JPS5986804A - Device for deciding and controlling state of concentration of boiler water in boiler system - Google Patents

Device for deciding and controlling state of concentration of boiler water in boiler system

Info

Publication number
JPS5986804A
JPS5986804A JP19709082A JP19709082A JPS5986804A JP S5986804 A JPS5986804 A JP S5986804A JP 19709082 A JP19709082 A JP 19709082A JP 19709082 A JP19709082 A JP 19709082A JP S5986804 A JPS5986804 A JP S5986804A
Authority
JP
Japan
Prior art keywords
water
water level
time
point
level detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19709082A
Other languages
Japanese (ja)
Inventor
村田 四朗
藤田 忠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP19709082A priority Critical patent/JPS5986804A/en
Publication of JPS5986804A publication Critical patent/JPS5986804A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明はボイラ系における缶水の濃縮化に伴う缶水中
の不純’41r ra度の増大傾向を連続的に監視1−
るための缶水濃縮度判定装置及び制御装置に係わる。
DETAILED DESCRIPTION OF THE INVENTION This invention continuously monitors the increasing tendency of impurity in can water due to concentration of can water in a boiler system.
The invention relates to canned water concentration determination devices and control devices.

一般に、ボイラ系を長時間運転1−ると、缶水が濃縮化
されるので、缶水中に含まれる溶解固形分等の不純物の
濃度が増大して、缶水表面に気泡を生ずるものである。
In general, when a boiler system is operated for a long time, the canned water becomes concentrated, which increases the concentration of impurities such as dissolved solids contained in the canned water, causing bubbles to form on the surface of the canned water. .

そして、かがる気泡が気水境界面を離れて蒸気中に混入
してキャリーオーバーを生じ、ボイラ系に接続されたバ
ルゾ等の関連機器の損傷を招くことが知られている。
It is known that the bubbles leave the air-water interface and get mixed into the steam, causing carryover and causing damage to related equipment, such as a balzo, connected to the boiler system.

而して、キャリーオーバーを防ぐためには、給水あるい
は蒸気の流歇を流量計でもって計測すること等により、
缶水祷縮度を推量し7て、これがある程度増大したとき
は、缶水の吹き出しく以下プローという)を行って、新
しい缶水と↑d換することが行われているものの、小形
のボイラ系では、流量計を装備1−ることの経済的負担
が相対的に大きくなるので、その採用が一般に困難であ
り、而して、流量計による計測に代えて、ボイラ系の累
積燃料消費量を貯蔵容器、典型的には、1・゛ラム缶の
単位でもって計測することにより、あるいは、缶水の一
部を抽出してその電気伝導度を計測することにより、缶
水濃縮を推t−rることかしばしば行われている。
Therefore, in order to prevent carryover, it is necessary to measure the flow of water or steam with a flowmeter, etc.
Although it is common practice to estimate the shrinkage degree of canned water, and when it increases to a certain extent, the canned water is blown out (hereinafter referred to as plowing) and replaced with new canned water. Since the economic burden of equipping a flowmeter is relatively large, it is generally difficult to employ a flowmeter, and instead of measuring the cumulative fuel consumption of a boiler system, Concentration of canned water is estimated by measuring the amount of water in a storage container, typically 1 μm, or by extracting a portion of the canned water and measuring its electrical conductivity. -r is often done.

しかしながら、累積燃料消費量に基づいて累積蒸気消費
量を推量し、更に、累積蒸気消費量に基づいて缶水濃縮
度を推量する場合には、ボイラ系の効率が蒸気消費量(
負荷)に従って変化するので、高精度の計測は期待し難
いものであった。
However, when estimating the cumulative steam consumption based on the cumulative fuel consumption and further estimating the can water concentration based on the cumulative steam consumption, the efficiency of the boiler system is determined by the steam consumption (
It was difficult to expect high-accuracy measurement because it changed according to the load).

加えて、ドラム缶等の貯紙容器の計数に基づいて計測す
る場合には、計量の最小単位が極めて大きく、計測に際
して多大の量子化誤差を伴うので、連続量による計測に
はほど遠いものであった。
In addition, when measuring based on the count of paper storage containers such as drums, the minimum unit of measurement is extremely large and there is a large quantization error during measurement, so it is far from being able to measure continuous quantities. .

その上、ドラム缶等による累積燃料消費量の計測は、消
費した燃料が貯蔵されていたドラム缶等の数量をいちい
ち計数(2て、これを記録′1−るという煩雑な作業を
伴うので、往往にして実行されず、累積頻発量、ひいて
は缶水濃縮度を全く把握できなくなってしまうこともし
ばしばであった。
Furthermore, measuring cumulative fuel consumption using drums, etc. involves the tedious task of counting (2) and recording the number of drums, etc. in which the consumed fuel was stored. It was often the case that the cumulative frequency of occurrence and even the concentration of canned water could not be determined at all.

また、缶水の電気伝導度に基づいて缶水濃縮度を推量す
る場合には、間歇的な計測しかできず、しか(、実際上
針側回数が制約されるために、缶水濃縮度の増す傾向を
連続的に計測することができなかった。
Furthermore, when estimating the concentration of canned water based on the electrical conductivity of canned water, only intermittent measurements can be made; It was not possible to continuously measure the increasing trend.

而して、かかる従前のボイラ系では、ブローを実行すべ
き時期を正確に把握することができず、缶水を著しい濃
縮状態に至らしめ、キャリーオーバーを頻発させ、関連
機器の損傷を招く危険性が極めて大であるという欠点が
あった。
In such conventional boiler systems, it is not possible to accurately determine when to perform blowing, which leads to the canned water becoming extremely concentrated, causing frequent carryover, and causing damage to related equipment. It had the disadvantage of being extremely sensitive.

この発明は、最も簡単な構成の水位制御を採用するボイ
ラ系、即ち、ボイラの水管に連通している水位検出部に
設けられた単一の水位検出プローブからの信号に基づい
て給水ポンプを周期的に、所定期間(例ニ一定期間)作
動1−るという水位制御方式を採るボイラ系に適用され
るもので、その目的は上記従来技術の欠点を除去し2、
高精度に、しかも、連続的に缶水濃縮度を’uj;祝な
いし判定する缶水濃縮状態判定装置を提供することであ
る。
This invention is a boiler system that adopts water level control with the simplest configuration, that is, the feed pump is cycled based on a signal from a single water level detection probe installed in a water level detection section that communicates with the water pipe of the boiler. Generally, it is applied to a boiler system that adopts a water level control method that operates for a predetermined period (for example, a certain period of time), and its purpose is to eliminate the drawbacks of the above-mentioned conventional technology.
It is an object of the present invention to provide a can water concentration state determining device that highly accurately and continuously determines the concentration level of can water.

さらに、この発明の目的は、上記判定出力に応じて適宜
自動的に缶水を除去して缶水濃度をボイラ系の許容範囲
内に維持1−るようにした缶水溌度制御装置を提供する
ことである。
A further object of the present invention is to provide a can water solubility control device that automatically removes can water as appropriate in accordance with the above-mentioned determination output and maintains the concentration of can water within the allowable range of the boiler system. It is to be.

これらの目的は特許請求の範囲に記載1−る構成をもつ
装置により達成される。
These objects are achieved by a device having the structure described in the claims.

上述したように、一体の水位検出プローグのみを用いて
給水ポンプを周期的(II続的)に所定期間作動″l−
るという水位制御方式を用いるボイラ系にあっては、缶
水の濃縮化が進むにつれ、給水ポンプの給水開始点より
、水位検出プローブの信号の立上り(水位検出プローブ
位置を通って水位が上昇しつつあることを表わ′f)時
点までの時間が増大し、他方、水位検出プローノ信号の
立上り時点より給水完了時点までの時間は減少していく
ことを、本願発明者は見い出した。この発明はかかる現
象に着目して考案されたものである。
As mentioned above, the water pump is operated periodically (continuously) for a predetermined period of time using only the integrated water level detection probe.
In a boiler system that uses a water level control method, as the canned water becomes more concentrated, the water level detection probe signal rises from the water supply start point of the water supply pump (the water level rises through the water level detection probe position). The inventor of the present invention has found that the time from the time when the water level detection prono signal rises to the time when the water supply is completed decreases, while the time from the time when the water level detection prono signal rises to the time when the water supply is completed decreases. This invention was devised by paying attention to this phenomenon.

以下、図面を参照してこの発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図(A)はボイラ系の構成を示す縦断面図であり、
ボイラ1はその断面が示されている。第1図(B)は第
1図(A)におけるA−A断面図である。
FIG. 1(A) is a longitudinal sectional view showing the configuration of the boiler system,
Boiler 1 is shown in cross section. FIG. 1(B) is a sectional view taken along the line AA in FIG. 1(A).

図において、ボイラ1の内部は壁1aの内周面に沿って
多数の水管1bが立設され、水・#1bは中空筒状態か
ら成り、その下端部は環状の下部管寄せ1c(氷室)に
、そして、その上端部は同じく環状の上部管寄せld(
蒸気室)にそれぞれ連通し、下部管寄せ1c及び水管1
bの下部には、缶水が収納される。
In the figure, inside the boiler 1, a large number of water pipes 1b are installed along the inner peripheral surface of the wall 1a, and the water pipe #1b is a hollow cylinder, and its lower end is an annular lower header 1c (ice chamber). , and its upper end is also an annular upper header ld (
steam room), lower header 1c and water pipe 1
Canned water is stored in the lower part of b.

水管1bで囲まれたボイラ1の中心部には、燃焼室1e
が形成され、その上部には、電動機1fで駆動されるプ
ロア1gに連通する風道1hが設けられ、風道1h内に
は、ノズル棒11と電極棒1Jが垂設される。
A combustion chamber 1e is located in the center of the boiler 1 surrounded by water pipes 1b.
is formed, and an air passage 1h communicating with a proar 1g driven by an electric motor 1f is provided above the air passage 1h, and a nozzle rod 11 and an electrode rod 1J are vertically provided within the air passage 1h.

燃焼室1eの下端部は、多数の水管1bの中空部を経て
煙道1kに連通1−る。上部・U寄せ1dからは、連通
管11が壁1a外に延びて下部管寄せIcK連通する。
A lower end portion of the combustion chamber 1e communicates with a flue 1k through a number of hollow portions of water pipes 1b. A communication pipe 11 extends from the upper header 1d to the outside of the wall 1a and communicates with the lower header IcK.

連通管11の中間部には、缶水水位を目視用能に表示て
る水位ゲージ1mと水位検出部2が介装される。水位検
出部2には、給水制御部ろが接続され、その出力端子は
給水ポンプ4を駆動する電動機4aに接続される。給水
ポンプ4の導入管は図示しない水源に連通し、その吐出
管は下部管寄せ1cに連通する。
A water level gauge 1 m and a water level detection unit 2 are installed in the middle of the communication pipe 11 to visually display the water level in the can. A water supply control section is connected to the water level detection section 2, and its output terminal is connected to an electric motor 4a that drives a water supply pump 4. An inlet pipe of the water supply pump 4 communicates with a water source (not shown), and a discharge pipe thereof communicates with the lower header 1c.

更に、連通管1」の上部には圧力検出部5が接続され、
その出力端子は燃焼制御部6に接続される。燃焼制御部
6がらは、制御信号線6a〜6cが延びて電動+!!1
f、電極+llj、燃料ポンプ6dの導入管は図示しな
い燃料タンクに連通し2、その吐出管ハノスル俸11に
連通てる。そして、下部管寄せ1cがらはブロー菅1n
が延びて、手動のノロ−コック1pを介して図示しない
排水路に連通し、上部管寄せ1dがらは蒸気管1qが延
びて気水分離″#1rに接続される。気水分YjI’t
jJ I r内の蒸気は蒸気管1sを1虫して図示しな
い所望の蒸気負荷に送られる、分離された水は戻し管1
Lを通して下部管寄せに戻される。戻し管1もの下方部
には、後述する自動制御により、適宜水管内の缶水をブ
ロー1″るブロー弁1uが喉りイ」けられる。
Furthermore, a pressure detection unit 5 is connected to the upper part of the communication pipe 1.
Its output terminal is connected to the combustion control section 6. The combustion control unit 6 has control signal lines 6a to 6c extending from it to the electric +! ! 1
f, electrode +llj, and the inlet pipe of the fuel pump 6d communicate with a fuel tank (not shown) 2, and its discharge pipe 11. Then, the lower pipe header 1c is the blow pipe 1n.
The steam pipe 1q extends from the upper header 1d and is connected to the steam/water separator #1r.
The steam in the steam pipe 1s is sent to a desired steam load (not shown), and the separated water is passed through the return pipe 1.
It is returned to the lower header through L. At the lower part of the return pipe 1, a blow valve 1u for blowing out the canned water in the water pipe as appropriate is opened by automatic control to be described later.

上記ボイラ系の構成では、蒸気を発生させるに際しては
、′電動機1fでもってプロプ1gを駆動して風道1h
内に空気を圧送しつつ電極棒1Jに高電圧を印加してノ
ズル棒11の先端から噴射される燃料を着火させ、これ
を燃焼室1e内で燃焼させる。かがる燃焼により生じた
高温度の燃焼ガスは、燃焼室1e下端部から水営1bの
中空部に進入し、これを通過して煙道1kに至り排気さ
れる。この間に熱交換が行われて水WI b中の缶水が
加熱されて蒸気となり、これが下部管寄せ1dにて年収
、蓄積され、蒸気管1q、気水分離器1r、蒸気管1s
を通じて蒸気負荷に供給されるものである。
In the above boiler system configuration, when generating steam, the prop 1g is driven by the electric motor 1f and the air passage 1h is
A high voltage is applied to the electrode rod 1J while air is being pumped into the nozzle rod 11 to ignite the fuel injected from the tip of the nozzle rod 11, which is combusted within the combustion chamber 1e. The high-temperature combustion gas generated by the burnt combustion enters the hollow part of the suiei 1b from the lower end of the combustion chamber 1e, passes through this, reaches the flue 1k, and is exhausted. During this time, heat exchange takes place and the canned water in the water WI b is heated and turned into steam, which is accumulated in the lower header 1d and then transferred to the steam pipe 1q, the steam separator 1r, and the steam pipe 1s.
The steam load is supplied to the steam load through the

そして、燃焼制御に関しては、上部−#寄せ1d内の蒸
気圧を連通管11を通じて抽出して圧力検出部5に供給
し、圧力検出部5は上部管寄せ1d内の蒸気圧が予め設
定された下限蒸気圧に達したことを検出したとぎには、
下限蒸気圧信号を、同様に、上限蒸気圧に達したことを
検出したときには、上限蒸気圧信号を燃焼制御部乙に送
る。
Regarding combustion control, the steam pressure in the upper header 1d is extracted through the communication pipe 11 and supplied to the pressure detection section 5, and the pressure detection section 5 is connected to the steam pressure in the upper header 1d set in advance. As soon as it is detected that the lower limit vapor pressure has been reached,
Similarly, when it is detected that the lower limit vapor pressure signal has reached the upper limit vapor pressure, the upper limit vapor pressure signal is sent to the combustion control section B.

燃焼制御部6は、蒸気の消費が続行して上部管寄せ1d
内の蒸気圧が降下し、下限蒸気圧信号を受けたときには
、制御信号線6aを仙じて電動機1fを始動させて、ヲ
ロア1gでもって風道1hを孕気ノ〜ジしてがら側倒J
信号線6bを通じて?(f。
The combustion control unit 6 continues to consume steam and the upper header 1d
When the vapor pressure in the tank drops and a lower limit vapor pressure signal is received, the control signal line 6a is used to start the electric motor 1f, and the fan 1g blows air through the air passage 1h while falling on its side. J
Through signal line 6b? (f.

極棒1Jに高電圧を印加するとともに、制御信号線6c
を通じて燃料ポンプ6dを始動させて、ノズル棒1〕か
ら噴射される燃料に点火し燃焼を開始させ、更に、蒸気
の発生が続行して蒸気圧が上昇し、圧力検出部5から上
限蒸気圧信号を受けたときには、制御信号線6cを通じ
て燃料ポンプ6aを停止させて、燃料供給を断つことに
より燃焼を停止させるとともに、燃焼ガスの排出を待っ
て、制御信号線6aを通じて電動機1fを停止させてノ
ロ71gからの送風を断つ。
While applying a high voltage to the pole rod 1J, the control signal line 6c
The fuel pump 6d is started through the nozzle rod 1, and the fuel injected from the nozzle rod 1 is ignited to start combustion. Furthermore, the generation of steam continues and the steam pressure increases, and the pressure detection unit 5 outputs an upper limit steam pressure signal. When this happens, the fuel pump 6a is stopped via the control signal line 6c, and combustion is stopped by cutting off the fuel supply, and the electric motor 1f is stopped via the control signal line 6a after the combustion gas is discharged. Cut off air from 71g.

而して、燃焼の断続制御でもって、上部管寄せ1d内の
蒸気圧を上下限蒸気圧として予め設定された肉圧力値の
間の圧力値に保つことができるものである。
By controlling the combustion on and off, the steam pressure in the upper header 1d can be maintained at a pressure value between the meat pressure values preset as the upper and lower steam pressure limits.

なお、簡便な装置では、電動機1f、燃料ポンプ6dの
始動・停止制御、及び・電極棒1Jへの高電圧の印加を
同時的に行ってもよい。
In addition, in a simple device, the start/stop control of the electric motor 1f and the fuel pump 6d, and the application of high voltage to the electrode rod 1J may be performed simultaneously.

更に、給水系に関しては、連通管11内の気水境界面、
丁なわち、水管1b中の缶水水位の変化を水位検出部2
に伝達する。水位検出部2には図示しない単一の水位検
出プローブが配置されている。検出プローブとしては任
意の適当な公知の水位センサーが使用できる。水位検出
プローブの出力は給水制御部乙に送られる。
Furthermore, regarding the water supply system, the air-water interface in the communication pipe 11,
In other words, the water level detection unit 2 detects changes in the canned water level in the water pipe 1b.
to communicate. A single water level detection probe (not shown) is arranged in the water level detection section 2 . Any suitable known water level sensor can be used as the detection probe. The output of the water level detection probe is sent to the water supply control unit B.

給水制@j部6は水位検出プローブの出力信号の立下り
(水位検出プローブの検出信号を通って水位が下降して
いることを表ゎf)時点を基準時点として、周期的(断
続的)に給水ポンプを所定期間(例、一定期間)作動す
る1浅能を有し例えば、水位下降検出部とタイマーとで
構成できる。
The water supply system @j unit 6 operates periodically (intermittently) with the falling edge of the output signal of the water level detection probe (indicating that the water level is falling through the detection signal of the water level detection probe) as a reference point. It has a shallow function that operates the water supply pump for a predetermined period (for example, a fixed period), and can be composed of, for example, a water level drop detection section and a timer.

以上の給水の断続制御と、前記燃焼の断続制御は互いに
別個独立に行われる。
The intermittent control of water supply and the intermittent control of combustion are performed separately and independently from each other.

また、缶水のブローに対しては後述の自動制御される電
磁ブロー弁1u以外に、手動でブローコック1pを開く
ことにより、制水−#1r1を通じて下部管寄せ1c及
び水管1b中の缶水の一部あるいは全部をブローするこ
とができるものである。
In addition, for blowing canned water, in addition to the automatically controlled electromagnetic blow valve 1u described later, by manually opening the blow cock 1p, the canned water in the lower header 1c and the water pipe 1b is allowed to flow through the water control #1r1. It is possible to blow some or all of the

なお、電磁ブロー弁1uは手動ブローコック1pと並置
して取り付けてもよい。
In addition, the electromagnetic blow valve 1u may be installed in parallel with the manual blow cock 1p.

ナオ、7” ロア1g、風道1h、ノズル棒1]、電4
1f俸1Jかも成るバーナは、これに限られるものでは
なく、要すれば、水管1b中の缶水を加熱して蒸気を発
生させ得れば足りるので、一般的には、電気ヒータ等を
も含む加熱装置であればよい。
Nao, 7" lower 1g, airway 1h, nozzle rod 1], electricity 4
The burner, which can be used for 1F and 1J, is not limited to this type of burner.If necessary, it is sufficient to heat the canned water in the water pipe 1b to generate steam, so in general, an electric heater or the like is also used. Any heating device including the above may be used.

而して、同様に、燃焼側(11部6も加熱装置を断続す
る加熱制御部であればよい。
Similarly, the combustion side (11 section 6) may also be a heating control section that turns on and off the heating device.

第2図は給水制御部ろ及び缶水濃縮判定部のブロック図
を示1−6水位検出部のプローブ100の出力は上昇検
出部110と下降検出部120に供給される。下降検出
部120は給水制呻部乙の一要素を成すもので、その出
力は給水制御部の残りの要素でル]ろタイマ1(130
)に供給される。タイマ1の出力(又は下降検出部12
0の出力)はタイマ2(140)のS ta、I・1.
入力に供給される。他方、」二昇検出部110の出力は
タイマ2(140)の5top入力に供給される、タイ
マ2(140)の出力は計数器150に入力される。M
I数器150は適宜缶水濃縮信号を出力1−る。
FIG. 2 shows a block diagram of the water supply control section and the canned water concentration determination section, and the output of the probe 100 of the water level detection section 1-6 is supplied to the rise detection section 110 and the fall detection section 120. The lowering detection unit 120 constitutes one element of the water supply control unit B, and its output is determined by the filter timer 1 (130) in the remaining elements of the water supply control unit.
). Output of timer 1 (or fall detection section 12
0 output) is the timer 2 (140) S ta, I.1.
supplied to the input. On the other hand, the output of the ``second rise detection section 110'' is supplied to the 5top input of the timer 2 (140), and the output of the timer 2 (140) is input to the counter 150. M
The I counter 150 outputs a canned water concentration signal as appropriate.

第6図は、この発明による缶水濃縮の判定方式を説明す
るだめの波形図である。第6図では、水位検出プローブ
を中間レベルの水位に配置した場合を想定しである。さ
らに、給水制御部乙による制御方式として、水位検出プ
ロ−ノ信号の立下り時点(下降検出時)より一定時間後
に給水ポンプを始動し、一定時間給水を継続させること
を想定しである。
FIG. 6 is a waveform diagram illustrating a determination method for can water concentration according to the present invention. FIG. 6 assumes that the water level detection probe is placed at an intermediate water level. Furthermore, as a control method by the water supply control unit B, it is assumed that the water supply pump is started after a certain period of time from the falling point of the water level detection prono signal (when a fall is detected), and the water supply is continued for a certain period of time.

第6図におし・て水位のカーブaは濃縮か進んでいない
ときの缶水の水位変化を例示しており、破線のカーブb
は濃縮が進行した段階での缶水の水位変化を例示してい
る。カーブaにおいて、時点1は、水位がプローブの位
置を11nつて下Vl−#−る時点、即ちプローブ信号
の立下り時点であり、時点1より一定時間後の時点2に
なるとタイマ1(第2図参1(t )の動作で給水か開
始される。時点6はかかる給水により水1立が上昇して
水位プローブの位置を通過1−ろ時点、即ちプローブ信
号の立上り時点である。給水ポンプはタイマ1(130
,第2図参照)の動きで時点2より一定時間後である時
点4で給水を完了1−る。給水が完了1−ると蒸気負荷
のため除々に水位が減少し時点5(1)で再び水位プロ
ーブ信号が立下り、次のサイクルに入る。
In Figure 6, curve a of the water level illustrates the change in the water level of canned water when concentration is not progressing, and the broken line curve b
exemplifies changes in the water level of canned water at a stage where concentration has progressed. In curve a, time 1 is the time when the water level passes 11n below the probe position, that is, the time when the probe signal falls, and at time 2, which is a certain period of time after time 1, timer 1 (second Water supply starts with the operation shown in Figure 1(t).At time 6, the water rises due to this water supply and passes the position of the water level probe 1-ro, that is, the rise of the probe signal.Water supply pump is timer 1 (130
, see Figure 2), water supply is completed at time 4, which is a certain period of time after time 2. When the water supply is completed (1-), the water level gradually decreases due to the steam load, and at time 5 (1), the water level probe signal falls again and the next cycle begins.

缶水の濃縮が進むと、缶水のあわだちのため、水位検出
部のプローブ100は真の水位より高い水位を観察する
ことになり、時点2で給水が開始されるとあわだちが減
少ないし消滅して実水位に近い観察する。この結果、検
出部の観察水位は破線りに示すような傾向を呈する。
As the concentration of the canned water progresses, the probe 100 of the water level detection unit will observe a water level higher than the true water level due to the bubbles in the canned water, and when water supply is started at time point 2, the bubbles will decrease or disappear. Observe the water level close to the actual water level. As a result, the observed water level of the detection unit exhibits a tendency as shown by the broken line.

缶水の濃縮の進行は、時点1,2.ろ、4 間の時間差
に次のような変化をもたらす。即ち、濃縮化が進むにつ
れて、時点2と時点6間の時間は増大する傾向をもち、
時点ろと時点4間の時間は減少するイ頃向をもつ。
The progress of concentration of canned water is shown at time points 1, 2. The following changes occur in the time difference between 4 and 4. That is, as enrichment progresses, the time between time points 2 and 6 tends to increase;
The time between point 0 and point 4 has a decreasing direction.

そこで、この発明によれば、値線化が進行するにつれ時
点間の長さが変化するような2つの時点間の時間の所定
の範囲外になった場合に、缶水の濃縮を推定1−るよう
にしている。
Therefore, according to the present invention, when the time between two time points is outside a predetermined range where the length between the time points changes as the value linearization progresses, the concentration of canned water is estimated to be 1- I try to do that.

例えば、給水1jij始時点2と水位検出プローブ信号
立上り時点6間の時間差を監視1−るため、第6図では
、タイマ2(140)で、給水制御I′11部ろのタイ
マ1の出力信号(給水指令でもある)の立上り時点より
、上昇検出部110の出力信号の立上り時点までをチェ
ックし、これをタイマ140に内部設定された時間と比
較し、チェックした時間が設定時間より長くなった場合
に信号を出力させる。
For example, in order to monitor the time difference between water supply 1jij start time 2 and water level detection probe signal rise time 6, in FIG. (which is also a water supply command) to the rise of the output signal of the rise detection unit 110, and compared this with the time internally set in the timer 140, and found that the checked time was longer than the set time. Output a signal when

好ましくは、タイマ140の後段に31数器150を接
続1−る。計数器150は水位のサイクルの複数個に相
当する所定の期間ごとに、タイマ2より(゛(つの出力
パルスが送られてきたかヲt1数し、それか、上記複数
サイクルの数と一致したら出力信号を出す。いいがえれ
ば、言1敬器150は、時点2,6間の時間の所定の増
大が、連続する複数サイクルにわたり継続して観察され
た場合に、濃縮状態信号としての出力を出−1−6 上記の代りに、プローブ信号立下り時点1(下降検出時
点)からプローブ信号立下り時点ろ(上昇検出時点)ま
での時間を監視してもよい。この場合は、第2図におい
て給水指令出力タイマ1(130)の出力を監視タイマ
2 (140)の人力に接続1〜る代りに、下降検出部
120の出力をタイマ2の5tart入力に接続する・ −安1−ろに、監視タイマ2(140)の選択入力(s
tart、入力と5top入力)としては、缶水の濃縮
化につれその時間差が変化するような2つの時点であれ
ばよい。したがって、上述した以外に、プローブ立下り
時点6(上昇検出時点)で監視タイマをスタートさせ、
給水完了時点4(あるいは次のサイクル開始時点である
プローブ立下り時点5(下降検出時点)でタイマをスト
ップさせるようにしてもよい。ただし、この場合は、両
時点間の長さは缶水の濃縮化につれ減少する傾向をもつ
から、チェック時間が監視タイマの内部設定時間長以下
になった場合にタイマより缶水の濃縮を表わす判定出力
が出るように1−る。
Preferably, a 31 number counter 150 is connected after the timer 140. The counter 150 counts the number of output pulses sent from the timer 2 every predetermined period corresponding to a plurality of water level cycles, and outputs an output if it matches the number of the plurality of cycles. In other words, the device 150 outputs an enrichment status signal when a predetermined increase in the time between time points 2 and 6 is continuously observed over a plurality of consecutive cycles. Out-1-6 Instead of the above, the time from the probe signal fall point 1 (fall detection point) to the probe signal fall point (rise detection point) may be monitored. In this case, as shown in FIG. In place of connecting the output of the water supply command output timer 1 (130) to the human power of the monitoring timer 2 (140), connect the output of the descent detection section 120 to the 5tart input of the timer 2. , selection input (s) of monitoring timer 2 (140)
tart, input and 5top input) may be two points in time whose time difference changes as the canned water becomes more concentrated. Therefore, in addition to the above, the monitoring timer is started at probe fall point 6 (rise detection point),
The timer may be stopped at time 4 when water supply is completed (or at time 5 when the probe falls (downward detection time), which is the start of the next cycle. However, in this case, the length between both times is equal to the length of the canned water. Since it tends to decrease as the can water becomes more concentrated, the timer is set to 1 so that when the check time becomes less than the internally set time length of the monitoring timer, the timer outputs a judgment output indicating that the can water is concentrated.

特にきめの絹がい缶水濃縮信号を必要としない1易合は
、計数器150を省略し、監視タイマ2(140)の出
力を缶水濃縮信号とし7て作用丁ればよい。
In particular, in cases where a textured canned water concentration signal is not required, the counter 150 may be omitted and the output of the monitoring timer 2 (140) may be used as the canned water concentration signal.

第4図は単一の水位検出プローブ100を給水開始レベ
ルに配置した場合の第6図と同様な波形図である・この
」場合、第6図のタイムチャートにおける時点1と時点
6か実質上一致する点を除き、第6図の場合と同様であ
る。
FIG. 4 is a waveform diagram similar to FIG. 6 when a single water level detection probe 100 is placed at the water supply start level. In this case, time points 1 and 6 in the time chart of FIG. This is the same as the case in FIG. 6 except that they match.

さて、以上のようにして得た濃縮状態信号を用いて前述
したブロー弁を自動制御させるとよい−6かかる作動回
路の構成例を第5図と第6図に示す。
Now, it is preferable to automatically control the above-mentioned blow valve using the concentration state signal obtained as described above. An example of the configuration of such an operating circuit is shown in FIGS. 5 and 6.

第5図はノロ−の終了をタイマを用いて行う方式で、r
J痒縮か検出された場合に、所定時間だけ電磁ブロー弁
を作動して缶水を一部ノロー1−るものであり、第6図
は水位センサーのみを用いる方式で濃縮が検出された場
合に水管内の缶水があるレベルに達するまで市1磁ブロ
ー弁を作動1−るものである。
Figure 5 shows a method in which a timer is used to end the no-row.
When condensation is detected, an electromagnetic blow valve is activated for a predetermined period of time to partially drain the canned water. Figure 6 shows the case where condensation is detected using only a water level sensor. The magnetic blow valve is operated until the canned water in the water pipe reaches a certain level.

以下、第5図と第6図について詳述すれば次の通り。The details of FIGS. 5 and 6 are as follows.

第5図において、Rrは第2図の濃縮度判定部の出力側
に設けた濃縮検出リレー(図示せず)の接点である。こ
の濃縮検出リレー接点Rfと並列に自己保持用のリレー
接点x−1を接続し、これらの両接点と直列にタイマ接
点T−1を接続し、タイマ接点T−1と直列にタイマT
、第1図Aに示す′電磁弁1uのコイルS■及び自己保
持用リレーXを並列接続した構成である。したがって、
濃縮が検出されて出力リレーが励磁されると、自己保持
用リレーXKより、その接点X−1が閉成して、電磁ブ
ロー弁コイルS■が励磁されて電磁ブロー弁lu (第
1図A)が作動し、水管の缶水のブローが開始される。
In FIG. 5, Rr is a contact point of a concentration detection relay (not shown) provided on the output side of the concentration determination section of FIG. A self-holding relay contact x-1 is connected in parallel with this concentration detection relay contact Rf, a timer contact T-1 is connected in series with both these contacts, and a timer T-1 is connected in series with the timer contact T-1.
, the coil S of the electromagnetic valve 1u shown in FIG. 1A and the self-holding relay X are connected in parallel. therefore,
When concentration is detected and the output relay is energized, its contact X-1 is closed by the self-holding relay ) is activated, and the canned water in the water pipe begins to blow.

プローの開始後、所定時間が経過するとタイマTの接点
T−’lが開成して電磁ブロー弁コイルS■が釈放され
、ブローが終了する。
When a predetermined period of time has elapsed after the start of the blow, the contact T-'l of the timer T is opened, the electromagnetic blow valve coil S■ is released, and the blow ends.

なお、タイマ゛rの作動中(自動プロー中)は給水ポン
プの作動を禁止するよう構成するとよい。
Note that the water supply pump may be configured to be prohibited from operating while the timer is operating (during automatic plowing).

第5図の回路は濃縮検出出力リレー接点Rf と自己保
持用リレー接点X−1を並列接続し7、これらからの両
1妾点と直列に水位センサー(なお、このセンサーは上
述した給水制御ll用の水位検出プローブより下方に配
置する)の接点ELを接続、水位センサーの接点と直列
に並列構成の電画プロー弁の操作コイルS■と自己保持
リレーXを接続したものである。したがって、缶水の濃
縮状態が検出されて出力リレー接点Rfが閉成されると
、電磁ブロー弁の操作コイルSVが励磁されて、缶水の
ノロ−が開始する。缶水のプローに伴ないその水位が低
下し、水位センサーの検出レベルに達すると、その信号
により接点ELが開いて操作コイルか釈放され、電磁ブ
ロー弁が閉じプローが終了する。なお、前と同様自・助
ブロー中は給水ポンプの作動を禁止するのがのぞましい
The circuit shown in Fig. 5 connects the concentration detection output relay contact Rf and the self-holding relay contact The contact EL of the water level sensor (located below the water level detection probe) is connected, and the self-holding relay X is connected to the operating coil S of the electric plow valve, which is configured in series and parallel to the contact of the water level sensor. Therefore, when the concentrated state of the canned water is detected and the output relay contact Rf is closed, the operating coil SV of the electromagnetic blow valve is excited and the canned water starts to swell. As the canned water is plowed, the water level decreases, and when it reaches the detection level of the water level sensor, the contact EL opens in response to the signal, releasing the operating coil, and the electromagnetic blow valve closes, ending the plowing. As before, it is recommended to prohibit the operation of the water pump during self/assistance blowing.

以上の缶水のブロー及びそれに続く、給水ポンプ4(第
1図A)の水管への給水により、水管内の缶水の濃度は
薄められる。
By blowing the canned water as described above and subsequently supplying water to the water pipe from the water supply pump 4 (FIG. 1A), the concentration of the canned water in the water pipe is diluted.

第7図はこのプロー給水制御により、缶水濃度がどのよ
うに制御されるかを概略的に示したものである。第7図
において、縦軸は水の濃縮度を示し、横1lllllは
時間を示1″o線KSは、J+、 2図の濃縮判定部の
判定レベルに対応する缶水の濃度レベル(平均)を示す
ものであり、使用するボイラ系の許容範囲内にあるもの
である。曲線aにより示されるように、水管内の缶水は
運転時間の経過とともにその濃縮度が増大′1−る。こ
の発明によれは、缶水の濃縮度が点すに示すように設足
レベルKsに到達したら自動的に缶水のブローがなされ
、続く給水により、その濃度は点Cで概略的に示される
ように低下させられる。缶水のブローがなされないと1
−ると、水管内の缶水の濃度は破aCで示すように、増
加し続け、ボイラ系に損傷を与える危険な状態となって
行く。
FIG. 7 schematically shows how the can water concentration is controlled by this plow water supply control. In Fig. 7, the vertical axis shows the concentration of water, and the horizontal 1llllll shows time. This is within the allowable range of the boiler system used.As shown by curve a, the concentration of canned water in the water pipe increases with the passage of operating time. According to the invention, when the concentration of the canned water reaches the set level Ks as shown in the dot, the canned water is automatically blown, and by the subsequent water supply, the concentration is as shown schematically at the point C. If the canned water is not blown, it will be reduced to 1.
- Then, the concentration of canned water in the water pipe continues to increase as shown by ruptured aC, and the situation becomes dangerous and can cause damage to the boiler system.

上述した第5図と第6図に示す回路はいずれも水管内の
缶水な全てではなく一部ブローする制御を与えろもので
ある。原理的には可能であるが、缶水を全て自動ブロー
する方式を1采用1−る場合には、バーナ、給水ポンプ
にインターロックをかける必要があり、必然的にボイラ
運転を中断しなければならない。これに対し、上述の構
成例に係る一部ブロ一方式には、ボイラの運転を継続で
きる利点があり、長期間にわたって蒸気を必要と1−る
場合に好適である。
Both of the circuits shown in FIGS. 5 and 6 described above provide control for blowing out some, but not all, of the canned water in the water pipe. In principle, it is possible, but if you use a system that automatically blows all canned water for one pot, it is necessary to interlock the burner and water pump, and it is necessary to interrupt boiler operation. No. On the other hand, the partial blower type according to the above-mentioned configuration example has the advantage that the boiler can continue to operate, and is suitable when steam is required for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)はこの発明の構成を付設することができる
小形ボイラ系の構成を示すブロック図、第1図(B)は
第1図”(A)におけるボイラ1のA−A断面図、第2
図はこの発明の実施例に関するものであり、給水制御部
及び濃縮度判別部の構成を示すブロック図、第6図と第
4図は第2図の構成における要部の波形図、第5図はタ
イマ方式によるブロー弁作動回路倒閣、第6図は水位七
ンプ方式によるブロー弁作動回路倒閣、第7図は缶水濃
度制側1を説明するための図である。 1・・・ボイラ、     2・・・水位検出部、6・
・・給水制御部、   4・・・給水ポンプ、100・
・・水位検出プローグ、110・・・上昇検出部、12
0・・・下降検出部、 160・・・給水制御タイマ、
140・・・濃縮監視タイマ、 15[]・・・濃縮判定用計数器。 L7図 に 手続補正書(方式) 1、事件の表示 昭和オフ年 ′4有 願第1ツ7θノO号捧°旨釘嘔泥
f 6、補正をする者 事件との関係  出 願 人 住所 2罫 (tユ3)11、へ4トヤ土  γL斤11FF
丁つ−4、代理人
FIG. 1(A) is a block diagram showing the configuration of a small boiler system to which the configuration of the present invention can be attached, and FIG. 1(B) is a sectional view taken along line AA of the boiler 1 in FIG. 1''(A). , second
The figures relate to an embodiment of the present invention, and are a block diagram showing the configuration of a water supply control section and a concentration determination section, FIGS. 6 and 4 are waveform diagrams of main parts in the configuration of FIG. 2, and FIG. 6 is a diagram for explaining the blow valve operating circuit according to the timer method, FIG. 6 is a diagram for explaining the blow valve operating circuit according to the water level seven pump method, and FIG. 7 is a diagram for explaining the canned water concentration control side 1. 1...Boiler, 2...Water level detection section, 6.
...Water supply control unit, 4...Water supply pump, 100.
...Water level detection prologue, 110...Rise detection section, 12
0...Descent detection section, 160...Water supply control timer,
140...Concentration monitoring timer, 15[]...Concentration determination counter. Procedural amendment written in figure L7 (method) 1. Indication of the case Showa off year '4 present Application No. 7 θ No. 0 Dedicated 6. Person making the amendment Relationship with the case Applicant's address 2 Ruled (tyu3) 11, to 4 Toya soil γL catty 11FF
Chotsu-4, Agent

Claims (1)

【特許請求の範囲】 (+1  ボイラの水管に連通している水位検出部に設
けられた単一の水位検出プローブからの信号に基づいて
給水ポンプを周期的に所定期間作動して水位制御を行う
ボイラ系において、 M配水位検出ゾロ−プの信号の立下り及び立上り時点、
給水ポンプの給水開始時点及び給水完了時点のうち、少
なくとも、缶水の濃度変化に依存して時点間の長さが変
化する2つの時点を選択し、この2つの時点間の期間が
所定範囲外になった場合を以って缶水の濃縮状態である
と判定するよ5にしたことを特徴とするボイラ系におけ
る缶水(諷縮状態判定装置。 (2、特許請求の範囲第1項記載の装置にお(\て、前
記2つの時点は、一方が給水開始時点で、他方が水位の
上昇を表わす水位検出プローブ信号の立上り時点である
こと。 (3)特許請求の範囲第1項記載の装置において、前記
2つの時点は、一方が水位の上昇を表わ丁水位検出プロ
ーノ信号の立上り時点であり、他方が給水完了時点であ
ること。 (4)特許請求の範囲第1項記載の装置において、前記
2つの時点は、始点が水位下降を表わす水位検出プロー
ブ信号の立下り時点であり、終点が水位上昇を表わす水
位検出プローノ信号の立上り時点であること。 (514f−許請求の範囲第1項記載の装置にお(・て
、前記2つの時点は、始点が水位上昇を表わ丁水位検出
プローブ信号の立上り時点であり、終点が水位検出プロ
ーズ信号の立下り時点であること。 (6)ボイラの水管に連通している水位検出部に設けら
れた単一の水位検出プローブからの信号に基づいて給水
ポンプを周期的に所定期間作動して水位制御を行うボイ
ラ系において、 前記水位検出プローブの信号の立下り及び立上り時点、
給水ポンプの給水開始時点及び給水完了時点のうち、少
なくとも、缶水の濃度変化に依存して時点間の長さが変
化する2つの時点を選択入力として使用し、この2つの
時点間の期間が所定範囲外になったことが、水位検出部
における水位変化の連続する複数の周期にわたって検知
される場合を以って缶水の濃縮状態であると判定するよ
うにしたことを特徴とてるボイラ系の缶水濃縮状態判定
装置。 (力 特許請求の範囲第6項記載の装置において、前記
2つの時点は、一方が給水開始時点で、他方が水位の上
昇を表わす水位検出プローブ信号の立上り時点であるこ
と。 (8)特許請求の範囲第6項記載の装置において、前記
2つの時点は、一方が水位の上昇を表わす水位検出プロ
ーブ信号の立上り時点であり、他方が給水完了時点であ
ること。 (9)特許請求の範囲第6項記載の装置において、前記
2つの時点は、始点が水位下降を表わす水位検出プロー
ノ信号の立下り時点であり、終点が水位上昇を表わ1−
水位検出ゾローノ信号の立上り時点であること。 00)特許請求の範囲第6項記載の装置において、前記
2つの時点は、始点が水位上昇を表わす水位検出プロー
ズ信号の立上り時点であり、終点が水位検出プローノ信
号の立下り時点である−こと。 旧)ボイラの水管に連通している水位検出部に設けられ
た単一の水位検出プローブからの信号に基づいて給水ポ
ンプを周期的に所定期間作動して水位制御を行うボイラ
系において、 前記水位検出プローブの信号の立下り及び立上り時点、
給水ポンプの給水開始時点及び給水完了時点のうち、少
なくとも、缶水の濃度変化に依存して時点間の長さが変
化する2つの時点を選択入力として使用し、この2つの
時点間の期間が所定範囲外になった場合を以って缶水の
濃縮状態であると判定して缶水濃縮信号を出力1−る判
定手段と、この判定手段からの信号に応じてブロー弁を
自動作動する作動手段とを設けたことを特徴と1−るボ
イラ系における缶水濃度制御装置。 (121ボイラの水管に連通している水位検出部に設げ
られた単一の水位検出プローブからの信号に基づいて給
水ポンプを周期的に所定期間作動して水位制御を行うボ
イラ系において、 前記水位検出プローブの信号の立下り及び立上り時点、
給水ポンプの給水開始時点及び給水完了時点のうち、少
なくとも、缶水の鑓度変化に依存して時点間の長さが変
化する2つの時点を選択入力として使用し、この2つの
時点間の期間が所定範囲外になったことが、水位検出部
における水位変化の連続する複数の周期にわたって検知
される場合を以って缶水の濃縮状態であると判定して缶
水濃縮信号を出力する判定手段と、この判定手段からの
信号に応じてブロー弁を自動作動する作動手段とを設け
たことを特徴とするボイラ系における缶水濃度制御装置
[Claims] (+1 Water level control is performed by periodically operating a water pump for a predetermined period of time based on a signal from a single water level detection probe provided in a water level detection unit communicating with a water pipe of a boiler. In the boiler system, the falling and rising points of the M water level detection Zorope signal,
Select at least two points out of the water supply start point and water supply end point of the water supply pump, the length of which changes depending on changes in the concentration of canned water, and determine whether the period between these two points is outside a predetermined range. 5. A device for determining a condensed state of canned water in a boiler system, characterized in that the canned water is determined to be in a condensed state when the In the device (\), one of the two time points is the time point at which water supply starts, and the other time point is the time point at which a water level detection probe signal indicating a rise in the water level rises. (3) Scope of Claim 1 In the device, one of the two points of time is the rising point of the water level detection signal indicating a rise in the water level, and the other is the point of completion of water supply. (4) Claim 1 In the device, the two points in time are a starting point at the falling point of the water level detection probe signal representing a falling water level, and an ending point at the rising point of the water level detecting probe signal representing a rising water level. (514f-Claims In the apparatus according to item 1, the two points in time are such that the starting point is the rising edge of the water level detection probe signal indicating a rise in the water level, and the ending point is the falling edge of the water level detection probe signal. (6) In a boiler system in which water level is controlled by periodically operating a water pump for a predetermined period of time based on a signal from a single water level detection probe provided in a water level detection section communicating with a water pipe of the boiler, The falling and rising points of the water level detection probe signal,
Among the water supply start time and water supply end time of the water supply pump, at least two time points whose lengths between the time points change depending on changes in the concentration of canned water are used as selection inputs, and the period between these two time points is determined. A boiler system characterized in that canned water is determined to be in a concentrated state when a water level detection unit detects that the water level is out of a predetermined range over a plurality of consecutive periods of water level change. canned water concentration status determination device. In the device according to claim 6, one of the two time points is the time point at which water supply starts, and the other time point is the time point at which a water level detection probe signal indicating a rise in the water level rises. (8) Patent Claim In the device according to claim 6, one of the two time points is the rising time of a water level detection probe signal indicating a rise in the water level, and the other is the time point at which the water supply is completed. In the apparatus described in item 6, the two points in time are a starting point at which the water level detection prono signal falls, indicating a falling water level, and an ending point indicating a rising water level.
It must be at the rising point of the water level detection signal. 00) In the device according to claim 6, the two points in time are such that the starting point is the rising point of the water level detection prono signal indicating a rise in the water level, and the ending point is the falling point of the water level detecting prono signal. . Old) In a boiler system in which the water level is controlled by periodically operating a water pump for a predetermined period of time based on a signal from a single water level detection probe installed in a water level detection section that communicates with the water pipe of the boiler, The falling and rising points of the detection probe signal,
Among the water supply start time and water supply end time of the water supply pump, at least two time points whose lengths between the time points change depending on changes in the concentration of canned water are used as selection inputs, and the period between these two time points is determined. Judgment means for determining that the canned water is in a concentrated state when it falls outside a predetermined range and outputting a canned water concentration signal, and automatically operating a blow valve in response to the signal from the determining means. 1. A can water concentration control device for a boiler system, characterized in that it is provided with an actuating means. (121 In a boiler system in which the water level is controlled by periodically operating the water pump for a predetermined period of time based on a signal from a single water level detection probe installed in the water level detection unit communicating with the water pipe of the boiler, The falling and rising points of the water level detection probe signal,
Among the water supply start point and water supply end point of the water supply pump, at least two points whose length changes depending on the change in the level of canned water are used as selection inputs, and the period between these two points is determined. When it is detected that the water level is out of a predetermined range over a plurality of consecutive cycles of water level change in the water level detection section, it is determined that the canned water is in a concentrated state and a canned water concentration signal is output. 1. A can water concentration control device for a boiler system, comprising: means for controlling the concentration of canned water in a boiler system; and an operating means for automatically operating a blow valve in response to a signal from the determining means.
JP19709082A 1982-11-10 1982-11-10 Device for deciding and controlling state of concentration of boiler water in boiler system Pending JPS5986804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19709082A JPS5986804A (en) 1982-11-10 1982-11-10 Device for deciding and controlling state of concentration of boiler water in boiler system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19709082A JPS5986804A (en) 1982-11-10 1982-11-10 Device for deciding and controlling state of concentration of boiler water in boiler system

Publications (1)

Publication Number Publication Date
JPS5986804A true JPS5986804A (en) 1984-05-19

Family

ID=16368556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19709082A Pending JPS5986804A (en) 1982-11-10 1982-11-10 Device for deciding and controlling state of concentration of boiler water in boiler system

Country Status (1)

Country Link
JP (1) JPS5986804A (en)

Similar Documents

Publication Publication Date Title
JPS5986804A (en) Device for deciding and controlling state of concentration of boiler water in boiler system
JPH0126442B2 (en)
US7436187B2 (en) Conductance control for detecting foam and/or an unstable fluid line
JPS5986803A (en) Device for deciding and controlling state of concentration of boiler water in boiler system
JPH0749208Y2 (en) Boiler concentrating blow device
JPS5913803A (en) Controller for state of concentration of boiler water in boiler system
JPH029241B2 (en)
JPH0254897B2 (en)
JPS58200904A (en) Detector for intermittent blow in boiler system
JPS5810187A (en) Apparatus for judging capacity of feed water pump
JPS631483B2 (en)
JP3461693B2 (en) Boiler bottom blower
JPS6326282B2 (en)
JPH0335923Y2 (en)
JPH0236845B2 (en)
JPH0348404B2 (en)
JPS5913807A (en) Controller for state of concentration of boiler water in boiler system
JP2003130307A (en) Boiler water concentration detection method and detection/control system utilizing boiler feedwater control system
JPH0221481B2 (en)
JPH11248107A (en) Boiler equipment with feedwater quantity calculater
JP3443274B2 (en) Boiler water level detection tube communication tube blockage detection device
JP3643392B2 (en) Bath memorial device
JPS5924101A (en) Basic charging controller for boiler compound in boiler system
JP2002267095A (en) Cylinder heating method and device
JPH0210323B2 (en)