JPS5986016A - Automatic focusing adjusting device - Google Patents

Automatic focusing adjusting device

Info

Publication number
JPS5986016A
JPS5986016A JP57197236A JP19723682A JPS5986016A JP S5986016 A JPS5986016 A JP S5986016A JP 57197236 A JP57197236 A JP 57197236A JP 19723682 A JP19723682 A JP 19723682A JP S5986016 A JPS5986016 A JP S5986016A
Authority
JP
Japan
Prior art keywords
circuit
ultrasonic
motor
lens
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57197236A
Other languages
Japanese (ja)
Inventor
Masamichi Toyama
当山 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57197236A priority Critical patent/JPS5986016A/en
Publication of JPS5986016A publication Critical patent/JPS5986016A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/40Systems for automatic generation of focusing signals using time delay of the reflected waves, e.g. of ultrasonic waves

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To prevent erroneous range finding by using an ultrasonic-wave motor as the driving source of an optical system which adjusts a body to a proper focusing position and operating the ultrasonic-wave motor mutually different in time zone. CONSTITUTION:When a power source is turned on, a timing control circuit 21 operates an oscillation circuit 16 and a transmitter and receiver 11 functions as a transmitter to transmit ultrasonic pulses for distance measurement to the body. Then, the circuit 21 operates a receiving circuit 17 to receive reflected pulses by the transmitter and receiver 11. The circuit 21 put a range finder circuit 18 in clocking operation to hold a final value. A signal indicating the position of a focusing lens 12 is supplied from a position sensor 14 to a data processing circuit 19 to generate a defocusing signal. The circuit 21 drives the ultrasonic wave motor 15 through a motor driving circuit 20 a maximum distance measurement time later. Consequently, the lens 13 is shifted to the focusing position and the defocusing signal decreases.

Description

【発明の詳細な説明】 (技術分野) 本発明は自動焦点調節装置、特に、超音波信号を発信し
、その反射波信号を受信して物体に対する光学系の適正
合焦位置を定める様にした自動焦点調節装置に関する。
[Detailed Description of the Invention] (Technical Field) The present invention relates to an automatic focusing device, and more particularly, to an automatic focusing device that transmits an ultrasonic signal and receives the reflected wave signal to determine the proper focusing position of an optical system with respect to an object. The present invention relates to an automatic focus adjustment device.

(従来技術) 上に述べた様な超音波を利用した能動型の自動焦点調節
装置については既に種々提案され、また、一部カメラ等
に於いて実施されていることは周知の通りである。
(Prior Art) It is well known that various active automatic focusing devices using ultrasonic waves as described above have already been proposed, and have been implemented in some cameras and the like.

ところで、斯る超音波利用の能動型自動焦点調節装置に
限ったことではないが、一般の自動焦点調節装置ではレ
ンズの、駆動源としてモータを利用する場合が多い。そ
の場合、多く問題となることは小型で高性能(高出力)
のモータが仲々無く、どうしてもレンズ装置がモータを
組み込むことによって著しく大型化してしまうと云うこ
とである。
Incidentally, although this is not limited to active automatic focusing devices using ultrasonic waves, general automatic focusing devices often use a motor as a driving source for the lens. In that case, the problem is often small size and high performance (high output).
This means that the lens device inevitably becomes significantly larger by incorporating the motor.

斯かる問題点に(着み、レンズ鏡筒を利用して直接モー
タを組立てようとする様な試も一部為されているが、未
だ未だ技術的に困維な点が多く、実用化に到っていない
のが現状である。
To address this problem, some attempts have been made to assemble a motor directly using a lens barrel, but there are still many technical difficulties and it is difficult to put it into practical use. The current situation is that this has not been achieved yet.

一方、近年になって超仔波モータと云うものが発明され
だが、これによると、上述した様な問題点が解決される
ことになる。
On the other hand, in recent years, something called a supersonant wave motor has been invented, which solves the above-mentioned problems.

超音波モータとは、固定体と移動体を備え、これらの固
定体と移動体のうち少くとも一方は複数の電歪素子で駆
動される少くとも一つの振動子を含み、前記電歪素子の
引出しリードは駆動面1源に接続され固定体と移動体は
トルクを伝達するだめに振動子の表面上の少くとも一点
において互いに押合い、モして電歪素子に加える超音波
電気エネルギーを機械振動エネルギーに変換させ、該機
械的振動エネルギーを移動体の一方向運動に変えるモニ
タ装置であシ、この装置に関してはすでに、特開昭52
−29192号公報等で開示されている。
An ultrasonic motor includes a fixed body and a movable body, and at least one of the fixed body and the movable body includes at least one vibrator driven by a plurality of electrostrictive elements, and the ultrasonic motor includes at least one vibrator driven by a plurality of electrostrictive elements. The extraction lead is connected to the driving surface 1 source, and the fixed body and the movable body are pressed against each other at at least one point on the surface of the vibrator in order to transmit torque, and the ultrasonic electric energy applied to the electrostrictive element is mechanically applied. It is a monitoring device that converts the mechanical vibration energy into unidirectional motion of a moving object.
This is disclosed in Japanese Patent No.-29192 and the like.

特にここでは機械的振動エネルギーとして表面弾性波を
用い、該弾性波によって移動体を摩擦駆動し、その際、
少くとも一つ以上の電歪素子の振動によって定在波を発
生させる様な構成の超音波モータについて述べる。
In particular, surface acoustic waves are used as mechanical vibration energy, and the moving body is frictionally driven by the elastic waves, and at that time,
An ultrasonic motor configured to generate a standing wave by the vibration of at least one electrostrictive element will be described.

第1図はとのモータの駆動原理を示し、1を移動体、2
を弾性振動子とする。X軸は振動子2の表面上に起きる
表面波の進行方向を示し2弾性振動子に電歪素子によシ
振動を与えると、その表面に弾性波が発生し振動子表面
上を伝搬していく。この弾性波は縦波と横波を伴った表
面波で、その質点の運動は楕円軌道を描く振動をする。
Figure 1 shows the driving principle of the motor, where 1 is a moving object and 2 is a moving object.
Let be an elastic oscillator. The X-axis indicates the traveling direction of surface waves generated on the surface of the vibrator 2. When vibration is applied to the electrostrictive element of the 2-elastic vibrator, an elastic wave is generated on the surface and propagates on the surface of the vibrator. go. This elastic wave is a surface wave with longitudinal waves and transverse waves, and the motion of the mass point oscillates in an elliptical orbit.

質点Aについて着目すると縦振lJu、横振巾Wの脩円
葎動を行なっており、表面波の進行方向を+X方向とす
ると楕円運動は反時計方向に回転している。この表面波
は一波長ごとに頂点A、A’・・・・・を有し、その頂
点速度はX成分のみであってV==2πfu (但しf
は振動数)である。そこでとの振動子20表面に移動体
1の表面を加圧接触させると移動体表面は頂点人。
Focusing on the mass point A, it is performing a circular motion with a vertical vibration lJu and a lateral vibration width W, and if the direction of travel of the surface wave is the +X direction, the elliptical motion rotates counterclockwise. This surface wave has vertices A, A', etc. for each wavelength, and its apex velocity is only the X component, V==2πfu (however, f
is the frequency of vibration). When the surface of the movable body 1 is brought into pressure contact with the surface of the vibrator 20, the surface of the movable body becomes a vertex.

A′・・・・・のみに接触するのであるから移動体1は
振動子2との間での摩擦力にょシ矢印Nの方向に駆動す
ることになる。
Since the movable body 1 contacts only A', the movable body 1 is driven in the direction of the arrow N due to the frictional force between the movable body 1 and the vibrator 2.

矢印N方向の移動体1の移動速度は振動数fに比例する
。又加圧接触による摩擦駆動を行なうため縦振巾Uばか
シでなく横振巾Wにも依存する。即ち、移動体1の移動
速度は楕円運動の大きさに比例し、楕円運動の大きい方
が速度が速い。従って移動体速度は電歪素子に加える電
圧に比例する。
The moving speed of the moving body 1 in the direction of arrow N is proportional to the frequency f. Furthermore, since frictional drive is performed by pressurized contact, it depends not only on the vertical oscillation width U but also on the lateral oscillation width W. That is, the moving speed of the moving body 1 is proportional to the size of the elliptical motion, and the larger the elliptical motion is, the faster the speed is. Therefore, the speed of the moving body is proportional to the voltage applied to the electrostrictive element.

第2図は第1図に示した弾性振動子2の表面波を発生さ
せるための原理説1明図である。3aと3bは弾性振動
子2の共振周波数から最も効率よく弾性波を得ることの
できる様な間隔で弾性振動子2に貼り付けた、例えばP
ZT等の雷、歪素子でちゃ、3aは線Aに、3bは線B
に接続されている。4はとのモータの駆動用の′電源で
あυ、V −Vosinωtという電圧を供給しており
、図からも明らかな↓うにMA AにはV =: Vo
 sin oJtの電圧が加わる。aBには90°位相
シフタ5にヨリV = Voein(ωt−1:2 )
の電圧が加えられる。
FIG. 2 is a diagram illustrating the principle of generating surface waves in the elastic vibrator 2 shown in FIG. 1. 3a and 3b are attached to the elastic vibrator 2 at intervals such that elastic waves can be obtained most efficiently from the resonance frequency of the elastic vibrator 2, for example, P.
If it is a lightning/distortion element such as ZT, 3a is line A, 3b is line B
It is connected to the. 4 is the power supply for driving the motor and supplies the voltage υ, V − Vosinωt, and as is clear from the figure, ↓ MA A has V =: Vo
A voltage of sin oJt is applied. aB has a 90° phase shifter 5 V = Voein (ωt-1:2)
voltage is applied.

+、−は移動体の移動方向により切換る。即ち90°位
相シフタ5によって+90°位相をずらす場合と一90
°位相をずらす場合によって移動体の進行方向が異なる
+ and - are switched depending on the moving direction of the moving body. That is, when the phase is shifted by +90° by the 90° phase shifter 5, and -90°
The moving direction of the moving body differs depending on the case where the phase is shifted.

(イ)〜に)は時間に応じた振動子(弾性体)2の振動
状態を示し、(イ)は1 = 、、 (ロ)はt=’l
a+” o>、(ハ)はtニー十〜、に)はt−に+丁
の状態ω     ω である。
(a) ~) shows the vibration state of the vibrator (elastic body) 2 according to time, (a) is 1 = ,, (b) is t = 'l
a+''o>, (c) is t knee 10~, and ni) is t- + t state ω ω .

弾性波は右方向に進むが、振動子2の駆動面の任意の質
点は反時側方向の楕円運動を行なう。
The elastic wave propagates in the right direction, but any mass point on the drive surface of the vibrator 2 performs an elliptical motion in the counterclockwise direction.

したがって駆動面に圧接される不図示の移動体は左方向
に移動する。
Therefore, the moving body (not shown) that is pressed against the drive surface moves to the left.

斯かる超音波モータをレンズのHA jobに適用する
には、例えば、前述の振tυ子2を固定鏡筒の一部に取
り付け、焦点調節レンズを保持した移動鏡筒を前述の移
動体1に肖ててその一部を振動子2の表面に加圧接触さ
せる様に+1′9成するか、若しくはその逆に構成する
ことによりレンズ鏡筒を直接利用して超音波モータを構
成することが出来、これにより前述した様な問題点の解
決を図ることが出来る様になる。尚、この場合の上記移
動伊筒の固定鏡筒に対する移動は、周知のへリコイド機
構若しくはカム杉jシ溝等を利用した回転駆動によって
行う様にしても艮いし、或いは又、光軸に沿う直進ガイ
ドに沿ったN線駆動によって得る様にしても良い。
To apply such an ultrasonic motor to a lens HA job, for example, the above-mentioned pendulum 2 is attached to a part of the fixed lens barrel, and the movable lens barrel holding the focusing lens is attached to the above-mentioned moving body 1. It is possible to construct an ultrasonic motor by directly using the lens barrel by forming a part of the lens barrel in pressure contact with the surface of the vibrator 2, or vice versa. This makes it possible to solve the problems mentioned above. In this case, the movable barrel may be moved relative to the fixed lens barrel by a rotary drive using a well-known helicoid mechanism or a cam groove, or alternatively, the movable barrel may be moved with respect to the fixed lens barrel. It may also be obtained by N-line driving along a straight guide.

さて、ところで、前述した超音波を利用した自動熱点調
節装置にレンズ駆動源として斯かる超音波モータを利用
した場合、次の様なことが問題となる。即ち、それは、
物体からの反射超音波信号を受信する受信回路と前述の
超音波モータとを同じ時間帯に作動させると超音波モー
タの動作に伴って発生する超音波信号を受信回路が受信
してしまい、誤測距を惹起してしまうと云った問題であ
る。とれは特に上記超音波モータの動作時に発生する超
音波信号が上記受信回路の受イn可能な信号の周波数帯
域に含まれる様な場合に大きく危惧されることであるが
、しかし乍ら、受信回路及び超音波モータ双方の性能面
を考慮すると両者間で扱う超音波信号の周波数帯域を明
確に分子iftすることは技術的に仲々難しいものであ
り、従って、上述の問題はほぼ不可規約に生じてし貰う
ことになる。
By the way, when such an ultrasonic motor is used as a lens drive source in the above-mentioned automatic heat point adjustment device using ultrasonic waves, the following problems arise. That is, it is
If the receiving circuit that receives reflected ultrasonic signals from an object and the aforementioned ultrasonic motor are operated at the same time, the receiving circuit will receive the ultrasonic signals generated by the operation of the ultrasonic motor, causing an error. The problem is that it causes distance measurement. This is a serious concern, especially when the ultrasonic signals generated during operation of the ultrasonic motor are included in the frequency band of signals that can be received by the receiving circuit. Considering the performance aspects of both the ultrasonic motor and the ultrasonic motor, it is technically difficult to clearly differentiate the frequency band of the ultrasonic signal handled between the two, and therefore, the above-mentioned problem almost inevitably occurs. I will have to do it.

(目的) 本発明は以上に述べた様な事情に鑑みて為されたもので
、超音波を使用する能動型の自動焦点調節装置として、
レンズ、駆動源として超音波モータを利用する場合に危
惧される上述の問題点を解消させて、超音波モータが発
する超音波信号に影響されることなく正確な測距を行う
ことが出来、しかも電源に対する負荷も一時に集中する
ことなく平均化され、従って、小容量の′α源で済む有
利な超音波利用の能動型自動焦点調節装置Aを提供する
ことをその目的とするものである。
(Purpose) The present invention was made in view of the above-mentioned circumstances, and is an active automatic focusing device using ultrasonic waves.
By solving the above-mentioned problems that arise when using an ultrasonic motor as a lens and drive source, accurate distance measurement can be performed without being affected by the ultrasonic signals emitted by the ultrasonic motor. It is an object of the present invention to provide an active automatic focusing device A using ultrasonic waves, which is advantageous in that the load is averaged out without being concentrated all at once, and therefore only requires a small-capacity 'α source.

(実施例) 以下、本発明の好ましい一実施例について第3.4.5
図を参照して説明する。
(Example) Hereinafter, a preferred embodiment of the present invention will be described in Section 3.4.5.
This will be explained with reference to the figures.

先ず第3図を参照するに、同図は本発明の一実がq例を
示すもので、11は測距用超音波パルス発・受信器、1
2は超音波発・受信器11の指向性を高めろためのホー
ン、16は光軸に沿って可動のフォーカシング・レンズ
、14はフォーカシング・レンズ13の繰出し位置を検
知するためのポジション・センサー、15はレンズ駆動
源としての前述の超音波モータで、先に倒起した様な態
様でレンズ13を光軸に沿って移動させ得る様設けられ
ている。16は発・受信器11そして超音波パルスを発
信させるだめの発信回路、17は物体からの反射超音波
パルスを発・受信器11を通じて受信するための受信回
路、1Bは測距用超音波パルスの発信から受信までの時
間を計測することにより物体迄の距離を検出する、例え
ば、パルス・カウンタ等を含む測距回路、19は該測距
回路18からの距離情報とポジション・センサー14か
ものレンズ位置情報とを入力してそれらをもとにフォー
カス・コントロール信号を出力するデータ処理回路、2
0は該データ処理回路19からのフォーカス・コントロ
ール信号に基づき超音波モーフ15を制御するモータ駆
動回路、21は16〜20で示される各回路の作動タイ
ミングをコントロールするタイミング・コントロール回
路である。ここに、上記データ処理回路20、モータ駆
動回路21及び超音波モータ15はレンズ15に対する
熱点調節手段を措成しているものである。尚、第4図は
、本実施例装置をサーボ・フォーカス・モードで作動さ
せた場合のタイミング・チャートであり、第5図は、ワ
ンショット・フォーカス・モードで作動させた場合のタ
イミング・チャートである。
First of all, referring to FIG. 3, this figure shows a Q example of the present invention, in which 11 is an ultrasonic pulse generator/receiver for distance measurement;
2 is a horn for increasing the directivity of the ultrasonic transmitter/receiver 11; 16 is a focusing lens movable along the optical axis; 14 is a position sensor for detecting the position of the focusing lens 13; Reference numeral 15 denotes the aforementioned ultrasonic motor as a lens driving source, which is provided so as to be able to move the lens 13 along the optical axis in a manner as if it were previously tilted up. 16 is a transmitter/receiver 11 and a transmitting circuit for transmitting ultrasonic pulses; 17 is a receiving circuit for receiving reflected ultrasonic pulses from an object through the transmitter/receiver 11; 1B is an ultrasonic pulse for distance measurement. A distance measuring circuit 19 includes, for example, a pulse counter, etc., to detect the distance to an object by measuring the time from transmission to reception of the distance measuring circuit 18 and the position sensor 14. a data processing circuit that inputs lens position information and outputs a focus control signal based on the information;
0 is a motor drive circuit that controls the ultrasonic morph 15 based on the focus control signal from the data processing circuit 19, and 21 is a timing control circuit that controls the operation timing of each circuit shown by 16 to 20. Here, the data processing circuit 20, motor drive circuit 21, and ultrasonic motor 15 constitute a heating point adjusting means for the lens 15. Furthermore, Fig. 4 is a timing chart when the device of this embodiment is operated in servo focus mode, and Fig. 5 is a timing chart when it is operated in one-shot focus mode. be.

先ず、第3,4図をもとに、サーボ・フォーカス・モー
ドでの動作について説明する。サーボ・フォーカス・モ
ードとは、物体迄の距離の変化に対し常時フォーカシン
グ・レンズを追従させるべく連続的に制御し、移動物体
に対しても常に合焦させる様なフォーカシング・モード
であυ、特にシネカメラやビデオカメラに適する。
First, the operation in servo focus mode will be explained based on FIGS. 3 and 4. Servo focus mode is a focusing mode in which the focusing lens is continuously controlled to always follow changes in the distance to the object, and is always in focus even on moving objects. Suitable for cine cameras and video cameras.

不図示のスイッチの操作により、本装置の電源を投入す
ると、タイミング・コントロール回路21は発信回路1
6を作動させ、第4図aに示す如く発・受信器11を発
信器として機能させて測距用超音波パルスを物体に向け
て発信させる。このパルスの発信期間は例えば約3.3
m5eQ程度であり、パルス自体40〜1Q Q KH
2程度に変調されていて外部ノイズと発信波パルスとの
識別を行なっている。発信波パルスを発信させた後にタ
イミング・コントロール回路21は受信回路17を作動
させ、発・受信器11を受信器として機能させて物体か
らの反射波パルスを受信させる。受信波パルスを第4図
すに示す。
When the power of this device is turned on by operating a switch (not shown), the timing control circuit 21 switches to the transmitting circuit 1.
6 is activated to cause the transmitter/receiver 11 to function as a transmitter and transmit distance measuring ultrasonic pulses toward an object as shown in FIG. 4a. The transmission period of this pulse is, for example, approximately 3.3
It is about m5eQ, and the pulse itself is 40~1Q Q KH
The signal is modulated to about 2.0 and is used to distinguish between external noise and transmitted wave pulses. After transmitting the outgoing wave pulse, the timing control circuit 21 activates the receiving circuit 17, causing the emitter/receiver 11 to function as a receiver and receive the reflected wave pulse from the object. The received wave pulse is shown in Figure 4.

この時の超音波パルスの発信から受信器の時間遅れてか
物体迄の距離に比例する。タイミング・コントロール回
路21はこのτを測距回路18により第4図Cの如りR
1時させ且つ、その最終値をホールドさせる。一方、フ
ォーカシング・レンズ13の位置を示す信号がポジショ
ン・センサー14から、上記ホールド値即ち、測距信号
を受けているデータ処理回路19に附与され、ここで測
距信号とレンズ位置倍旧との差、すなわち、デフォーカ
ス信号(第4図θに示す)が算出されるう次いで、タイ
ミング・コントロール回路21は最大測距時間τMkK
 (最長測距々離に相当する)待った後、モータ駆動回
路20を作動させる。第4図dのτ。、は、超音波モー
タ15が駆動されている時間帯を示す。この間はレンズ
位置が合焦位堅に向けて変化するだめに第4図8の如く
、デフォーカス信号は減少している。タイミング・コン
トロール回路21は一定時間(τ。N)モータ駆動回路
20を作動させてモータ15を1駆動させた後、第41
図dの如く、モータ15を停止させ、しかる後再び発信
回路16を作動させて測距用超音波パルスを発イイさせ
る。ここでて、あえは約BOmsec程度であり、τ。
At this time, the time delay between the transmission of the ultrasonic pulse and the receiver is proportional to the distance to the object. The timing control circuit 21 converts this τ to R as shown in FIG.
1 o'clock and hold the final value. On the other hand, a signal indicating the position of the focusing lens 13 is applied from the position sensor 14 to the data processing circuit 19 which receives the above-mentioned hold value, that is, the distance measurement signal, and here the distance measurement signal and the lens position are combined. After the difference, that is, the defocus signal (shown at θ in FIG. 4) is calculated, the timing control circuit 21 calculates the maximum distance measurement time τMkK.
After waiting (corresponding to the longest measured distance), the motor drive circuit 20 is activated. τ in Figure 4d. , indicates the time period in which the ultrasonic motor 15 is driven. During this period, as the lens position changes toward the in-focus position, the defocus signal decreases as shown in FIG. 4 and 8. The timing control circuit 21 operates the motor drive circuit 20 for a certain period of time (τ.N) to drive the motor 15 once, and then
As shown in FIG. d, the motor 15 is stopped, and then the transmission circuit 16 is activated again to emit ultrasonic pulses for distance measurement. Here, the air flow is about BOmsec, and τ.

、4も+)QmsθC前後に設定される。以後このサイ
クルを静返すことにより、ザーポ・フォーカス・モード
となる。尚、レンズ13が合加点に近づくにつれてなめ
らかに減速させるために、デフォーカス信号(第4図θ
)の大きさによってτ。、を変化させ、モータ15の速
度を制御する様にしても良い。又、モータ15を駆動す
るタイミングは、τMAX待たずに受信信号が生じた後
であれば何時であってもかまわない。
, 4 is also set around +)QmsθC. After that, by repeating this cycle, it becomes Zapo Focus mode. In addition, in order to smoothly decelerate the lens 13 as it approaches the merging point, a defocus signal (θ
) by the magnitude of τ. , may be changed to control the speed of the motor 15. Further, the timing for driving the motor 15 may be any time after the reception signal is generated without waiting for τMAX.

次に第3,5図をもとに、ワンショット・フォーカス・
モードでの動作について説明する。ワンショット・フォ
ーカス・モードとは、1回のトリガによす唯1回の測距
及びレンズ制御を行なうものであり、例えばスチル・カ
メラに適したモードである。
Next, based on Figures 3 and 5, one-shot focus
The operation in this mode will be explained. The one-shot focus mode is a mode in which distance measurement and lens control are performed only once based on a single trigger, and is suitable for, for example, a still camera.

不図示のスイッチを操作すると、前述と同様タイミング
・コントロール回路21は発信回路16を作動させて第
5図aの如く、測距用超音波パルスを発信させ、しかる
後受信回路17を作動させて第5図すの如く、反射波パ
ルスを受信させる。そしてこの間、タイミング・コント
ロール回路21は測距回路18により第5図Cの如く時
間遅れτを検出させる。次いでそのホールド出力を、ポ
ジション・センサー14からのレンズ13の現在位置を
示す信号と共にデータ処理回路19に附与させてデフォ
ーカス信号(第5図0)を形成さぜる。その後、モータ
、駆動回路20を作動させて、このデフォーカス信号が
ゼロになる迄超音波モータ15を駆動させる。
When a switch (not shown) is operated, the timing control circuit 21 activates the transmitting circuit 16 to transmit an ultrasonic pulse for distance measurement as shown in FIG. 5a, and then activates the receiving circuit 17. As shown in Figure 5, the reflected wave pulse is received. During this time, the timing control circuit 21 causes the distance measuring circuit 18 to detect the time delay τ as shown in FIG. 5C. The hold output is then applied to the data processing circuit 19 together with a signal indicating the current position of the lens 13 from the position sensor 14 to form a defocus signal (FIG. 50). Thereafter, the motor and drive circuit 20 are operated to drive the ultrasonic motor 15 until this defocus signal becomes zero.

上記タイミング・コントロール回路21は、例えば基準
クロック発振器、カウンタ及び論理回路等を以って、上
述の各タイミングを定めるパルス乃至信号を各回路に附
与する様に結成されるものである。
The timing control circuit 21 includes, for example, a reference clock oscillator, a counter, a logic circuit, etc., and is configured to apply pulses or signals that determine the above-mentioned timings to each circuit.

(効果) 以上説明したように、本発明によれは測距の際の測距用
超音波パルスの物体からの反射波受信の時間帯と、超音
波モータの駆動の時間帯をずらすことにより、超音波モ
ータから発生する超音波パルスを受信回路が受信して誤
測距するのを確実に防止出来る効果がある。即ち、超音
波モータ用のパルスの周波数と測距用のパルスの周波数
は共に40〜1QQKHz程度が好適であり、この範囲
内で周波数を違えた場合でも高周波歪や、低周波側に歪
が発生し誤測距をまぬがれることはできなかったもので
あるが、本発明では斯かる不都合を確実に防止出来る。
(Effects) As explained above, according to the present invention, by shifting the time period of receiving the reflected wave from the object of the ultrasonic pulse for distance measurement during distance measurement and the time period of driving the ultrasonic motor, This has the effect of reliably preventing the receiving circuit from receiving ultrasonic pulses generated by the ultrasonic motor and erroneously measuring distance. That is, it is preferable that the frequency of the pulses for the ultrasonic motor and the frequency of the pulses for distance measurement are both about 40 to 1QQKHz, and even if the frequencies are changed within this range, high frequency distortion and distortion will occur on the low frequency side. However, the present invention can reliably prevent such inconveniences.

尚、両者の周波数を同一にした場合は同一の発振回路及
び駆動回路を時分割して共用でき、コスト的、スペース
的に有利である。又、両者を時分割的に働かせるもので
あるだめ、一時に電源に大きな負荷が掛らず平均化され
るだめ、電源の小容陽化が図れると云う杼な効果もある
Note that when both frequencies are made the same, the same oscillation circuit and drive circuit can be shared in time division, which is advantageous in terms of cost and space. Moreover, since both of them are operated in a time-sharing manner, a large load is not applied to the power supply at once and is averaged out, which has the advantage of reducing the capacity of the power supply.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1−i超音波モータの原理の説明図、第2図は同
じく超音波モータの駆動説明図、第3図は本発明の一実
施例を示すブロック図、第4図は本実施例の成るモード
下でのIFb作を示すタイミングチャート、 〜 第5図は本7を千が1(例の他のモード下での動作を示
すタイミングチャー)・である。 13 ・・・光学系(フォーカシング・レンズ)11 
・・・測距用超音波パルス発・受信器16・・・発信回
路 17・・・受信回路 1B・・・測距回路
Fig. 1 is an explanatory diagram of the principle of the ultrasonic motor, Fig. 2 is also an explanatory diagram of the driving of the ultrasonic motor, Fig. 3 is a block diagram showing one embodiment of the present invention, and Fig. 4 is the present embodiment. A timing chart showing the operation of IFb under the mode consisting of the following: - Figure 5 is a timing chart showing the operation under the other modes of the example. 13...Optical system (focusing lens) 11
... Ultrasonic pulse generator/receiver for distance measurement 16 ... Transmission circuit 17 ... Receiving circuit 1B ... Distance measurement circuit

Claims (1)

【特許請求の範囲】[Claims] 超音波信号を発信するための発信回路と、該発信回路に
よって発信された後、物体によって反射されて来る超音
波信号を受信するだめの受信回路と、該受信回路の出力
に基づき該物体迄の距離に関係した信号を出力する測距
回路と、該測距回路の出力に基づき光学系を該物体に対
する適正合焦位置に調節するだめの、光学系、駆動源と
して超音波モータを含む焦点調節手段と、上記受信回路
及び上記超音波モータを互いに具なった時間帯に於いて
夫々作動させる様、制御する制御回路とを具えた自動焦
点調節装置。
a transmitting circuit for transmitting an ultrasonic signal; a receiving circuit for receiving the ultrasonic signal reflected by an object after being transmitted by the transmitting circuit; and a receiving circuit for receiving the ultrasonic signal reflected by an object based on the output of the receiving circuit. A distance measuring circuit that outputs a distance-related signal, an optical system that adjusts the optical system to a proper focusing position for the object based on the output of the distance measuring circuit, and a focus adjustment including an ultrasonic motor as a driving source. and a control circuit for controlling the receiving circuit and the ultrasonic motor so as to operate them at mutually consistent time periods.
JP57197236A 1982-11-09 1982-11-09 Automatic focusing adjusting device Pending JPS5986016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57197236A JPS5986016A (en) 1982-11-09 1982-11-09 Automatic focusing adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57197236A JPS5986016A (en) 1982-11-09 1982-11-09 Automatic focusing adjusting device

Publications (1)

Publication Number Publication Date
JPS5986016A true JPS5986016A (en) 1984-05-18

Family

ID=16371107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57197236A Pending JPS5986016A (en) 1982-11-09 1982-11-09 Automatic focusing adjusting device

Country Status (1)

Country Link
JP (1) JPS5986016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633663A (en) * 1986-06-23 1988-01-08 Canon Inc Drive circuit of oscillation wave motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633663A (en) * 1986-06-23 1988-01-08 Canon Inc Drive circuit of oscillation wave motor

Similar Documents

Publication Publication Date Title
JP3810430B2 (en) Ultrasonic ranging device
US7365832B2 (en) Laser range finder
EP3685209B1 (en) A lever system for driving mirrors of a lidar transmitter
US20050225743A1 (en) Laser range finder having reflective micro-mirror and laser measuring method
JPH0456820A (en) Operation control system of galvanometer for scanner
JPS5986016A (en) Automatic focusing adjusting device
WO2011043362A1 (en) Ultrasonic transmission device, ultrasonic propagation time measurement system and ultrasonic propagation time measurement method
WO2018079561A1 (en) Sensor device, sensing method, program, and storage medium
US20210263149A1 (en) Object detection device
JP3659239B2 (en) Radar equipment
US6480160B1 (en) Radar apparatus including a wave guide array and a dielectric lens
JPH03276084A (en) Ultrasonic range finder
JP4370860B2 (en) Object detection device
JP2003004851A (en) Radar apparatus
JPH1152050A (en) Code modulation type radar distance-measuring apparatus and collision-preventing apparatus using the same
WO2011121708A1 (en) Projector and image position setting method
US20230067823A1 (en) Mems mirror system with slow light beam deflection using fast resonant osillations about at least two resonant axes
JP2001244892A (en) Optical communication device
JPH0728229B2 (en) Communication method and device using flexible structure antenna
JPS6117081A (en) Ultrasonic sensor
JPH0378684A (en) Ultrasonic detector
JP2005077289A (en) Radar apparatus and target recognition method of the same
JP3286086B2 (en) Automatic light beam tracking device
JPH0125437B2 (en)
JPH09197046A (en) Distance measuring device