JPS5987043A - Tin oxide inorganic adsorbing material and preparation thereof - Google Patents

Tin oxide inorganic adsorbing material and preparation thereof

Info

Publication number
JPS5987043A
JPS5987043A JP57195867A JP19586782A JPS5987043A JP S5987043 A JPS5987043 A JP S5987043A JP 57195867 A JP57195867 A JP 57195867A JP 19586782 A JP19586782 A JP 19586782A JP S5987043 A JPS5987043 A JP S5987043A
Authority
JP
Japan
Prior art keywords
carrier
tin oxide
adsorbing
tin
adsorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57195867A
Other languages
Japanese (ja)
Inventor
Koji Tanaka
孝二 田中
Yasuo Egashira
江頭 泰夫
Fumie Shimada
島田 ふみえ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57195867A priority Critical patent/JPS5987043A/en
Publication of JPS5987043A publication Critical patent/JPS5987043A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To obtain a homogenous and stable tin oxide adsorbing material high in adsorbing activity, excellent in cobalt adsorbing capacity and good in close adhesiveness, by a method wherein tin plating is applied onto a heat resistant and corrosion resistant carrier and a tin oxide thin layer is formed on the carrier by high temp. oxidation treatment. CONSTITUTION:As a heat resistant and corrosion resistant carrier, a particulate body, a fibrous body or a block body comprising a metal such as Ti or ceramics such as alumina is used and, after tin plating is applied to said carrier, the plated carrier is subjected to high temp. oxidation treatment at 800-1,000 deg.C to form a tin oxide thin layer on the carrier. This tin oxide is high in adsorbing activity while good in adhesiveness with the carrier due to solid phase reaction and a tin oxide inorg. adsorbing material excellent in practicality is obtained. Because this adsorbing material is high in adsorbing activity, excellent in Co adsorbing capacity and sufficient in function as a granulated body, it can be applied as the practical inorg. adsorbing material to a column for obtaining primary cooling water of a high temp. and high pressure nuclear reactor.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、原子炉−次冷却材(以下炉水と称す)を対象
とする高温コバルト除去用の吸着カラム沢材に適した吸
着活性な酸化錫を、担体に担持させた酸化錫無機吸着材
に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides an adsorption-active oxidation material suitable for use as an adsorption column material for removing high-temperature cobalt from reactor sub-coolant (hereinafter referred to as reactor water). This invention relates to an inorganic tin oxide adsorbent in which tin is supported on a carrier.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

被曝の要因である炉水中の溶存コバルト除去は、イオン
交換樹脂法によっているが、イオン交換樹脂は耐熱温度
が低い(60°C以下)ので高温、高圧の炉水(280
℃、 70KFI/cnF)には使用でない欠点がある
Dissolved cobalt in reactor water, which is a cause of radiation exposure, is removed using the ion exchange resin method, but since ion exchange resin has a low heat resistance temperature (60°C or less), it cannot be used in high temperature, high pressure reactor water (280°C or less).
℃, 70KFI/cnF) has the disadvantage of not being used.

これに対し、無機系の吸着材は耐熱性に優れ、この中に
は高温高圧の炉水条件下において適用可能のもの7ノー
ある。例えば、金M=4 (鉄、8.チタニウム、ジル
コニウム、マンガン、ニオブ、タンタルなど)の酸化物
、含水酸化物、あるいは金属(前記)と酸基(リン酸、
ヒ酸、タングステン酸など)の金属酸性塩であり、特に
金属酸化物が有望である。
On the other hand, inorganic adsorbents have excellent heat resistance, and there are seven types of adsorbents that can be used under high temperature and high pressure reactor water conditions. For example, gold M=4 (iron, titanium, zirconium, manganese, niobium, tantalum, etc.) oxides, hydrated oxides, or metals (described above) and acid groups (phosphoric acid,
arsenic acid, tungstic acid, etc.), and metal oxides are particularly promising.

発明者5は、上記金F)酸化物系の無機吸着材について
、コバルト吸着能、炉水安定性などを検討した結果L′
¥化物(8110りが最も実用性に優れていることを見
出した。
Inventor 5 has studied the cobalt adsorption capacity, reactor water stability, etc. of the gold F) oxide-based inorganic adsorbent, and as a result, L'
It was found that ¥8110 is the most practical.

酸化錫ぞ含む金属酸化物系無機吸着材は一般に粉末状で
それ自携に機械的強度はないためそのままでは吸vカラ
ムに適用することはできず、造粒のごとき固形化が必要
である。吸着材の固形化には次の方法が考えられる。
Metal oxide-based inorganic adsorbents, including tin oxide, are generally in powder form and do not have mechanical strength on their own, so they cannot be applied as they are to a vat absorption column, and must be solidified by granulation. The following methods can be considered for solidifying the adsorbent.

(i)  吸着材を直接固形化する。(i) Directly solidify the adsorbent.

(2)適当な担体へ担持させる。(2) Support on a suitable carrier.

(1)の方法は、焼結やバインダ添加など固形化処理に
ともなうコバルト吸着活性の劣化が避けられず実用上、
問題が多い。(2)の方法は吸着材と担体との密着性の
問題はあるが、吸着活性に関しては選択の幅があるため
、(1)の方法より実用腟が高いと推定される。無機吸
着材を担体へ担持する試みは種々考えられている。例え
ば金属塩水溶液あるいは液体金属有様化合物を用い、細
孔を有する担体へ含侵させた後、加水分解し、さら(−
焼成により金属酸化物を担体に担持する方法がある。
In method (1), deterioration of cobalt adsorption activity due to solidification processes such as sintering and addition of binder is unavoidable and is difficult to use in practice.
There are many problems. Method (2) has a problem with the adhesion between the adsorbent and the carrier, but since there is a wide range of options regarding adsorption activity, it is estimated that the practical value is higher than method (1). Various attempts have been made to support inorganic adsorbents on carriers. For example, a carrier having pores is impregnated with an aqueous metal salt solution or a liquid metal-like compound, and then hydrolyzed and further (-
There is a method of supporting a metal oxide on a carrier by firing.

この方法は、加水分解あるいは焼成など、処理条件によ
り、吸着性能や密着性が大きく影響されるため条件の制
御がむずかしく、均質で安定した性能の吸着材が得にく
かった。
In this method, adsorption performance and adhesion are greatly affected by treatment conditions such as hydrolysis or calcination, making it difficult to control the conditions and making it difficult to obtain an adsorbent with homogeneous and stable performance.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、吸着活性に優れ、密着性も良好でかつ
均質で安定した耐熱耐食性担体に担持した酸化錫無機吸
着材を提供することにある。
An object of the present invention is to provide an inorganic tin oxide adsorbent that has excellent adsorption activity, good adhesion, and is supported on a homogeneous and stable heat-resistant and corrosion-resistant carrier.

〔発明の概要〕[Summary of the invention]

本発明による酸化錫無機吸着材は耐熱耐食性担体上に酸
化錫薄層を生成させて成るものであり、その製造方法は
、耐熱耐食性の担体を用い、これに錫メッキを施した後
、高温酸化処理により上記担体」−に酸化錫薄層を生成
させるものである。
The tin oxide inorganic adsorbent according to the present invention is made by forming a thin layer of tin oxide on a heat-resistant and corrosion-resistant carrier, and the method for producing it is to use a heat-resistant and corrosion-resistant carrier, plate it with tin, and then apply high-temperature oxidation. The treatment produces a thin layer of tin oxide on the carrier.

このように、金属錫の直接酸化で得られる酸化錫は、加
水分解−焼成で1′!、られる酸化錫より高い吸着活性
を有し、密着性も良好で優れたコバルト吸着能を発揮す
る。
In this way, tin oxide obtained by direct oxidation of metallic tin can be obtained by hydrolysis and calcination. It has higher adsorption activity than tin oxide, has good adhesion, and exhibits excellent cobalt adsorption ability.

〔発明の実施例〕[Embodiments of the invention]

次に実施例によって、本発明の詳細な説明する。 Next, the present invention will be explained in detail by way of examples.

耐熱耐食ドL担体としては、金属(チタニウム。As the heat-resistant and corrosion-resistant L carrier, metal (titanium, etc.) is used.

ジルコニワム、ステンレスなど)あるいはセラミック(
アノトミナ、チタニア、ジルコニアなど)の粒状体(球
状、円筒形、中空体、破砕体など)。
zirconium, stainless steel, etc.) or ceramic (
Anotomina, titania, zirconia, etc.) granular bodies (spherical, cylindrical, hollow, crushed bodies, etc.).

繊、錐体(ワール状、線状、鋼状など)あるいはブロッ
ク体が適用される。実施例では、硬質アルミナ磁器製外
径約511mψ、内径約−13凛ψ、高さ約5 ynr
yの中空円筒形粒状担体を用いた。
Fibers, cones (whirl-shaped, linear, steel-shaped, etc.) or block bodies are applicable. In the example, it is made of hard alumina porcelain with an outer diameter of about 511 mψ, an inner diameter of about -13 mm, and a height of about 5 ynr.
A hollow cylindrical granular carrier of y was used.

まず該粒状担体への錫メッキを可能(二させる前処理を
施す。その1例としてパラジウム処理を次に示す。
First, a pretreatment is performed to enable the granular carrier to be plated with tin. As an example, palladium treatment is shown below.

・テトラアンミン塩化パラジウム〔Pd(NHs)+ 
)c127.5  g/It @ EDTA・2Na               
      8.0   〃eアンモニア N■(40
H280//・ヒドラジン(IM浴溶液 N2H48r
rJ/Iゾl溶液・温 度           35
℃前記粒状担体を籠に入れ、パラジウム処理液中で籠を
回転撹拌しながら1〜5分間処理する。この処理により
粒状担体表面にはパラジウムの極薄層(約0.01μ)
が形成され担体の電気メッキが可能となる。
・Tetraamine palladium chloride [Pd(NHs)+
) c127.5 g/It @ EDTA・2Na
8.0〃eAmmonia N■(40
H280//・Hydrazine (IM bath solution N2H48r
rJ/Isol solution/temperature 35
C. The granular carrier is placed in a cage and treated in a palladium treatment solution for 1 to 5 minutes while rotating and stirring the cage. Through this treatment, an extremely thin layer (approximately 0.01μ) of palladium is formed on the surface of the granular carrier.
is formed, allowing electroplating of the carrier.

上記粒状担体への前処理後、目的とする錫メツキ処理を
行なう。担体へのバレル法による錫メッキの1例を次に
示す。
After the pretreatment of the granular carrier, the intended tin plating treatment is performed. An example of tin plating on a carrier by the barrel method is shown below.

・錫メツキ液組成 ホウ弗化第19B  Sm(BF4)2   2001
1/1ホウ弗酸 HBF4100〜200  //ペプ
トン            5 〃β−ナフトール 
        1 g/A・メッキ条件 温   度         20〜50°C電流普K
        2〜12 A/dm2πL   圧 
         1〜3 ■陰  極      純
錫板 粒状担体への錫メッキ厚さは、実用上0.1〜10μが
荒′当である。実施例では錫メッキ丹5さは3μのもの
を用いた。
・Tin plating liquid composition Boron fluoride No. 19B Sm (BF4)2 2001
1/1 boric acid HBF4100~200 //Peptone 5 β-naphthol
1 g/A・Plating condition temperature 20~50°C current normal K
2~12 A/dm2πL pressure
1-3 ■Cathode The practical thickness of the tin plating on the pure tin plate granular carrier is approximately 0.1-10μ. In the example, tin plating with a redness of 3 μm was used.

錫メッキを施した粒状担体は、金属錫を吸着剤となる酸
化E (sno2)に変換するr;温酸化処理を行なう
The tin-plated granular carrier is subjected to a warm oxidation treatment that converts metallic tin into oxidized E (sno2), which serves as an adsorbent.

高温酸化処理は錫メツキ担体を空気又は酸素雰囲気にお
いて高温加熱するもので、処理の1例を次に示す。
The high-temperature oxidation treatment involves heating the tin-plated carrier at a high temperature in air or oxygen atmosphere, and an example of the treatment is shown below.

・温 度=800〜1000’C; ・雰囲気:純酸素(02分圧1 atm )この高温酸
化により担体表面に生成する酸化錫は吸着活性が高く、
また同相反応により硬質アルミナ磁器の素地との密着性
も良好な実用性に優れる酸化錫無機吸着(副が得られる
・Temperature = 800-1000'C; ・Atmosphere: Pure oxygen (partial pressure 1 atm) Tin oxide produced on the surface of the carrier by this high temperature oxidation has high adsorption activity;
In addition, the inorganic adsorption of tin oxide, which has good adhesion to the hard alumina porcelain base and is highly practical, is obtained through the in-phase reaction.

図は、本実施例で得られた酸化錫/#、r′屯吸着材の
担持酸化錫と微粉末酸化錫および((hの粉末金属酸化
物系吸着材のコバルト吸着能を比較調介したものである
。この図の結果は次のようにして慴だ。
The figure shows the cobalt adsorption ability of the tin oxide/#,r'ton adsorbent obtained in this example, the finely powdered tin oxide, and the powdered metal oxide adsorbent ((h). The result of this figure is expressed as follows.

本実施例で得られた酸化錫無機吸着材から採取した担持
酸化錫Sr+02 +また比較のため微粉末酸化錫5n
02 (平均粒径003μ)さらに他の吸着材として粉
末マグネタイ) FJ30.(平均粒径0.45μ)、
粉末酸化チタンTiO□(平均粒径0.18μ)、粉大
酸化ジルコニウム2,02(平均粒径0.25μ)をそ
れぞれコバルトイオン濃度120 P、 P、 bの試
験水へLOOP、”ミmになるように添加した後、撹拌
しながら3.00℃。
Supported tin oxide Sr+02 collected from the tin oxide inorganic adsorbent obtained in this example + 5n of finely powdered tin oxide for comparison
02 (average particle size 003μ) and powdered magnetite as another adsorbent) FJ30. (average particle size 0.45μ),
Powdered titanium oxide TiO□ (average particle size 0.18 μ) and powdered large zirconium oxide 2,02 (average particle size 0.25 μ) were LOOPed into test water with cobalt ion concentrations of 120 P, P, and b, respectively. After adding the mixture to 3.00°C while stirring.

lh+でコバルトイオンを吸着させ、試験水に残留する
コバルトイオン濃度を測定した。未吸着分である残留コ
バルトイオンが少い吸−f[はどコバルト吸着能が大き
いので、図から明らかなように、本実施例の担持SnO
2は微粉末SnO2および他の吸着材より侵れたコバル
ト吸着能を有することがわかる。
Cobalt ions were adsorbed with lh+, and the concentration of cobalt ions remaining in the test water was measured. As is clear from the figure, the supported SnO
It can be seen that No. 2 has better cobalt adsorption ability than fine powder SnO2 and other adsorbents.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明による酸化錫無機吸着材は吸着活性
が大きくコバルト吸着能(−優れ、かつ造粒体としての
次能も充分であるため高温高圧の炉水ン対象とするカラ
ムへの実用無機吸着材としてと、微粉末酸化錫さらに、
粉末マグネタイト、粉末酸化チタン、粉末酸化iフルコ
ニウムの各々について、コバルト吸着後の試験液中残留
コバルト濃度を示したものである。
As described above, the tin oxide inorganic adsorbent according to the present invention has high adsorption activity, excellent cobalt adsorption ability, and sufficient secondary performance as a granule, making it suitable for practical use in columns targeted for high-temperature and high-pressure reactor water. As an inorganic adsorbent, finely powdered tin oxide,
The graph shows the residual cobalt concentration in the test liquid after cobalt adsorption for each of powdered magnetite, powdered titanium oxide, and powdered i-fluconium oxide.

(7317>代理人 弁理士 則 近 憲 佑(ばか1
名)
(7317> Agent Patent Attorney Noriyuki Chika (Idiot 1)
given name)

Claims (2)

【特許請求の範囲】[Claims] (1)耐熱耐食性担体上に酸化錫薄層を生成させて成る
酸化錫無機吸着材。
(1) An inorganic tin oxide adsorbent formed by forming a thin layer of tin oxide on a heat-resistant and corrosion-resistant carrier.
(2)  耐熱耐食性の担体を用い、これに錫メッキを
施した後、高温酸化処理(二より上記担体上に酸化錫薄
層を生成させる酸化錫無機吸着材の製造方法。
(2) A method for producing an inorganic tin oxide adsorbent, in which a heat-resistant and corrosion-resistant carrier is used, the carrier is tin-plated, and then subjected to high-temperature oxidation treatment (secondary step to form a thin layer of tin oxide on the carrier).
JP57195867A 1982-11-10 1982-11-10 Tin oxide inorganic adsorbing material and preparation thereof Pending JPS5987043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195867A JPS5987043A (en) 1982-11-10 1982-11-10 Tin oxide inorganic adsorbing material and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195867A JPS5987043A (en) 1982-11-10 1982-11-10 Tin oxide inorganic adsorbing material and preparation thereof

Publications (1)

Publication Number Publication Date
JPS5987043A true JPS5987043A (en) 1984-05-19

Family

ID=16348304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195867A Pending JPS5987043A (en) 1982-11-10 1982-11-10 Tin oxide inorganic adsorbing material and preparation thereof

Country Status (1)

Country Link
JP (1) JPS5987043A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137299A (en) * 1980-03-31 1981-10-27 Tokyo Shibaura Electric Co Device for removing high temperature cobalt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137299A (en) * 1980-03-31 1981-10-27 Tokyo Shibaura Electric Co Device for removing high temperature cobalt

Similar Documents

Publication Publication Date Title
JP2003024798A (en) Noble metal-containing supported catalyst and process for its preparation
JPS58212070A (en) Cathode composite for fusible carbonate fuel battery
CN100451166C (en) Chemical plating activating process and metal depositing process therewith
CA1306236C (en) Highly active catalyst and highly active electrode made of this catalyst
WO2021058719A1 (en) Metal foam element containing cobalt and method for producing same
WO2022166152A1 (en) PREPARATION METHOD FOR CORE-SHELL STRUCTURED TUNGSTEN/GADOLINIUM OXIDE POWDER FOR X AND γ RAY PROTECTION
GB1574007A (en) Cermets
JPS58212069A (en) Electrode for fusible carbonate fuel battery
KR101305451B1 (en) Method of fabrication of porous supported materials on metal structure and catalysts modules prepared by the same
JPH01115936A (en) Fluorinated polymer-ion exchange body having metal condensate therein or on its surface and production thereof
JP2005235688A (en) Carrying catalyst for fuel cell, its manufacturing method and fuel cell
JPH05193943A (en) Method for preparing reduced titanium oxide
JPS5987043A (en) Tin oxide inorganic adsorbing material and preparation thereof
JPS62286545A (en) Production of ion exchange substance
JPS5962343A (en) Inorganic adsorbent and its manufacture and utilization method
CN116237214B (en) Al-Y-Cr-Fe-Er-O high-entropy composite oxide hydrogen-resistant coating and preparation method thereof
CN113843416B (en) Preparation method and application of copper-coated chromium composite powder based on high-pressure hydrogen reduction method
Levi et al. Synthesis and characterization of copper–silver core–shell nanowires obtained by electrodeposition followed by a galvanic replacement reaction in aqueous solution; comparison with a galvanic replacement reaction in ionic media
JPH01135536A (en) Fine-dispersion metal carrying compound and production thereof
JP3882114B2 (en) Neutron multiplier for fusion reactor
JPS61220785A (en) Production of sintered filter medium for adsorbing inorganic ion
CN115055162B (en) Preparation method of zeolite molecular sieve adsorption material
CN108686677B (en) Preparation method and application of nano catalytic material with palladium oxide shell-nickel oxide core structure
KR100926770B1 (en) Platinum-gold alloy thin film having a mesoporous structure by electrochemical deposition and platinum-gold alloy thin film manufactured using the same
CN105689725B (en) A kind of Metal Palladium or palladium alloy nanowires preparation method