JPS5988242A - Method for compensating squareness errors in nc machine tool - Google Patents

Method for compensating squareness errors in nc machine tool

Info

Publication number
JPS5988242A
JPS5988242A JP19266982A JP19266982A JPS5988242A JP S5988242 A JPS5988242 A JP S5988242A JP 19266982 A JP19266982 A JP 19266982A JP 19266982 A JP19266982 A JP 19266982A JP S5988242 A JPS5988242 A JP S5988242A
Authority
JP
Japan
Prior art keywords
servo mechanism
distance
error
axis
machine tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19266982A
Other languages
Japanese (ja)
Other versions
JPH0319024B2 (en
Inventor
Hideo Katsube
勝部 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP19266982A priority Critical patent/JPS5988242A/en
Publication of JPS5988242A publication Critical patent/JPS5988242A/en
Publication of JPH0319024B2 publication Critical patent/JPH0319024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49194Structure error, in slide or screw
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49195Slide, guideway, robot arm deviation

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To compensate for errors in squareness in an NC apparatus, by computing distance errors in the directions other than the reference direction and those in the reference direction and giving driving commands to respective servo mechanisms for the compensation based on the computed errors. CONSTITUTION:The CPU2 in an NC apparatus measures errors in squareness of the Y and Z axes, DELTAXy and DELTAXz, with the guideway in the X axis taken as the reference axis, and the measured errors are stored in the memory 3. Then, distance errors in the X direction of the driven distances in the Y and Z axes are computed from the driven distances in the Y and Z axis and the squareness errors. The distance errors with a minus sign attached, the command for driving the servo mechanism 4 in the X axis, the distance errors in the Y and X axes of the driven distances along the Y and Z axes computed from the earlier mentioned distance errors and the squareness errors, and the commands for driving the servo mechanisms 5, 6 along the Y or Z axes are input to the NC apparatus, whereby the NC apparatus issues commands for compensating the distance errors and the compensation for the errors in squareness can thus be achieved.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明はNO(数値制御)工作機械の面角度誤差補正方
式に関する。特に、NO装置を利用してなす10角度y
I差補正方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a surface angle error correction method for NO (numerically controlled) machine tools. In particular, the 10 angle y made using the NO device
This relates to an I difference correction method.

(2)技術の背景 NO工作機1112とは、所望の立体形状を適切な座標
系を使用してディジタル量の集合として表現しておき、
この立体形状を被加工体の上に具現するために、例えは
パルスモータ等のサーボ機構を使用して、例えば1μm
等の坩位用ずつ、被加工体及び/または工具等を相対的
に変位させて機械加工をなす工作機械をいう。
(2) Technical Background No. Machine tool 1112 is a system that expresses a desired three-dimensional shape as a set of digital quantities using an appropriate coordinate system.
In order to realize this three-dimensional shape on the workpiece, for example, a servo mechanism such as a pulse motor is used to
A machine tool that performs machining by relatively displacing the workpiece and/or tools, etc.

ただ、上記のパルスモータ等を含むサーボ機構は何らか
の機械的ガイドに沿って駆動されるから、この機械的ガ
イドの精度が劣ると、機械加工にあたり所期のiXj度
を得ることができない。この機械的ガイドの精度にはガ
イドウェーが貞直でなく屈曲している真直度精度の他に
各ガイドウェーが相互に直角をもって交叉しておらない
こ−とに起因する直角度精度がある。この相互に直交す
るX軸、YIIIllIXz軸間の面角度は、工作機械
の部材の加工、工作機械の組み立て、工作機械の据え付
けに大きく依存することは当然であるが、下記に列挙す
る問題を内包している。
However, since the servo mechanism including the above-mentioned pulse motor etc. is driven along some kind of mechanical guide, if the accuracy of this mechanical guide is poor, the desired iXj degree cannot be obtained during machining. Accuracy of this mechanical guide includes not only straightness accuracy in which the guideways are curved rather than straight, but also squareness accuracy in that the guideways do not intersect with each other at right angles. It goes without saying that the plane angle between the mutually orthogonal X-axis and YIIIllIXz-axis greatly depends on the machining of the machine tool parts, the assembly of the machine tool, and the installation of the machine tool, but it also includes the problems listed below. are doing.

イ、工作機械の部材の加工精度、工作PA緘の組立時の
調整等にはおのずと一1ift界がある。
B. There is naturally a certain level of precision in the machining accuracy of machine tool parts, adjustment during assembly of machining PA strips, etc.

口、上記の作業において、直角度の精度を向上するため
には、多大の工数を要する。
In the above-mentioned work, a large number of man-hours are required to improve the accuracy of the squareness.

ハ、たとえ、工作機械の部材の加工精度、工作機械の組
立精度は十分であっても、工作機械の据え付け、レベリ
ング等により直角度が悪くなる。
C. Even if the machining accuracy of the machine tool parts and the assembly accuracy of the machine tool are sufficient, the perpendicularity will deteriorate due to installation, leveling, etc. of the machine tool.

二、工作機様運転時に、−工作機械各部は不均一に加熱
され、熱変位により直角度が悪くなる。
2. During machine tool operation, each part of the machine tool is heated unevenly, and the perpendicularity becomes poor due to thermal displacement.

ホ、経時変化により、直角度が悪くなる。E. Due to aging, the squareness deteriorates.

上記の要素のうち、熱変位と据え付け、レベリング等に
もとづくものが特に大きな影響力を加工精度に与える。
Among the above factors, those based on thermal displacement, installation, leveling, etc. have a particularly large influence on machining accuracy.

(ろ)従来技術と問題点 上記せる直角f<i−の問題はかねて知られてしAたが
、有効な補正方法が存在しなかったため、必妾度番こ見
合う程度に、組立、調整、据え付け、レベリング等を精
密になしていたが、上記のとおり、その精度にはおのず
と限界があった。又、特に熱変位にもとづ< 1lj−
角度の悪化には有効な補正方法がなく、熱変位にもとづ
く直角度誤差を補正する機能を有する工作機械は従来技
術においては供給されていない。
(B) Prior art and problems The above-mentioned problem of right angle f<i- has been known for some time, but since there was no effective correction method, it is necessary to assemble, adjust, and Installation, leveling, etc. were carried out with precision, but as mentioned above, there were naturally limits to that precision. Also, especially based on thermal displacement < 1lj-
There is no effective method for correcting the deterioration of the angle, and the prior art does not provide a machine tool with the ability to correct squareness errors due to thermal displacement.

しかし、上記せるとおり、直角度は、工作機械の加工精
度を支配する重要な要素であるから、工作機械の加工精
度を向上するために、工作機械の直角度誤差を補正する
方法の開発が望まれてしまた。
However, as mentioned above, squareness is an important element that controls the machining accuracy of machine tools, so in order to improve the machining accuracy of machine tools, it is desirable to develop a method to correct the squareness error of machine tools. It's been a while since I've been in the middle of a long time.

(4)発明の目的 本発明の目的は、NO工作i械の111角度誤差を補正
する方式を提供することにある。
(4) Purpose of the Invention The purpose of the present invention is to provide a method for correcting the 111 angle error of a NO machine tool.

(5)発明の構成 本発明は、No工作機械が、本来、極めて精密なサーボ
機構を有していることを積極的に利用するものであり、
NO装置の発する指令にしたがい、相互に直交するガイ
ドウェーに沿って駆動を行なうサーボ機構を有するNo
工作機械において、上記の直角皮膜差補正をNOサーボ
機構をもってなさしめたものであり、本出願には、二つ
の独立した発明を含む。
(5) Structure of the Invention The present invention actively utilizes the fact that the No. 1 machine tool originally has an extremely precise servo mechanism.
The NO device has a servo mechanism that drives along guideways that are orthogonal to each other according to commands issued by the NO device.
In a machine tool, the above-mentioned right angle film difference correction is performed using an NO servo mechanism, and the present application includes two independent inventions.

まず、第1の発明は、x −s y % Z i1M+
のいずねかの1軸すなわち一つのガイドウェー(以下、
−例としてX軸を基準軸とする。)を基準軸として、他
の2軸すなわち他の二つのガイドウェー(Y %2軸)
とX軸との間の直角度誤差を測定する。この場合、各ガ
イドウェーの真直度は十分満足すべきものと仮定し、Y
軸NZ#Iのそれぞれ単位距陣に対するX軸方向の偏位
量をもって表わすものとする。第1図(a)、(b)に
お、いて、xXy、z軸は’+17角度誤差を有する現
実の工作機械の各サーボ機構がそれに沿って駆動される
三つの直交する座標軸であり、XXyXz軸は面角度誤
差の存在しない仮定の直交1’H標1111+である。
First, the first invention is x −s y %Z i1M+
One axis, one guideway (hereinafter referred to as
- As an example, let the X axis be the reference axis. ) as the reference axis, the other two axes, that is, the other two guideways (Y%2 axis)
Measure the squareness error between and the X axis. In this case, it is assumed that the straightness of each guideway is sufficiently satisfactory, and Y
Let it be expressed by the amount of deviation of axis NZ#I in the X-axis direction with respect to each unit range. In Figs. 1(a) and (b), the x, The axis is an orthogonal 1'H mark 1111+, which is assumed to have no surface angle error.

したがって、面角度誤差は、X軸またはzIIqIIの
単イを距#a(y、または句)に対応するX軸方向の偏
差?ΔXyもしくはΔX、、をもってまたはΔXy/Y
lもしくはΔXZ/Zlをもって表わす。次に、No工
作機披のY軸または2軸サ一ボ機構が動作するにあたり
、Y軸またはz軸に沿って駆動される距閏11(第1図
(a)、(b)にY2またはZlをもって示す距1il
ll:)と直角皮膜差ΔXアもしくはΔXzまたはΔ”
V/Y+ もしくはΔXz / zlとにも2づき演齢
される、X軸方向の距離枳差(lIJΔXy−Y2 も
しくは約ΔX2・z2  または約Y2・ΔXy/Yt
もしくは約22・Δx2/z、)に負の符号を与えた距
離、X軸に沿ってサーボ機構を駆動する指令と、上記の
距A1.i差(約ΔXy−Y2  もしくは約ΔX2・
z2または約Y2・ΔXy/Ylもしくはz2・ΔXz
 / Z+ )と面角度誤差(Δ匂もしくはΔx2また
はΔXy/Y、またはΔXz / Zl )とにもとづ
き演算されるY軸またはX軸方向の距離誤差(約ΔXy
2もしくは約ΔX2′または約ΔXy”/Y+もしくは
約ΔXz” / Zl ) Y軸またはZ軸に沿うてサ
ーボ機171.!/を駆動する指令とをNo装置i′¥
に入力して、このNO装置1″1に外部指令としての指
令(Y2 またはZz )とともに補正指令としての上
記の二つのhq: +ia誤差袖正指令を出力させ、こ
れら指令の総和にしたがってX軸とY軸と2軸とのサー
ボ機構を動作させるものである。
Therefore, the surface angle error is the deviation in the X-axis direction corresponding to the distance #a (y, or phrase) from the X-axis or zIIqII. With ΔXy or ΔX, or ΔXy/Y
It is expressed as l or ΔXZ/Zl. Next, when the Y-axis or two-axis servo mechanism of the No. 1 machine tool operates, the distance jump 11 (Y2 or Distance 1il indicated by Zl
ll:) and the right angle film difference ΔXa or ΔXz or Δ”
Distance difference in the X-axis direction (lIJΔXy-Y2 or approximately ΔX2・z2 or approximately Y2・ΔXy/Yt
or approximately 22·Δx2/z,) with a negative sign, a command to drive the servo mechanism along the X-axis, and the above distance A1. i difference (approximately ΔXy-Y2 or approximately ΔX2・
z2 or approximately Y2・ΔXy/Yl or z2・ΔXz
/Z+) and surface angle error (Δx2 or ΔXy/Y, or ΔXz/Zl), the distance error in the Y-axis or X-axis direction (approximately ΔXy
2 or about ΔX2' or about ΔXy"/Y+ or about ΔXz"/Zl) along the Y-axis or the Z-axis. ! /The command to drive the No device i′¥
input to this NO device 1″1 to output the above two hq: +ia error correction commands as correction commands along with the command (Y2 or Zz) as an external command, and adjust the X-axis according to the sum of these commands. This operates the servo mechanism for the Y-axis and two axes.

上言「jの面角度誤差の測定は、必ずしも容易ではない
が、直角舛練差は加工製品上に反影さ第1る事実にもと
づき、加工製品の寸法誤差を11i1i定して泊角度誤
差を推定することは可能であり、現実的に便利な方法で
ある。
As mentioned above, it is not always easy to measure the surface angle error of j, but based on the first fact that the difference in right angle machining is reflected on the processed product, the dimensional error of the processed product is determined as 11i1i, and the horizontal angle error is calculated. It is possible to estimate and is a convenient method in practice.

次に、第2の発明は、工作機械の適当な1−所に少なく
とも1個の温度測定素子を有する上記のN。
Next, the second invention is the above-mentioned N having at least one temperature measuring element at one appropriate location of the machine tool.

工作機械において、工作機械の据え付は完了後、X j
Mガイドウェーと、YSZ軸ガイドウェーとの直角皮膜
差と温度との関係を測定しておき、N。
For machine tools, after installation of the machine tool is completed,
The relationship between the perpendicular coating difference between the M guideway and the YSZ-axis guideway and temperature was measured, and N.

工作機械のY軸または2軸サ一ボ機構が動作するにあた
り、Y軸またはZ軸に沿って駆動される能力1「(第1
図(a)、(b)にY2またはz2をモッテ示ス距μm
f)と上記温度測定素子により検出された温度における
直角I9’ %T34差とにもとづき演算されるX軸方
向の距離誤差(約ΔXy ’Y2もしくはΔX2・z2
 または約y2−ΔXy / Ylもしくは約z2−Δ
x2/z、)に負の符号を与えた距mx軸に沿ってサー
ボ機構を躯!171.1する指令と、上記のW離調差(
約ΔXア・Y2もしくは約ΔX2・z2または約Y2・
ΔXy / Yl  もしくは約z2・ΔXz / Z
+ )と検出された温度にお(つるn′I角度誤差にも
とづき演算されるY軸またはX軸方向の距離誤差(約Δ
xy2もしくは約ΔXz2または約Δxy2 / y2
もしくは約ΔXz” / Zl ) Y軸またはZ軸に
沿ってサーボ機構を駆動する指令とをNo装置に入力し
て、このNo装置に外部指令としての指令(Y2または
22)とともに補正指令としての上記の二つの距離誤差
補正指令を出力させ、これらの指令の総和にしたがって
、X軸とY軸と2軸とのサーボ機構を動作させるもので
ある。
When the Y-axis or two-axis servo mechanism of a machine tool operates, the ability to be driven along the Y-axis or Z-axis (first
In Figures (a) and (b), Y2 or z2 is shown as the Motte distance μm.
distance error in the X-axis direction (approximately ΔXy 'Y2 or ΔX2・z2
or about y2-ΔXy/Yl or about z2-Δ
The servo mechanism is built along the mx axis with a negative sign for x2/z, )! 171.1 and the above W detuning difference (
Approximately ΔXa・Y2 or approximately ΔX2・z2 or approximately Y2・
ΔXy / Yl or approximately z2・ΔXz / Z
+) and the detected temperature (with a distance error in the Y-axis or X-axis direction (approximately Δ
xy2 or about ΔXz2 or about Δxy2/y2
Or approximately ΔXz"/Zl) A command to drive the servo mechanism along the Y-axis or Z-axis is input to the No device, and the above command as a correction command is sent to this No device along with the command (Y2 or 22) as an external command. The two distance error correction commands are output, and the servo mechanisms for the two axes, the X-axis and the Y-axis, are operated according to the sum of these commands.

(6)発明の実jイ1!例 以下、図面を診照しつつ、本出願に係る二つの発明のそ
れぞれに係る実l1fIi例につき更に説明する。
(6) The fruit of invention 1! Examples Hereinafter, actual examples of each of the two inventions of the present application will be further explained with reference to the drawings.

ボ1の発明 X軸ガイドウェーを基準軸として、Y、Z軸ガイドウェ
ーの直角皮膜差を測定する。この場合、第11¥+ (
a)、(b)に示すように、YXZIIilIlの学位
距離(Y+またはZt)に対応するX’il+(b上の
偏差量ΔXyもしくはΔx2をもって、面角度誤差を表
わす。この直角皮膜差ΔXy % ΔXzはNo装h’
Itのメモリに記↑はしておく。第2図は本発明の実1
血に使用されるNo系のブロック図である。図において
、lは入力装置であり、所望の立体形状を適切な座標系
を使用してディジタルAI七の集合として表わした指令
をプロセスユニット2に入力する。プロセスユニット2
は入力装置lにより入力された指令にもとづき、メモリ
3から必要な′rH報を取り出し、指令にもとづく演算
等を実行して、その結果をX、Y。
Invention of Bo 1 Using the X-axis guideway as a reference axis, the right angle coating difference between the Y and Z-axis guideways is measured. In this case, the 11th yen + (
As shown in a) and (b), the deviation amount ΔXy or Δx2 on X'il+(b) corresponding to the degree distance (Y+ or Zt) of YXZIIilIl represents the surface angle error.This right angle coating difference ΔXy % ΔXz is no-dressing h'
Write it down in It's memory. Figure 2 shows the first embodiment of the present invention.
It is a block diagram of the No system used for blood. In the figure, l is an input device, which inputs to the process unit 2 a command representing a desired three-dimensional shape as a set of digital AI7 using an appropriate coordinate system. Process unit 2
Based on the command input through the input device 1, extracts the necessary 'rH information from the memory 3, executes calculations etc. based on the command, and outputs the results as X and Y.

z軸のパルスモータ4.5.6に出力し、各軸方向に所
望の距離駆動をなす。
The output is output to the z-axis pulse motor 4.5.6 to drive the desired distance in each axis direction.

Y軸または2軸サ一ボ機構が動作するとき、入力装jF
J lにより与えられた指令に含まれている移ill距
離Y2またはz2と上記のメモリ3に記憶されている面
角度誤差ΔXyまたはΔx2とにもとづき、上記のY軸
または2軸方向の移動指令の実行にともないX軸方向に
発生する距離誤差を、プロセスユニット2中で演算する
。この値は、およそ、ΔXy−Y2またはΔX2・z2
となることは明らかである。この誤差を補正するには、
この誤差の値に負の符号を与えてX軸方向サーボ機構に
入力してこれを駆妙すれはよい。
When the Y-axis or 2-axis servo mechanism operates, the input device jF
Based on the moving distance Y2 or z2 included in the command given by Jl and the surface angle error ΔXy or Δx2 stored in the memory 3, the movement command in the Y-axis or two-axis direction is calculated. A distance error occurring in the X-axis direction during execution is calculated in the process unit 2. This value is approximately ΔXy−Y2 or ΔX2・z2
It is clear that To correct this error,
It is a good idea to give this error value a negative sign and input it to the X-axis direction servo mechanism.

更に、Y軸または2軸サ一ボ機構の動作が、上記のy軸
(基準軸)方向の誤差に加えて、それぞれ、Y軸または
Z軸方向の誤差をも発生することは第3図から明らかで
ある。すなわち、指令によれば基準軸(y軸)と直交す
る方向に、(仮定の座標軸y軸に沿って、)A点に移動
すべきところ、現実には、基準軸に対し直角J!L誤差
を有するガイドウェーに沿うY軸に沿ってB点に移動し
ている筈であるから、上記のy軸(基準軸)方向の誤差
(ΔXア・Yz、)に加えて、第3図に0をもって示す
距離だけ、y軸方向」こも誤差が発生している筈である
。この誤差は必ず負の方向に発生し、その太きなすなわ
ち距離は、 である。この誤差を補正するには、この大きさだけY軸
方向にサーボ機構を駆動すればよい。もつとも正確には
y軸方向に追加移帥をなすべきところであるが、この方
向には駆動する手段はなく、Y軸方向に補正をなしても
、おおむね満足すべき結果が得られる。
Furthermore, it can be seen from Figure 3 that the operation of the Y-axis or two-axis servo mechanism generates errors in the Y-axis or Z-axis direction, in addition to the error in the y-axis (reference axis) direction described above. it is obvious. That is, according to the command, it should move to point A (along the hypothetical coordinate axis y-axis) in a direction perpendicular to the reference axis (y-axis), but in reality, it moves perpendicular to the reference axis J! Since it is supposed to be moving to point B along the Y axis along the guideway with L error, in addition to the error (ΔXa・Yz,) in the y axis (reference axis) direction mentioned above, An error should have occurred in the y-axis direction by a distance indicated by 0. This error always occurs in the negative direction, and its widest value, that is, the distance, is . In order to correct this error, it is sufficient to drive the servo mechanism in the Y-axis direction by this amount. More precisely, additional movement should be made in the y-axis direction, but there is no means for driving in this direction, and even if correction is made in the y-axis direction, generally satisfactory results can be obtained.

2軸サ一ボ機構の動作に伴うy軸方向誤差の補正につい
ても、上記と同様になせばよい。
Correction of the error in the y-axis direction due to the operation of the two-axis servo mechanism may be performed in the same manner as described above.

そこで、この演算手段を上記のメモリ3に記憶させてお
いて、Y軸またはZ軸方向のサーボ機構を動作するとき
、同時に、この補正指令も、X%Y% Z軸のパルスモ
ータ4.5.6に出力するようにしておけばよい。
Therefore, when this calculation means is stored in the memory 3 and the servo mechanism in the Y-axis or Z-axis direction is operated, this correction command is also sent to the X%Y% Z-axis pulse motor 4.5. .6 should be output.

第2の発明 上記せるとおり、工作機械の運転に伴い、工作機械が不
均一に加熱されて熱変以を発生することは避はヴイtい
から、工作機械の各座標方向のガイドウェーの面角度誤
差を検出するに便利な位置に少なくとも1個の温度測定
素子を設けておき、この温度測定素子の設けられた位置
の温度と面角度誤差との関係を測定して上記のメモリ3
に記憶しておき、加工にあたっては逐次上記の温度測定
素子の検出イll1tをプロセスユニット2に入力して
、この値にもとづきその時点における面角度誤差を演算
し、上記第1の発明の場合と同様にX、Y、Z軸のパル
スモータ4.5.6を動作させれば、工作機械の運転に
伴い発生する不均一加熱にもとづくia角度誤差の補正
を実現することができる。
Second Invention As mentioned above, it is inevitable that the machine tool is heated unevenly and causes thermal changes as the machine tool operates, so the surface of the guideway in each coordinate direction of the machine tool is avoided. At least one temperature measuring element is provided at a convenient position for detecting the angle error, and the relationship between the temperature at the position where the temperature measuring element is provided and the surface angle error is measured and stored in the memory 3 described above.
During processing, the detection value of the temperature measuring element described above is input to the process unit 2 one after another, and the surface angle error at that time is calculated based on this value, as in the case of the first invention. Similarly, by operating the pulse motors 4.5.6 for the X, Y, and Z axes, it is possible to correct the ia angle error based on nonuniform heating that occurs during operation of the machine tool.

(ハ発明の詳細 な説明せるとおり、本発明によれは、NO工作機械の直
角度製差を補正する方式を提供することができる。
(C) As described in detail, the present invention can provide a method for correcting the squareness difference of NO machine tools.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、(b)は本発明の詳細な説明するため
の補助図であり、第2図は本発明の実施に使用されるN
O系のブロック図であり、第3図は本発明の詳細な説明
するための補助図である。 1 ・・・ 入力装置、   2 ・・・ プロセスユ
ニット、    3 ・・・ メモ1」、    4.
5.6 ・・・ X% YN z軸方向7マルスモiり
。 特許出願人 ファナック株式会本ヒ 代理人 弁理士 寒 川 誠 − 第2図 第3図
1(a) and 1(b) are auxiliary diagrams for explaining the present invention in detail, and FIG. 2 is an auxiliary diagram for explaining the present invention in detail.
This is a block diagram of the O system, and FIG. 3 is an auxiliary diagram for explaining the present invention in detail. 1... Input device, 2... Process unit, 3... Memo 1'', 4.
5.6...X% YN 7 points in the z-axis direction. Patent applicant Makoto Samukawa, agent for FANUC Co., Ltd., patent attorney - Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1) No装置の発する指令にしたがい、相互に直交
するガイドウェーに沿って駆動を行なうサーボ機構を有
するNo工作機械の直角度課差補正方式において、いず
れかの1のガイドウェーを基準軸として、他のガイドウ
ェーの該基準軸に対する面角度誤差を測定し、成性のガ
イドウェーに対するサーボ機構を駆動するにあたり、該
駆動される距離と前記直角度t!差とにもとづき演算さ
れる前記基準軸方向の距離誤差に負の符号を与えた距離
前記基準軸に沿ってサーボ機構を駆動する指令と、前記
距l!1.誤差と前記面角度誤差とにもとづき演算され
る前記他のガイドウェ一方向の距!!lIF誤差前記他
のガイドウェーに沿ってサーボ機構を駆動する指令とを
前記No装置に入力して、該No装置の発する指令にも
とづき前記基準軸方向のサーボ機構と前記他のガイドウ
ェ一方向のサーボ機構とを駆動してなすことを特徴とす
るNo工作機械の面角度誤差補正方式。
(1) In the squareness correction method of a No. machine tool that has a servo mechanism that drives along mutually orthogonal guideways according to commands issued by the No. device, one of the guideways is used as the reference axis. , the surface angle error of another guideway with respect to the reference axis is measured, and when driving the servo mechanism for the second guideway, the driven distance and the squareness t! a distance given a negative sign to the distance error in the direction of the reference axis calculated based on the difference; a command to drive the servo mechanism along the reference axis; and the distance l! 1. The distance in one direction of the other guideway calculated based on the error and the surface angle error! ! lIF error A command to drive the servo mechanism along the other guideway is input to the No device, and based on the command issued by the No device, the servo mechanism in the reference axis direction and the servo mechanism in one direction of the other guideway are input. This is a surface angle error correction method for No. 1 machine tool, which is achieved by driving a servo mechanism.
(2)前記面角度誤差の測定は、前記No工作機械を使
用して加工された破加工体の寸法誤差を測定してなす、
特許請求の範囲第1項記載のNG工作機械の面角度誤差
補正方式。
(2) The surface angle error is measured by measuring the dimensional error of the broken body machined using the No. machine tool,
A surface angle error correction method for an NG machine tool according to claim 1.
(3) No装置aの発する指令にしたがい、相互に直
交するガイドウェーに沿って駆動を行なうサーボ機構を
有し、少なくとも1個の温度測定素子を有する、No工
作機械の面角度誤差補正方式において、ifi前記工作
機械の据え付は完了後、基準軸として選択されたlのガ
イドウェーと他のガイドウェーの面角度誤差と温度との
関係を測定しておき、成性のガイドウェーに対するサー
ボ機構を駆動するにあたり、該駆動される距離を前記温
度測定素子により検出された温度と前記面角度誤差と温
度との関係とにもとづき演算される前記基準軸方向の距
離誤差に負の符号を与えた距離、前記基準軸に沿ってサ
ーボ機構を駆動する指令と、Dtf記距離誤差と前記検
出された温度における面角度誤差とにもとづき演算され
る前記他のガイドウェ一方向の距離誤差前記性のガイド
ウェーに沿ってサーボ機構を駆動する指令とを前記NO
装)Hに入力して、該NO装+11の発する指令にもと
づき前記基準軸方向のサーボ機構と前記他の軸方向のサ
ーボ機構とを駆動してなすことを特徴とするNo工作機
械の直角皮膜差補正方式。
(3) In a surface angle error correction method for a No. machine tool, which has a servo mechanism that drives along mutually orthogonal guideways according to commands issued by No. device a, and has at least one temperature measuring element. , ifi After the installation of the machine tool is completed, the relationship between the surface angle error and temperature of the l guideway selected as the reference axis and the other guideways is measured, and the servo mechanism for the new guideway is measured. When driving, a negative sign is given to the distance error in the reference axis direction, which is calculated based on the temperature detected by the temperature measurement element and the relationship between the surface angle error and temperature. distance, a command to drive the servo mechanism along the reference axis, a distance error in one direction of the other guideway calculated based on the Dtf distance error and the surface angle error at the detected temperature; a command to drive the servo mechanism along the
A right angle coating of a No. machine tool, characterized in that the servo mechanism in the reference axis direction and the servo mechanism in the other axis direction are driven based on the command issued by the NO device +11. Difference correction method.
JP19266982A 1982-11-02 1982-11-02 Method for compensating squareness errors in nc machine tool Granted JPS5988242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19266982A JPS5988242A (en) 1982-11-02 1982-11-02 Method for compensating squareness errors in nc machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19266982A JPS5988242A (en) 1982-11-02 1982-11-02 Method for compensating squareness errors in nc machine tool

Publications (2)

Publication Number Publication Date
JPS5988242A true JPS5988242A (en) 1984-05-22
JPH0319024B2 JPH0319024B2 (en) 1991-03-14

Family

ID=16295067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19266982A Granted JPS5988242A (en) 1982-11-02 1982-11-02 Method for compensating squareness errors in nc machine tool

Country Status (1)

Country Link
JP (1) JPS5988242A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150091655A (en) * 2014-02-03 2015-08-12 두산인프라코어 주식회사 Method for Compensating Vertical Angle Error by Thermal Deformation of Machine Tool and Numerical Control Apparatus
CN111123832A (en) * 2018-10-31 2020-05-08 富鼎电子科技(嘉善)有限公司 Detection compensation device, detection compensation method, and computer-readable storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541477A (en) * 1977-06-06 1979-01-08 Osaka Kiko Co Ltd Device for compensating thermal displacement in machine tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541477A (en) * 1977-06-06 1979-01-08 Osaka Kiko Co Ltd Device for compensating thermal displacement in machine tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150091655A (en) * 2014-02-03 2015-08-12 두산인프라코어 주식회사 Method for Compensating Vertical Angle Error by Thermal Deformation of Machine Tool and Numerical Control Apparatus
CN111123832A (en) * 2018-10-31 2020-05-08 富鼎电子科技(嘉善)有限公司 Detection compensation device, detection compensation method, and computer-readable storage medium
CN111123832B (en) * 2018-10-31 2022-09-30 富鼎电子科技(嘉善)有限公司 Detection compensation device, detection compensation method, and computer-readable storage medium

Also Published As

Publication number Publication date
JPH0319024B2 (en) 1991-03-14

Similar Documents

Publication Publication Date Title
US10209107B2 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
EP0743130B1 (en) Robotic movement of object over a workpiece surface
KR100573716B1 (en) Position control device and method, numerical control program preparation device and method and control method of numerical control machine tool
US9164502B2 (en) Control device and control method of five-axis control machine tool, program, and mold
US4963805A (en) Numerical control apparatus for machining non-circular workpieces
JPS6396504A (en) Method and device of industrial robot for calibrating sensor
JPH03176703A (en) Numerical controller
WO1991001849A1 (en) Noncontact profile control unit
JP2007219951A (en) Attitude control method and nc machine tool for work
JP6595273B2 (en) Numerical controller
US5327351A (en) Non-contact digitizing method
JPS5988242A (en) Method for compensating squareness errors in nc machine tool
US6694214B2 (en) Method and apparatus for weight compensation in guiding a movement of a moveable machine element
JPH0482658A (en) Non-contact profile control unit
JPH04115854A (en) Noncontact profile control unit
JPH03290705A (en) Numerical controller
JP3064043B2 (en) Machining method in which workpiece deformation due to clamp is corrected, and NC machine tool for implementing the method
JP2002210654A (en) Multi-spindle nc polishing machine
JP3520631B2 (en) Laser processing machine
JPS62176739A (en) Straightness correction device for machine tool
WO2024013955A1 (en) Numerical control device, numerical control machine tool, machining program generation device, and machining program generation method
JP2003271214A (en) Numerical control device and pitch error correction method therefor
JPH03281146A (en) Impact test specimen automatic processing system
JPH04331041A (en) Edge position compensator in machine tool
JP2001300801A (en) Control method of nc lathe