, the temperature is set to 20 degrees Baumé, a sodium carbonate solution at 20 degrees Baumé is added to this, zinc carbonate is precipitated, and zinc carbonate is precipitated. After washing with water and drying, it is baked at about 600°C.

一方、製鉄所設備、たとえば還元鉄設備のキルンダスト
からZnOとして回収することが行シわれている。その
キルンダスト等においては、+1ii、、鉛ニア〜50
係、鉄:90〜45係、鉛−2〜8dり、およびその他
の成分を含んでおり、いずIしも酸化物の割合が多い。
On the other hand, ZnO is being recovered as ZnO from kiln dust of steel works equipment, for example, reduced iron equipment. In the kiln dust, etc., +1ii, lead nia~50
It contains iron: 90 to 45 iron, lead: 2 to 8 d, and other components, all of which have a high proportion of oxides.

このZn含有ダストを原料とし、ZnOを得る1う′場
合・前記の乾式法を採用すると、ダスト中の鉄は粉塵と
なって外部に飛散し、鉛は蒸発し製品に数千PPM混入
してしまう01だ湿式法によると、ダストを塩酸に溶解
すると、鉄も溶解し、それが数万PPMとなり商品とな
り得ない〇 一般に、鉄、鉛分が数千PPMであっても用途によって
は支障がないことがあるが、用途によって100 PP
M以下が望まれることが多い0本発明は、このような要
請に答え、少くともFe、Pbを含むZn含有物からF
 e r P b分を極力少い炭酸亜鉛を得て、ZnO
等の原料とする回収方法を提供するものである0 この目的の達成のため、本第1発明Cよ、F e +p
bを少くとも含むZn含有物を、それぞれ5〜40 w
t % (7J) NH40Hおよび(NH4) 2 
C03を少くとも含む水溶液と接触させZnを溶解させ
、未溶解残渣を除去し、未溶解残渣を除去した溶液に炭
酸亜鉛の結晶化手段を施し、炭酸亜鉛を回収することを
特徴とするものである。
In the case of obtaining ZnO using this Zn-containing dust as a raw material, if the dry method described above is adopted, the iron in the dust becomes dust and scatters to the outside, and the lead evaporates and becomes mixed into the product by several thousand ppm. According to the wet method, when dust is dissolved in hydrochloric acid, iron is also dissolved, and the amount becomes tens of thousands of PPM and cannot be used as a commercial product. In general, even if the iron and lead content is several thousand PPM, it may cause problems depending on the application. Depending on the purpose, 100 PP may not be available.
In order to meet such demands, the present invention is designed to reduce F from Zn-containing materials containing at least Fe and Pb.
By obtaining zinc carbonate with as little e r P b as possible, ZnO
In order to achieve this objective, the first invention C provides a method for recovering raw materials such as F e +p.
5 to 40 w of each Zn-containing material containing at least b.
t % (7J) NH40H and (NH4) 2
Zn is dissolved by contacting with an aqueous solution containing at least C03, undissolved residue is removed, and the solution from which the undissolved residue has been removed is subjected to zinc carbonate crystallization means to recover zinc carbonate. be.

また、第2発明は、Fe、Pbを少くとも含むZn含有
物を、NH4OHおよび(NH4)2CO3を少くとも
含む水溶液と接触させZnを溶解させ、未溶解残漬を除
去し、未溶解残漬を除去した溶液に対して、炭酸亜鉛の
部分析出を行い、溶液中に不純物として溶存する重金属
イオンの大部分を水酸化物および/または炭酸塩もしく
は塩基性炭酸塩として共沈させ、沈澱物を分別し、その
後その溶液について炭酸亜鉛の本析出を行うことを特徴
とするものである。
In addition, the second invention brings a Zn-containing material containing at least Fe and Pb into contact with an aqueous solution containing at least NH4OH and (NH4)2CO3 to dissolve Zn, remove undissolved residual material, and remove undissolved residual material. Zinc carbonate is partially extracted from the solution from which zinc carbonate has been removed, and most of the heavy metal ions dissolved as impurities in the solution are co-precipitated as hydroxide and/or carbonate or basic carbonate. The method is characterized in that the solution is separated and then main precipitation of zinc carbonate is performed on the solution.

第3発明は、Fe、pbを少くとも含むZn含イ1物を
、N H40Hおよび(NH4)2CO3を少くとも含
む水溶液と接触させZnを溶解させ、未溶解残lFjを
除去し、未溶解残漬を除去した溶液に対して、炭酸亜鉛
の析出を行う過程で、金属亜鉛を添加して溶液中に不純
物として溶存する重金A・薦イオンを沈澱させ、沈澱物
を分別することを特徴とする。
In the third invention, a Zn-containing material containing at least Fe and PB is brought into contact with an aqueous solution containing at least NH40H and (NH4)2CO3 to dissolve Zn, remove undissolved residual lFj, and remove undissolved residual lFj. In the process of precipitating zinc carbonate to the solution from which the pickle has been removed, metal zinc is added to precipitate the heavy metal A and ions dissolved as impurities in the solution, and the precipitate is separated. .

第4発明は、F e + P bを少くとも含むZn含
有物を、NH4OHおよび(NH4) 2 C03を少
くとも含む水溶液と接触させてZnを溶解させ、未溶解
残漬を除去し、未溶解残漬を除去した溶液に対して、炭
酸亜鉛の析出を行い、結晶をfi別し、P液をZnの溶
解液として使用することを特徴とするものである。
The fourth invention is to dissolve Zn by contacting a Zn-containing material containing at least F e + P b with an aqueous solution containing at least NH4OH and (NH4) 2 C03, remove undissolved residue, and remove undissolved Zn. The method is characterized in that zinc carbonate is precipitated from the solution from which residual residue has been removed, the crystals are separated by fi, and the P solution is used as a solution for Zn.

このように、本発明は、湿式法を基本とするもので、亜
鉛が両性金属であることに着目したものである。また基
本的な考え方は、/、n含有物を液と接触させZnを溶
解させ、亜鉛化合物を沈澱させ、未溶解残漬を除去した
P液を結晶化処理することによって炭酸亜鉛を、[Zn
C03)z[:2n(OH)z〕3’および/またはZ
nCO3として回収しようとするものである。
As described above, the present invention is based on a wet method, and focuses on the fact that zinc is an amphoteric metal. The basic idea is to bring zinc carbonate into contact with the liquid to dissolve Zn, precipitate the zinc compound, and crystallize the P liquid from which the undissolved residue is removed.
C03) z[:2n(OH)z]3' and/or Z
The aim is to recover it as nCO3.

前述のように、従来の湿式法は塩酸による溶解であった
。そして従来の湿式法では、出発物質が金属亜鉛単味で
あるが故に、不純物処理について考慮を払わなくてよい
。しかし、本発明は、Fe、pbを少くとも含む還元鉄
設備のキルンダスト等のZn含有物を対象とするので、
いかに主にFe、Pbを除去して不純物の少い炭酸亜鉛
を得るかに最大の注意を払わなくてはならない。
As mentioned above, the conventional wet method involved dissolution with hydrochloric acid. In the conventional wet method, since the starting material is only metallic zinc, there is no need to consider impurity treatment. However, since the present invention targets Zn-containing substances such as kiln dust of reduced iron equipment containing at least Fe and PB,
The greatest attention must be paid to how to remove mainly Fe and Pb to obtain zinc carbonate with few impurities.

そこで、本発明は、Znが幸い両性金属であるが故に、
Zn溶解液としてNH4OHと(NH4)2CO3とを
少くとも含む水溶液が達しているとの従来にない知見を
基礎としている0 本発明に則れば、Zn含有物は壕ずZn溶解液と接触さ
れ、Zn溶解が行なわれる。Zn含有物とZn溶解液と
の接触は、たとえばZn溶解液槽にZn含有物を投入し
、必要ならば撹拌状態にて行う。
Therefore, in the present invention, since Zn is fortunately an amphoteric metal,
This is based on the unprecedented knowledge that the Zn solution is an aqueous solution containing at least NH4OH and (NH4)2CO3. According to the present invention, the Zn-containing material is not brought into contact with the Zn solution without any holes. , Zn dissolution is performed. The contact between the Zn-containing material and the Zn solution is carried out, for example, by charging the Zn-containing material into a Zn solution tank and, if necessary, under stirring.

Zn溶解液として、少くともNH4OHと(NH4)2
CO3を含む水溶液が用いられる0またこれにロダンア
ンモニウムNH4SCNまたは硫化アンモン(NH4)
 n Sを添加してもよい。ロダンアンモニウムまたは
硫化アンモンは、Pbの除去に好適であり、特にロダン
アンモニウムを添加すると、pb含有量をほぼゼロとす
ることができ、pb金含有嫌う用途には好適な態様であ
る。NH4OHおよび(NH4) 2 CO3の両者を
使用するのは、そのうち一方を使用しても次述するよう
にZnの溶解度が低いからであり、また、たとえば(N
H4)2CO3,を使用せずして、NH4OHとN H
4S CNとの溶液を使用してZn溶解を図9、これに
CO2ガスを吹込むと、炭酸亜鉛を得ら扛るものの、ゼ
リー状となり、かつこれに不純物が付着しその除去が困
難となり、結局取扱いに難があるので実際的に適さない
からである。 。
As a Zn solution, at least NH4OH and (NH4)2
An aqueous solution containing CO3 is used, which also contains rhodanammonium NH4SCN or ammonium sulfide (NH4).
nS may be added. Rodan ammonium or ammonium sulfide is suitable for removing Pb, and in particular, when rhodan ammonium is added, the Pb content can be reduced to almost zero, which is a suitable embodiment for applications where Pb gold content is not desired. The reason why both NH4OH and (NH4) 2 CO3 are used is that even if one of them is used, the solubility of Zn is low as described below.
H4) NH4OH and NH without using 2CO3,
Figure 9 shows the dissolution of Zn using a solution with 4S CN. When CO2 gas is blown into this, zinc carbonate is obtained, but it becomes jelly-like and impurities adhere to it, making it difficult to remove. This is because it is difficult to handle and is therefore not suitable for practical use. .

Znの溶解に当って、溶解液の濃度は重要なファクター
であり、NH4OHおよび(NH4)2CO3のそれぞ
れの濃度は、5〜jowt%、特に10〜30wtが好
ましい0この理由は、次の実験1および2を参照しなが
ら説明する。
When dissolving Zn, the concentration of the solution is an important factor, and the respective concentrations of NH4OH and (NH4)2CO3 are preferably 5 to 10 wt%, particularly 10 to 30 wt%. This will be explained with reference to and 2.

〈実験1〉 アンモニアNJ−1,< OH(!: 炭酸アンモニウ
ム(NH4)2C03との濃度を種々変えなからZn含
有ダストのZn(OH)2の形での溶解度(単位: 9
/l )を調べたところ、第1表の結果を得た。
<Experiment 1> Ammonia NJ-1, < OH(!: Solubility of Zn-containing dust in the form of Zn(OH)2 (unit: 9) by varying the concentration with ammonium carbonate (NH4)2C03
/l), the results shown in Table 1 were obtained.

第   1   表 また、溶解液温度40℃のときの溶解度を第1図に示す
Table 1 Also, the solubility at a solution temperature of 40° C. is shown in FIG.

この第1図に着目すると、NH40H= 17111/
 11、(NH4)z C03=100ft/lの溶液
には、亜鉛がZn(OH)zの形で140.!9/11
溶解する。
Focusing on this Figure 1, NH40H = 17111/
11. In a solution of (NH4)z C03 = 100 ft/l, zinc is present in the form of Zn(OH)z at 140. ! 9/11
dissolve.

そこで、本発明に従う溶解後の操作と共に考えてみると
、Zn溶解液を加温およびまたは真空としてアンモニア
を蒸発すると得られる結晶は、塩基性炭酸亜鉛CZ n
 COa )z〔Z n (OH)2)3であり、亜鉛
の一部が炭酸と結合して析出するので、溶液中の炭酸ア
ンモニウム(NH4)2 C03の濃度が減少し、溶解
度状態は、同図A−+Bへの点線に沿って移行し、Zn
(OH)zの溶解度が減少し、(ZnCOs h(Zn
(OH)2]3の結果を得ることができる。
Therefore, considering the post-dissolution operation according to the present invention, the crystals obtained by heating and/or vacuuming the Zn solution to evaporate ammonia are basic zinc carbonate CZ n
COa )z[Z n (OH)2)3, and some of the zinc combines with carbonic acid and precipitates, so the concentration of ammonium carbonate (NH4)2C03 in the solution decreases, and the solubility state remains the same. Transitioning along the dotted line to Figure A-+B, Zn
The solubility of (OH)z decreases and (ZnCOs h(Zn
(OH)2]3 result can be obtained.

またA点の溶解液にCO2ガスを吹込むと、水酸化アン
モニウムN H40Hと反応して、炭酸亜鉛(NH4)
2CO3となるので、NH4OH濃度は減少し、他方(
NH4)2 CO3濃度は増大するので、溶解度状態は
A−)Cへの点線に沿って移行し、Zn(OH)zの溶
解度は減少し、炭酸亜鉛の結晶を得ることができる。
Also, when CO2 gas is blown into the solution at point A, it reacts with ammonium hydroxide NH40H and forms zinc carbonate (NH4).
2CO3, so the NH4OH concentration decreases, and on the other hand (
As the NH4)2CO3 concentration increases, the solubility state shifts along the dotted line to A-)C, the solubility of Zn(OH)z decreases and crystals of zinc carbonate can be obtained.

そして結晶量を多く得るためには、N H40H濃度変
化に対してZn(OH)zの溶解度変化が最も大きい所
で行うのが有利でsb、第1図では(NH4)2CO3
=200g/l 、 NH40H= 1719/lの所
からアンモニアを蒸発することにより炭酸亜鉛を析出す
るのがよいことを示している。またN H40H濃度が
高くたとえば3009/lを超えたり、低くたとえば5
0 g/It未満であると、析出量が少いことが判る。
In order to obtain a large amount of crystals, it is advantageous to carry out the process at a location where the solubility of Zn(OH)z is the largest with respect to a change in NH40H concentration.
= 200 g/l and NH40H = 1719/l, indicating that it is best to precipitate zinc carbonate by evaporating ammonia. In addition, if the N H40H concentration is high, for example, exceeding 3009/l, or low, for example, 5
It can be seen that when it is less than 0 g/It, the amount of precipitation is small.

このように、509/l未割合が少く、薬剤量を多く使
用することにより経済的でなく、またあまり大量に溶解
させてもその場合にはアンモニアの蒸発量が多くなり熱
的にみて経済的でない。さらに、第1図によると、NH
4OHまたは(NH4)2CO3単独では溶解度が低く
、両者の併用によることが望ましいことも判る。
In this way, the amount of unused 509/l is low, making it uneconomical to use a large amount of chemicals, and even if too large a quantity is dissolved, the amount of ammonia evaporates will increase, making it uneconomical from a thermal standpoint. Not. Furthermore, according to Figure 1, NH
It can also be seen that the solubility of 4OH or (NH4)2CO3 alone is low, and that it is desirable to use both in combination.

〈実験2〉 NH4OH濃度を0〜3oo、9/l、(NH4)2C
Os濃度を0〜4 o o g7iに変化させた溶液2
01πlに、Zn含有ダストを浸漬し、亜鉛を溶解後r
過し、P液を加熱しアンモニアを蒸発し、[ZnC0a
:]2[Zn(OH)z)3の結晶を得て、この中に含
まれる不純物としてのFe、Pbの量を分析した。
<Experiment 2> NH4OH concentration 0 to 3oo, 9/l, (NH4)2C
Solution 2 with Os concentration changed from 0 to 4 o o g7i
Zn-containing dust was immersed in 01πl, and after dissolving the zinc,
[ZnC0a
:]2[Zn(OH)z)3 crystals were obtained, and the amounts of Fe and Pb as impurities contained therein were analyzed.

その結果を第2表に示す。The results are shown in Table 2.

第   2   表 (註) 上段に析出結晶量 中段=Fe含有量 (PPM) 下段=pb含有量 (PPM) 結晶は、N1(40H=200 g/ 12 、 (N
H4)2 CO3−100,9/lの条件下での結晶は
色も白く、収量操作も易しいことが判った。(N1(4
) 2C03濃度についてみnば、200 g/lの条
件下のものが、Fe。
Table 2 (Note) Amount of crystals precipitated in the upper row Middle row = Fe content (PPM) Lower row = PB content (PPM) The crystals are N1 (40H = 200 g/ 12
It was found that the crystals under the conditions of H4)2 CO3-100.9/l were white in color and easy to control for yield. (N1(4
) Regarding the 2C03 concentration, the one under the condition of 200 g/l is Fe.

pb不純物含有量が多く、焼いた亜鉛華も褐色に着色す
る。 (NH4)2CO3濃度が100g/lと200
g/lとを比較すると、NH4OH濃度の低い方が鉄不
純物量が多くなっているのに対して、鉛不純物量はNH
4OH濃度が高い方が多くなっている。
The content of Pb impurities is high, and the baked zinc white is also colored brown. (NH4)2CO3 concentration is 100g/l and 200g/l
g/l, the lower the NH4OH concentration, the higher the amount of iron impurities, while the lower the NH4OH concentration, the higher the amount of lead impurities.
There are many cases where the 4OH concentration is high.

NH4OHおよび(NH4)2 CO3カ共に3oog
/I!の条件下では、Fe=108PPM1Pb=11
20PPMとなっテ少くなり、(NH4)2CO3=4
00g/1(7)条件では、(NH4)2 CO3がア
ンモニア水溶液に溶は難くなシ、下に未溶解の結晶が残
る。不純物のFeまたはpbの伺れに着目するかによっ
て各濃度を選択するが、ともあれ各々50〜400 g
/l、特に50〜300 g/lの濃度が好ましい。
Both NH4OH and (NH4)2 CO3 are 3oog
/I! Under the conditions, Fe=108PPM1Pb=11
It becomes 20PPM, which is less, (NH4)2CO3=4
Under the condition of 00g/1(7), (NH4)2CO3 is difficult to dissolve in the ammonia aqueous solution, and undissolved crystals remain at the bottom. Each concentration is selected depending on whether to focus on the presence of Fe or PB impurities, but in any case, 50 to 400 g of each.
/l, especially a concentration of 50 to 300 g/l.

一方、前記説明で触れたように、炭酸亜鉛の結晶化手段
としては、未溶解残漬溶液を(1)加温または真空によ
り、あるいはそれらの併用によりアンモニアを蒸発させ
る方法、(2)前記溶液に直接COガスを吹込む方法、
(3) (1)の方法の後にCOガスを吹込む方法があ
る。(1)の場合には、[ZnC0a)2(Zn(OH
)z)aの形で、(2)の場合Z n COaQ形で、
(3)の場合両形態でそれぞれ炭酸亜鉛が得られる。
On the other hand, as mentioned above, methods for crystallizing zinc carbonate include (1) evaporating ammonia from the undissolved residual solution by heating or vacuuming, or a combination thereof; (2) evaporating the ammonia from the solution; A method of directly blowing CO gas into
(3) After method (1), there is a method of blowing CO gas. In the case of (1), [ZnC0a)2(Zn(OH
)z) In the form of a, in the case of (2), in the form Z n COaQ,
In case (3), zinc carbonate can be obtained in both forms.

第2発明に関連して また、用途によシネ鈍物含有量を著しく嫌う場合がある
。この場合、本品出に先立って部分晶出を行う次の方法
が適していることが判った0この結論に至る過程で、本
発明者は、(1)結晶析出時不純物が結晶と共に析出す
るか否か、(2)それとも不純物は溶液中に溶解し、炭
酸亜鉛を濾過するときに炭酸亜鉛結晶に付着するものか
、(3)炭酸亜鉛結晶が出はじめたときと最終に出る結
晶とでは不純物量が違うのか、(4)再結晶すれば不純
物を除去できるのか、(5)電気分解により不純物を除
去できるかをそれぞれ検討してみたが、経済性および操
作性などの点で、部分晶出方法が最適な方法であること
が判明した。
In connection with the second invention, depending on the application, the content of cine blunts may be extremely objectionable. In this case, the following method of partial crystallization prior to release of the product was found to be suitable. In the process of reaching this conclusion, the inventor found that (1) impurities are precipitated together with the crystals during crystal precipitation. (2) Or are the impurities dissolved in the solution and attached to the zinc carbonate crystals when the zinc carbonate is filtered? (3) What is the difference between when zinc carbonate crystals begin to appear and when do they finally appear? We investigated whether the amount of impurities is different, (4) whether the impurities can be removed by recrystallization, and (5) whether the impurities can be removed by electrolysis, but from the viewpoint of economy and operability, partial crystal It turned out that the method was the best one.

部分晶出法は具体的に次のように行う。まず、Zn含有
物を前述のZn溶解液と接触させ、Znを溶解させ、未
溶解残渣を除去した溶液に対して炭酸亜鉛の部分析出(
晶出)操作を行う。この場合、先に述べた炭酸亜鉛のい
ずれの操作も行い得る。アンモニアの蒸発による部分析
出に当っては、前記溶液を好ましくは40〜85℃に加
温するおよび/または真空にしてアンモニアを部分蒸発
させる。40℃未満では、アンモニアの蒸発に当って、
加温操作単独では無理でありかつかなり高い真空度とせ
ねばならず不適である。85℃を超えた場合、結晶の収
率が落ちるし、部分晶出を行うことなく本晶出のみを行
ったのと同様となり、不純物除去効果が見出せない。こ
の方法に代えであるいは併用してCO2ガスの吹込みを
行ってもよい。
The partial crystallization method is specifically performed as follows. First, a Zn-containing material is brought into contact with the above-mentioned Zn solution, Zn is dissolved, and undissolved residue is removed. Partial extraction of zinc carbonate (
crystallization) operation. In this case, any of the zinc carbonate operations described above may be performed. For partial extraction of ammonia by evaporation, the solution is preferably heated to 40 DEG -85 DEG C. and/or vacuum is applied to partially evaporate the ammonia. At temperatures below 40°C, during the evaporation of ammonia,
The heating operation alone is impossible and requires a fairly high degree of vacuum, which is inappropriate. If the temperature exceeds 85°C, the yield of crystals decreases, and the result is the same as if only main crystallization was performed without partial crystallization, and no impurity removal effect could be found. CO2 gas may be blown in place of or in combination with this method.

部分品出が終ったならば、濾過によるr液または静置分
離による上澄液に対して、同様な操作により本晶出を行
う。もしアンモニア蒸発法による場合、85℃を超える
温度の加温および/または真空にして行う。ここで、8
5℃を境にして析出形態が異なるのは、理由は明らかで
ないが、現象的にみれば、85℃以上に加温すると、ア
ンモニアを然程飛んだと思われないのに、結晶が大量に
析出するところからみると、85℃付近で何らかの熱的
平衡関係があるのではないかと推測される。
After partial extraction is completed, the main crystallization is performed in the same manner on the r liquid obtained by filtration or the supernatant liquid obtained by static separation. If the ammonia evaporation method is used, heating is performed at a temperature exceeding 85° C. and/or under vacuum. Here, 8
The reason why the precipitation forms differ at 5°C is not clear, but from a phenomenon perspective, when heated to 85°C or higher, a large amount of crystals form, even though it does not seem that much ammonia has been blown away. Judging from the location of precipitation, it is assumed that there is some sort of thermal equilibrium relationship around 85°C.

次に各種実験例を参照しながら説明する。Next, explanation will be given with reference to various experimental examples.

く実験3〉 p’e、 Pbを多く溶解させるために濃度を上げ、N
H4OH’=200.97A!、(NH’4)2CO3
=300g/lの水溶液に、亜鉛含有ダストを浸漬し、
Zn溶解を行い、不溶解残渣を濾過した溶液を各々10
m1試験管に取り、16、I NHs+ S 04を別
々に量を変えて加え、析出した結晶中のZn、Fe、P
bの含有量を分析したところ、第3表の通りであった。
Experiment 3> In order to dissolve a large amount of p'e and Pb, the concentration was increased and N
H4OH'=200.97A! , (NH'4)2CO3
= Immersing zinc-containing dust in a 300 g/l aqueous solution,
The solution obtained by dissolving Zn and filtering the undissolved residue was
ml test tube and added 16,I NHs+S04 in different amounts to separate Zn, Fe, and P in the precipitated crystals.
When the content of b was analyzed, it was as shown in Table 3.

第3表 この結果から、初めに出る結晶はど、Fe、 pb共多
く含まれていることが判る。Feは、液のPHが8.5
〜7では160〜270 PPMで一定し、85以上お
よび2以下になれば970 PPMに近づ<oPbは、
溶液中にPH=9で860PPM、PH=85で130
、pH=8以下では50 PPM以下であり、初めに出
る結晶はど良い結晶であるという通念とは逆の結果とな
っている。
From the results in Table 3, it can be seen that the initial crystals contain a large amount of Fe, PB. Fe has a liquid pH of 8.5
~7, it stays constant at 160-270 PPM, and when it goes above 85 and below 2, it approaches 970 PPM.
860 PPM at PH=9 in solution, 130 PPM at PH=85
, at pH=8 or below, it is 50 PPM or less, which is contrary to the common belief that the first crystals are good crystals.

〈実験4〉 再結晶および電気分解によるFe + Z n含有量を
測定した。N H40H二200 g/ 11. (N
H4)2CO3−10[///の水溶液にZn含有ダス
トを浸漬しZnを溶解し、残渣をP別し、P液を90℃
に昇温し、アンモニアを蒸発し、炭酸亜鉛の結晶を沈澱
させ1別し、FFe−123PP、pb=1790PP
Mの結晶を得て、この結晶を、NH40H= 200f
J/I!、 (NH4)2CO3=100.9/lの溶
液と、この液に(Nl(4)2S=100g/1llN
H45CN=100/41を溶解した液とで、それぞれ
再結晶を行った。
<Experiment 4> Fe + Zn content was measured by recrystallization and electrolysis. N H40H2 200 g/11. (N
H4) Zn-containing dust is immersed in an aqueous solution of 2CO3-10 [/// to dissolve Zn, the residue is separated from P, and the P solution is heated to 90°C.
to evaporate ammonia, precipitate zinc carbonate crystals, and separate into FFe-123PP, pb=1790PP.
Obtain a crystal of M, and convert this crystal to NH40H= 200f
J/I! , (NH4)2CO3 = 100.9/l solution and this liquid (Nl(4)2S = 100g/1llN
Recrystallization was performed using a solution of H45CN=100/41.

またN H40H二200.9./j?、 (NH4)
2CO3=100g/lの溶液中にZn含有ダスト浸漬
残残渣別した溶解液を、亜鉛電極を使用して電気分解を
行った後、90℃に昇温し、結晶を採取したものについ
て、Fe、Pbの分析値を第4表に示す。
Also NH40H2200.9. /j? , (NH4)
After electrolyzing the solution containing Zn-containing dust immersion residue in a solution of 2CO3 = 100 g/l using a zinc electrode, the temperature was raised to 90°C, and crystals were collected. The analytical values for Pb are shown in Table 4.

不純物(Fe、Pb)量の単位はP P Mo上段は結
晶状態での、下段はP液での不純物量。
The unit for the amount of impurities (Fe, Pb) is P P Mo. The upper row is the amount of impurities in the crystalline state, and the lower row is the amount of impurities in the P liquid.

第  4  表 この結果から、再結晶法や電気分解法によっても鉛の含
有量を低減させることが難しいことが判明さtよう。こ
れは、f液中のFetPbの溶解量をみれば、8〜3P
PMLかr液に溶けないので結晶中に出てしまうからで
ある。NH4SCNを加えたものは、pb量が10以下
となり、F液に200PPM溶けているので、再結晶化
が可能であ、るが、結晶に付着したNH4SCNは約2
00℃でなければ分解し々いので、混入が許される所の
用途が限られる。
Table 4 From these results, it appears that it is difficult to reduce the lead content even by recrystallization or electrolysis. Looking at the amount of FetPb dissolved in the f liquid, this is 8 to 3P.
This is because PML does not dissolve in r-liquid, so it comes out in the crystal. The one with NH4SCN added has a pb level of 10 or less and is dissolved in the F solution at 200 PPM, so it is possible to recrystallize it, but the NH4SCN attached to the crystal is about 2
If the temperature is not 00°C, it will decompose easily, so its applications are limited where its contamination is allowed.

〈実験5〉 このように、一旦晶出操作した結晶を処理しても、不純
物量を下げることができないので、結晶を出す前に不純
物を除去しなければならない。そこで次の分別晶析実験
を行った。
<Experiment 5> As described above, the amount of impurities cannot be reduced even if the crystals that have been crystallized are treated once, so the impurities must be removed before the crystals are produced. Therefore, the following fractional crystallization experiment was conducted.

すなわち、アンモニア蒸発量を制御することは難しいの
で、たとえば常圧760mmH,@−absで温度とア
ンモニア濃度と分圧は一定となるので、温度を中間温度
70〜85℃に上げ、結晶を一部析出濾過し、P液を9
0Cに昇温し、本晶析し、不純物を分析したところ第5
表に示す結果を得た。同表中の「処理方法」の欄の数値
は、[Z n CO3〕zCZ n (OH)2]3 
tD結晶量(単位、9r )である。
That is, since it is difficult to control the amount of ammonia evaporation, for example, the temperature, ammonia concentration, and partial pressure are constant at normal pressure of 760 mmH, @-abs, the temperature is raised to an intermediate temperature of 70 to 85 °C, and some of the crystals are removed. Precipitation filtration and P solution 9
When the temperature was raised to 0C, main crystallization was performed, and impurities were analyzed, the fifth
The results shown in the table were obtained. The numerical values in the “Treatment method” column in the same table are [Z n CO3]zCZ n (OH)2]3
tD crystal amount (unit, 9r).

この結果によれば、部分晶析温度を上げると、部分晶析
量の比が増すので、その結晶についてF e + P 
bが析出するので、本結晶中のFe、 Pb量は、10
.3および645 PPMとなっており、部分晶析を行
なわない場合のそJLがli’ e = 123PPI
vl。
According to this result, when the partial crystallization temperature is increased, the ratio of the amount of partial crystallization increases, so that F e + P
Since b precipitates, the amount of Fe and Pb in this crystal is 10
.. 3 and 645 PPM, and the JL without partial crystallization is li' e = 123 PPM.
vl.

pb=1790PPM程度であるから、それぞれ約1/
12、ならびに1/3に減少しており、本発明法が、特
にFeの除去に有効な方法であることが判る。
Since pb=1790PPM, each about 1/
12 and 1/3, which shows that the method of the present invention is particularly effective for removing Fe.

第3発明に関連して 炭酸亜鉛結晶中のFe、Pb含有量をさらに減少する方
法に有機溶媒による抽出法が考えられるが、本発明者の
実験結果では、アルカリ溶液中では重金属を単独で抽出
する抽出溶媒は見出せ得なかった。
In connection with the third invention, an extraction method using an organic solvent may be considered as a method for further reducing the Fe and Pb contents in zinc carbonate crystals, but according to the experimental results of the present inventor, heavy metals are extracted alone in an alkaline solution. No extraction solvent could be found.

Zn含有ダストの溶解に伴って、Zn・li’e、Pb
は溶液中にアンモニア錯体となって溶解している。すな
わち、[Z nN1(4)z 〔CO3)3 、CFe
NH4][CO0)2、[PbN、H4)+[COa〕
3の錯体状態のものが、結晶析出時[ZnCO5〕z[
Zn(OR)2:33、〔Fe (CO3)23m[F
e (Olj)3:)3、[PbCO3〕2〔P b 
(OH)z〕sとなって析出する0酸の中や中性の単塩
溶解液では、イオン化傾向によって、 K、Na+ Ca、Mg+ Zn、Cr、Fe”e C
d、Co、NLS n + P b + F e 3”
 + H+ Cu + A g + Hg + A u
の順になυ、初めの金属はど卑で溶解度が高い0 いま、Zn含有ダストを溶解している液はアルカリ性で
あるから、はたしてこの順になるか不明の点もおったが
、次遅の実験6等から金属亜鉛の添加がきわめて有効な
方法であることが明らかとなった。
With the dissolution of Zn-containing dust, Zn・li'e, Pb
is dissolved in the solution as an ammonia complex. That is, [Z nN1(4)z [CO3)3 , CFe
NH4][CO0)2, [PbN, H4)+[COa]
3 in the complex state becomes [ZnCO5]z[
Zn(OR)2:33, [Fe(CO3)23m[F
e (Olj)3:)3, [PbCO3]2[P b
(OH)z]s precipitates in an acid or a neutral single salt solution, depending on the ionization tendency, K, Na+ Ca, Mg+ Zn, Cr, Fe”e C
d, Co, NLS n + P b + Fe 3”
+ H+ Cu + A g + Hg + A u
In the order of υ, the first metal is base and has high solubility.Since the liquid in which the Zn-containing dust is currently being dissolved is alkaline, there are some points in which it is unclear whether the order will be in this order, but the next experiment will be conducted later. 6 etc., it became clear that the addition of metallic zinc was an extremely effective method.

〈実験6〉 Zn含有ダストを、NH40H= 2009 / l、
(NH4);COa =1007j/ lの水溶液に浸
漬し、未溶解残漬を濾過した液を90℃に加温し、晶析
させ、その[ZnC0a]z[Zn(OH)+)a結晶
を濾過し、F、e=2.5PPM、Pb=70PPMの
液に、アンモニア水と炭酸アンモニウムとを溶解し、N
H4OH= 200g/7!、(NH4)2CO3=1
00&/4、の溶解液を作り、以下の4通りの実験を行
った。実験の手順については、第2図も参照されたい。
<Experiment 6> Zn-containing dust, NH40H = 2009/l,
(NH4); COa = 1007j/l immersed in an aqueous solution, the undissolved residue was filtered, the liquid was heated to 90°C to crystallize, and the [ZnC0a]z[Zn(OH)+)a crystals were Filter, dissolve aqueous ammonia and ammonium carbonate in a solution of F, e = 2.5PPM, Pb = 70PPM, and add N
H4OH = 200g/7! , (NH4)2CO3=1
A solution of 00&/4 was prepared and the following four experiments were conducted. Please also refer to Figure 2 for the experimental procedure.

−1 溶解液17KZn含有ダスト150gを浸漬し、未溶解
残漬を濾過し、このr液に5gの金属亜鉛粉末を添加し
、良く撹拌後濾過し、Fe:30PPM、 P b :
 0.I PPM以下のP液を得て、90℃に加熱晶析
を行い、濾過し、Fe:820PPM、Pb:11PP
Mの結晶と、F e : 3 PPM、 P b : 
0.2 PPMの、*&、え。   ゛  −2 溶解液11にZnn含有スス150.!9を浸漬し、金
属亜鉛の粉末を添加し、良く撹拌後、未溶解2 物を濾
過し、このP液に5V11の金属亜鉛粉末を添加し、良
く撹拌し、Zn、Pbのイオン交換を行って金属亜鉛を
濾過し、Fe:17PPM、pb:0、2 P PMの
r液を得て、これに再々度金属亜鉛5 g/13を添加
し、80℃に加温し、塩基性炭酸亜鉛結晶を部分晶析し
、濾過後、90℃に加熱晶析し、濾過しFe : 33
0PPM、 Pb : 10PPMの結晶とF e :
 2 PPM、 Pb ニー 2 PPMのP液を得た
-1 150 g of dissolved solution 17KZn-containing dust was immersed, the undissolved residue was filtered, 5 g of metal zinc powder was added to this R solution, and after stirring well, it was filtered, Fe: 30 PPM, P b :
0. A P solution with a concentration of I PPM or less was obtained, heated to 90°C for crystallization, filtered, Fe: 820 PPM, Pb: 11 PP
M crystal, Fe: 3 PPM, Pb:
0.2 PPM, *&, eh. -2 Znn-containing soot 150. ! 9, add metal zinc powder, stir well, filter undissolved substances, add 5V11 metal zinc powder to this P solution, stir well, and perform ion exchange of Zn and Pb. The metallic zinc was filtered to obtain an r solution of Fe: 17 PPM, PB: 0, 2 P PM, to which 5 g/13 of metallic zinc was again added, heated to 80°C, and basic zinc carbonate was added. The crystals were partially crystallized, filtered, heated to 90° C., filtered, and Fe: 33
0PPM, Pb: 10PPM crystal and Fe:
A P solution of 2 PPM and 2 PPM of Pb was obtained.

6−3 6−2の実験のZn、Pbイオン交換して得たΔツ液を
、90℃に加熱し、結晶を析出させ、濾過し、Fe:5
50PPM、Pb:11PPMを含む結晶とFe : 
3 PPM、 Pb : 0.2PPMを含むr液を得
た。
6-3 The Δ solution obtained by Zn and Pb ion exchange in the experiment of 6-2 was heated to 90°C to precipitate crystals, filtered, and Fe:5
Crystal containing 50PPM, Pb:11PPM and Fe:
An r liquid containing 3 PPM and Pb: 0.2 PPM was obtained.

−4 6−2実験の金属亜鉛粉末を添加して亜鉛ダストを溶解
濾過した沢液を、90℃に加温晶析し、f1過し、Fe
 :1l100PP、Pb:470PPMの結晶とF 
e :4PPM、 P b : 0.6 PPMを含む
f液を得た。
-4 The liquid obtained by adding metal zinc powder in the 6-2 experiment to dissolve and filter the zinc dust was crystallized by heating to 90°C, filtered through f1, and
:1l100PP, Pb:470PPM crystal and F
A liquid f containing e: 4 PPM and Pb: 0.6 PPM was obtained.

−5 6−2実験の金属亜鉛粉末を添加して亜鉛ダストを溶解
濾過したr液を、空気酸化し、溶解している鉄イオンを
水酸化第二鉄沈澱として分別した液を50°〜60℃に
加熱して金属亜鉛粒を添加撹拌すれば金属亜鉛粒表面に
黒色の鉄および鉛が沈着するので、これを転勤撹拌すれ
ば黒沈が剥離し亜鉛の白色表面があられれl液と接触し
、再び黒沈が沈着するので同様操作を数回繰返して、黒
沈が出なくなる迄行い濾過し、このP液を90℃に加温
晶析濾過し、Fe:5PPM。
-5 The r solution obtained by adding metallic zinc powder from the 6-2 experiment and dissolving and filtering the zinc dust was air oxidized, and the dissolved iron ions were separated as ferric hydroxide precipitate. If heated to ℃ and stirred, black iron and lead will be deposited on the surface of the metal zinc particles.If this is transferred and stirred, the black precipitate will peel off and the white surface of the zinc will come into contact with the liquid. However, black precipitate was deposited again, so the same operation was repeated several times until no black precipitate appeared and filtered. The P solution was heated to 90°C and crystallized and filtered to obtain Fe:5PPM.

Pb:3PPMの結晶と、Fe : 3PPM、Pb 
: 0.2PPMのP液を得た。
Pb: 3PPM crystal and Fe: 3PPM, Pb
: 0.2 PPM P solution was obtained.

この4通りの実験から、金属亜鉛粉末を添加すると効果
があるのは、Zn含有ダスト溶解1過後の液に添加し1
遇するか、入れたまま部分晶析したものが最も不純物の
pb含有量が少いことが判った。そして、少くともZn
含有ダストを溶解濾過した液に、金属亜鉛粉末を投入し
、撹拌解砕液と良く接触すれば、pbの含有量を11P
PMにまで下げることができるきわめて有効な方法であ
ることが判明した。
From these four experiments, it was found that adding metallic zinc powder was effective when it was added to the solution after dissolving the Zn-containing dust.
It was found that the content of impurity Pb was the lowest in those that were partially crystallized while still in the tank. And at least Zn
If metal zinc powder is added to the solution in which the contained dust has been dissolved and filtered, and it comes into good contact with the stirring and crushing solution, the PB content can be reduced to 11P.
It has been found that this is an extremely effective method that can reduce the amount to PM.

第2図は、金属亜鉛の可能な添加工程を、上記実験およ
びその結果とともに示したものである0 他方、晶析に当って、アンモニア蒸発によらず、または
それとともに−CO2ガスの吹込みを行ってもよいこと
は勿論である。また亜鉛の添加量は、液に対して20〜
50係添加するのが望ましい。
Figure 2 shows a possible addition process for metallic zinc, along with the above experiments and their results. Of course you can go. Also, the amount of zinc added is 20 to 20% of the liquid.
It is desirable to add 50%.

第4発明に関連して この第4発明は、結晶をP別したP液をZn溶解液の一
部として再利用することによって、pbの含有量を低減
させようとするものである。
In relation to the fourth invention, the fourth invention attempts to reduce the Pb content by reusing the P solution from which the crystals have been separated from P as a part of the Zn solution.

たとえば、亜鉛の入らない新しいNH40H=200 
g/l、(NH4)2CO3=1009/11 (7)
溶液に、Zn含有ダストを溶解P遇した液から塩基性炭
酸亜鉛を晶析させた結晶には、Fe=123PPM。
For example, new NH40H without zinc = 200
g/l, (NH4)2CO3=1009/11 (7)
In the crystal obtained by crystallizing basic zinc carbonate from a solution containing dissolved Zn-containing dust, Fe = 123 PPM.

Pb=1790PPMである。これに対して、結晶を晶
析させ、1過した後のr液にアンモニア水と炭酸アンモ
ニウムを溶解して、NH40H=200 ji/Lこの
液によ、9Zn含有ダストを浸漬し、Zn溶解1過した
液から塩基性炭酸亜鉛を晶析した結晶中には、不純物含
有量がFe:1l100PP、Pb:470PPMで、
pbは約1/4程度に低減することが判った。
Pb=1790PPM. On the other hand, aqueous ammonia and ammonium carbonate were dissolved in the R solution after crystallization and 1 filtration, and 9 Zn-containing dust was immersed in this solution. Basic zinc carbonate was crystallized from the filtered liquid, and the impurity content was Fe: 1l 100PP, Pb: 470PPM,
It was found that pb was reduced to about 1/4.

この理由は、亜鉛が溶解液中にすでにあれば、Zn含有
ダスト中のpbの溶解速度が抑制さ扛、亜鉛の溶解速度
が遅くなるとしても、亜鉛はすでに溶解しているので、
結局同じ時間で溶解量に達し、Pb、Feの溶解液中の
溶解量が少くなるものと考えられる。
The reason for this is that if zinc is already in the solution, the dissolution rate of PB in the Zn-containing dust will be suppressed, and even though the dissolution rate of zinc will be slow, since zinc is already dissolved,
It is considered that the amount of Pb and Fe dissolved in the solution eventually reaches the same amount in the same amount of time, and the amount of Pb and Fe dissolved in the solution decreases.

第3図に第4発明のフローシートを示した0なお、P液
はすべて再使用し、これにアンモニアと炭酸ガスを飽充
して溶解液として使用するのが好ましい。また亜鉛が多
く溶解している方が、鉄、鉛の溶解量が少くなる。
The flow sheet of the fourth invention is shown in FIG. 3.0 Note that it is preferable to reuse all of the P solution, fill it with ammonia and carbon dioxide gas, and use it as a dissolving solution. Also, the more zinc is dissolved, the less iron and lead are dissolved.

以上詳述したように、本発明によれば、F e +pb
等の不純物の少い炭酸亜鉛を得ることができ、ZnOの
高純度原料とすることができる。
As detailed above, according to the present invention, F e +pb
It is possible to obtain zinc carbonate with few impurities such as, and it can be used as a high-purity raw material for ZnO.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明Zn溶解液に対するZn溶解度を示す関
係図、第2図は本発明工程例を実験結果と共に示したフ
ローシート、第3図はP液の再使用例を示すフローシー
トである。 手 続 補 正 書(自発) 昭和58年11月2日 特許庁長官若杉和夫殿 1、事件の表示 Zn含有物からの炭酸亜鉛回収方法 3、 補jにをする者 事件との関係  4!f訂出願人 住所 氏名  月島機械株式会社 4、代理人  〒13[1 住所 東京都江東区亀戸1丁目42番14号ハビーハイ
ツニュー亀戸505号 電話 03 (881) 17136 7、 補正の対象  明細書の発明の詳細な説明の欄 8、補正の内容  明細書、第8頁、3行目;「水溶液
が達 している」とあるのを
Figure 1 is a relationship diagram showing Zn solubility in the Zn solution of the present invention, Figure 2 is a flow sheet showing an example of the process of the present invention together with experimental results, and Figure 3 is a flow sheet showing an example of reusing the P solution. . Procedural amendment (voluntary) November 2, 1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office 1. Case description Method for recovering zinc carbonate from Zn-containing materials 3. Relationship with the case of persons making amends 4! fRevision Applicant Address Name: Tsukishima Kikai Co., Ltd. 4, Agent: 13 [1] Address: 505 Hubby Heights New Kameido, 1-42-14 Kameido, Koto-ku, Tokyo Telephone: 03 (881) 17136 7. Subject of amendment: Specification Detailed Description of the Invention Column 8, Contents of Amendment Specification, page 8, line 3; “Aqueous solution has reached”

Claims (9)

【特許請求の範囲】[Claims] (1)  Fe、Pbを少くとも含むZn含有物を、そ
れぞれ5〜40wt%のNH4OHおよび(NH4)2
CO3を少くとも含む水溶液と接触させZnを溶解させ
、未溶解残漬を除去し、未溶解残渣を除去した溶液に炭
酸亜鉛の結晶化手段を施し、炭酸亜鉛を回収することを
特徴とするZn含有物からの炭酸亜鉛回収方法。
(1) Zn-containing materials containing at least Fe and Pb are mixed with 5 to 40 wt% of NH4OH and (NH4)2, respectively.
Zn is brought into contact with an aqueous solution containing at least CO3 to dissolve Zn, undissolved residue is removed, and the solution from which undissolved residue has been removed is subjected to zinc carbonate crystallization means to recover zinc carbonate. Method for recovering zinc carbonate from contained materials.
(2)水溶液中にさらにNH4SCNを含む特許請求の
範囲第1項記載のZn化合物からの炭酸亜鉛回収方法。
(2) The method for recovering zinc carbonate from a Zn compound according to claim 1, further comprising NH4SCN in the aqueous solution.
(3)炭酸亜鉛の結晶化手段として、アンモニアの蒸発
を行う特許請求の範囲第1項記載のZn化合物からの炭
酸亜鉛回収方法。
(3) A method for recovering zinc carbonate from a Zn compound according to claim 1, wherein ammonia is evaporated as a means for crystallizing zinc carbonate.
(4)炭酸亜鉛の結晶化手段として、CO2ガスの吹込
みを行う特許請求の範囲第1項記載のZn含有物からの
炭酸亜鉛回収方法。
(4) The method for recovering zinc carbonate from a Zn-containing material according to claim 1, wherein CO2 gas is blown in as a means for crystallizing zinc carbonate.
(5)  Fe、Pbを少くとも含むZn含有物を、N
H4OHおよび(NH4) 2C03を少くとも含む水
溶液と接触させZnを溶解させ、未溶解残漬を除去し、
未溶解残漬を除去した溶液に対して、炭酸亜鉛の部分析
出を行い、溶液中に不純物として溶存する重金属イオン
の大部分を水酸化物および/または炭酸塩もしくは塩基
性炭酸塩として共沈させ、沈澱物を分別し、その後その
溶液について炭酸亜鉛の本析出を行うことを特徴とする
Zn含有物からの炭酸亜鉛回収方法。
(5) Zn-containing material containing at least Fe and Pb is
Contact with an aqueous solution containing at least H4OH and (NH4)2C03 to dissolve Zn, remove undissolved residue,
Partial extraction of zinc carbonate is performed on the solution from which undissolved residue has been removed, and most of the heavy metal ions dissolved as impurities in the solution are co-precipitated as hydroxide and/or carbonate or basic carbonate. A method for recovering zinc carbonate from a Zn-containing material, the method comprising: separating the precipitate, and then subjecting the solution to main precipitation of zinc carbonate.
(6)炭酸亜鉛の析出手段としてアンモニアの蒸発を行
う特許請求の範囲第5項記載のZn含有物からの炭酸亜
鉛回収方法。
(6) A method for recovering zinc carbonate from a Zn-containing material according to claim 5, wherein ammonia is evaporated as a means for precipitating zinc carbonate.
(7)炭酸亜鉛の部分析出に当って、未溶解残漬除去溶
液を40〜85℃に加熱しアンモニアを部分蒸発し、炭
酸亜鉛の本析出に当って、沈澱物分別溶液を85℃を超
える温度に加熱しアンモニアの蒸発を行う特許請求の範
囲第5項記載のZn含有物からの炭酸亜鉛回収方法0
(7) For partial precipitation of zinc carbonate, the undissolved residue removal solution is heated to 40 to 85°C to partially evaporate ammonia, and for main precipitation of zinc carbonate, the precipitate fractionated solution is heated to 85°C. Zinc carbonate recovery method 0 from a Zn-containing material according to claim 5, in which ammonia is evaporated by heating to a temperature exceeding
(8)  Fe、Pbを少くとも含むZn含有物を、N
H4OHおよび(NH4)2CO3を少くとも含む水溶
液と接触させZnを溶解させ、未溶解残渣を除去し、未
溶解残渣を除去した溶液に対して、炭酸亜鉛の析出を行
う過程で、金属亜鉛を添加して溶液中に不純物として溶
存する重金属イオンを沈澱させ、沈澱物を分別すること
を特徴とするZn含有物からの炭酸亜鉛回収方法。
(8) Zn-containing material containing at least Fe and Pb is
Zn is dissolved by contacting with an aqueous solution containing at least H4OH and (NH4)2CO3, undissolved residue is removed, and metal zinc is added in the process of precipitating zinc carbonate to the solution from which undissolved residue has been removed. A method for recovering zinc carbonate from a Zn-containing material, which comprises precipitating heavy metal ions dissolved as impurities in a solution and separating the precipitate.
(9)上記未溶解残渣を除去した溶液中の鉄イオンを、
気曝または酸化剤を添加して、31′[1iの水酸化鉄
として沈澱分離した液を、40〜85℃に加熱して金属
亜鉛を添加撹拌して、不純物として溶存する重金属イオ
ンを沈澱させる特許請求の範囲第8項記載のZn含有物
からの炭酸亜鉛回収方法。 (10Fe、Pbを少くとも含むZn含有物を、NH4
OHおよび(NI(4)2 CO3を少くとも含む水溶
液と接触させてZnを溶解させ、未溶解残渣を除去し、
未溶解残渣を除去した溶液に対して、炭酸亜鉛の析出を
行い、結晶を1別し、r液をZnの溶解液として使用す
ることを特徴とするZn含有物からの炭酸亜鉛回収方法
。 01)  IP 液ハ新L−イNH4OHオヨび(NH
4) 2 COaと濃度調整の後にZn溶解液として用
いる特許請求の範囲第10項記載のZn含有物からの炭
酸亜鉛回収方法。
(9) Iron ions in the solution from which the undissolved residues have been removed,
Aerate or add an oxidizing agent to precipitate and separate the liquid as 31′ [1i iron hydroxide. Heat the liquid to 40 to 85°C, add metallic zinc, and stir to precipitate heavy metal ions dissolved as impurities. A method for recovering zinc carbonate from a Zn-containing material according to claim 8. (Zn-containing material containing at least 10Fe and Pb is
Dissolving Zn by contacting with an aqueous solution containing at least OH and (NI(4)2CO3) and removing undissolved residue;
A method for recovering zinc carbonate from a Zn-containing material, comprising precipitating zinc carbonate from a solution from which undissolved residues have been removed, separating the crystals, and using an r solution as a solution for Zn. 01) IP liquid new L-I NH4OH Oyobi (NH
4) The method for recovering zinc carbonate from a Zn-containing material according to claim 10, which is used as a Zn solution after adjusting the concentration of 2 COa.
JP19568382A 1982-11-08 1982-11-08 Method for recovering zinc carbonate from matter containing zn Granted JPS5988319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19568382A JPS5988319A (en) 1982-11-08 1982-11-08 Method for recovering zinc carbonate from matter containing zn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19568382A JPS5988319A (en) 1982-11-08 1982-11-08 Method for recovering zinc carbonate from matter containing zn

Publications (2)

Publication Number Publication Date
JPS5988319A true JPS5988319A (en) 1984-05-22
JPH0235693B2 JPH0235693B2 (en) 1990-08-13

Family

ID=16345259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19568382A Granted JPS5988319A (en) 1982-11-08 1982-11-08 Method for recovering zinc carbonate from matter containing zn

Country Status (1)

Country Link
JP (1) JPS5988319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710215A (en) * 1984-12-28 1987-12-01 Tsukishima Kikai Co., Ltd. Process for distillation-crystallization of zinc carbonate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140006B2 (en) * 2009-01-08 2013-02-06 濱田重工株式会社 Method for producing zinc carbonate
JP5622090B2 (en) * 2010-09-02 2014-11-12 濱田重工株式会社 Method for producing zinc carbonate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114898A (en) * 1974-07-30 1976-02-05 Magune Kk Pitsukuringuniokeru sanaraiekichuno keisono jokyohoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114898A (en) * 1974-07-30 1976-02-05 Magune Kk Pitsukuringuniokeru sanaraiekichuno keisono jokyohoho

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710215A (en) * 1984-12-28 1987-12-01 Tsukishima Kikai Co., Ltd. Process for distillation-crystallization of zinc carbonate

Also Published As

Publication number Publication date
JPH0235693B2 (en) 1990-08-13

Similar Documents

Publication Publication Date Title
JP3370330B2 (en) Recovery method of zinc oxide
US3849121A (en) Zinc oxide recovery process
JPS6218632B2 (en)
US2039256A (en) Process of treating refinery sludges or slimes containing selenium and tellurium
JPH0517832A (en) Method for recovering lithium from waste lithium battery
JPS604892B2 (en) How to recover metal from copper refining anode slime
PL205994B1 (en) Method for processing anode sludge
JPH10509212A (en) Recovery of metal and chemical value
US2076738A (en) Recovery of tellurium
JPS5988319A (en) Method for recovering zinc carbonate from matter containing zn
US1780323A (en) Utilization of galvanizer&#39;s waste
JPH04191340A (en) Production of high purity tin
JPH0765123B2 (en) Method for producing zinc-containing composition
US2124564A (en) Metal purification
JPS6179736A (en) Recovering method of platinum group metal
JP2002316822A (en) Method for recovering tantalum/niobium from carbide- base raw material containing tantalum/niobium
JPS6119718B2 (en)
US1502129A (en) Process of melting scrap metal and recovering by-products therefrom
JPH0253497B2 (en)
US509634A (en) And cabell
US1069498A (en) Process of treating ores.
JP3843165B2 (en) Method for removing antimony from hydrofluoric acid solution containing Ta / Nb
US2285573A (en) Zinc chloride recovery from galvanizer&#39;s sal-ammoniac skimmings
US1044557A (en) Process for reclaiming ammonium and zinc values from sal-ammoniacflux skimmings.
US900452A (en) Art of separating metals from matte.