JPS5985368A - Gas cutting method of steel material - Google Patents

Gas cutting method of steel material

Info

Publication number
JPS5985368A
JPS5985368A JP19491982A JP19491982A JPS5985368A JP S5985368 A JPS5985368 A JP S5985368A JP 19491982 A JP19491982 A JP 19491982A JP 19491982 A JP19491982 A JP 19491982A JP S5985368 A JPS5985368 A JP S5985368A
Authority
JP
Japan
Prior art keywords
cutting
slag
gas
blowing
gas pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19491982A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Okita
沖田 美幸
Toshihiro Tamaoki
玉置 年宏
Nobuyuki Yamauchi
山内 信幸
Takao Ko
高 隆夫
Masaru Aoki
勝 青木
Noritsugu Sugizaki
杉崎 法嗣
Hiroshi Takiguchi
滝口 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koike Sanso Kogyo Co Ltd
Nippon Steel Corp
Koike Sanso Kogyo KK
Original Assignee
Koike Sanso Kogyo Co Ltd
Sumitomo Metal Industries Ltd
Koike Sanso Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koike Sanso Kogyo Co Ltd, Sumitomo Metal Industries Ltd, Koike Sanso Kogyo KK filed Critical Koike Sanso Kogyo Co Ltd
Priority to JP19491982A priority Critical patent/JPS5985368A/en
Publication of JPS5985368A publication Critical patent/JPS5985368A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • B23K7/10Auxiliary devices, e.g. for guiding or supporting the torch

Abstract

PURPOSE:To remove efficiently and exactly a cut slag by gas blowing, by driving a two-piece set of torches from both ends, executing gas cutting by making reverse side nozzles correspond to each other, and thereafter, moving one reverse side nozzle faster than the cutting speed. CONSTITUTION:A two-piece set of cutting torches 21, 22 are moved in the direction approaching each other from both ends of a slab cutting intended line. In this case, gas cutting is executed by making reverse side nozzles 51, 52 correspond to each other while blowing gas whose O2 dinsity is >=50%, and removing a cut slag. Also, after the cutting is completed, the gas pressure is increased to one - five times while moving continuously one reverse side nozzle 51 along the cut groove at a speed tow -20 times the cutting speed, by which the cut slag is removed. Thereafter, the gas pressure is decreased to 1/3- one time the blowing gas pressure at the time of cutting, and gas blowing is executed. It can be prevented exactly by this post-blowing treatment that a slag is left around the center part of a steel material whose cutting is ended.

Description

【発明の詳細な説明】 この発明は、切断の進行と同時的に切断により発生する
ノロを除去するガス切断方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas cutting method for removing slag generated by cutting simultaneously with the progress of cutting.

カカるノロ付着発生のメカニズムとしテハ、第1図に示
す如く鋼材(υを、その上面側に臨ませた切断トーチ(
2)Vこよシガス切断したとき、その切断によシ生じる
溶融金属の一部が切断溝(4)から裏面側に廻シ込んで
符号(3)に示す如き状態に付着、固化してノロ発生と
なるものでるる。
As shown in Fig. 1, the mechanism of occurrence of slag adhesion is that a steel material (υ) is placed with a cutting torch (
2) When V-shaped gas cutting is performed, a part of the molten metal generated by the cutting enters the cutting groove (4) to the back side and adheres to the state shown in code (3), solidifying and generating slag. There is something that will become.

このようなノロ付着は一般に、切断する鋼材の厚みが大
きい程著しく、このためスラブ、とくに連続鋳造による
極厚スラブの切断においてとシわけ顕著にみられる。し
かもスラブの場合、その下工程は圧延であるから、ノロ
付着は製品の圧延疵やロールの疵発生を招来する原因と
なるなど、影響が大きい。したがって一般にスラブの場
合には、圧延工程へのノロ持込みを防ぐ何らかの対策が
欠かせないことになっている。対策としてまず考えられ
るのは、切断後の工程でスラブに付着しているノロを取
除くことである。これに現在、最も一般化した対策でろ
シ、火陥にはバイトによる機械研削或いはヌカーフィン
グによりノロを除去するというのが通例でるる。ガス切
断におけるノロ付着は一般に、切断鋼材の厚みが大きく
なるにつれ未反応の溶金が増加して付着強度が増し、ま
た熱間材の方がよυノロ付着し易いといった傾向かりシ
、熱間、極厚ものでは、ノロ付着がきわめて強固でかつ
付着量も多いものとなっておシ、それ故に、バイトやス
カーフィングが使用されるのである。
Such slag adhesion is generally more pronounced as the thickness of the steel material to be cut increases, and is therefore particularly noticeable when cutting slabs, particularly extremely thick slabs produced by continuous casting. Moreover, in the case of slabs, since the downstream process is rolling, the adhesion of slag has a large effect, such as causing rolling defects in the product and roll defects. Therefore, in the case of slabs, it is generally essential to take some measure to prevent slag from being brought into the rolling process. The first possible countermeasure is to remove the slag that adheres to the slab during the post-cutting process. Currently, the most common countermeasure for this problem is to remove the slag by mechanical grinding with a cutting tool or by carving. Slag adhesion during gas cutting generally tends to occur as the thickness of the cut steel increases, the amount of unreacted molten metal increases, and the adhesion strength increases. If the material is extremely thick, the slag will adhere very strongly and in large amounts, which is why biting and scarfing are used.

ところが近時、とくに省エネルギの観点から、連続鋳造
によるヌフプ(以下、CCスラブと略称)じついて、そ
の保有熱を有効利用する、スラブを熱片のまま炉に装入
するいわゆる熱片装入(ホットチャージ)、更には無加
熱圧延(ダイレクトロール)が俄かに注目を浴び、その
実用化が進められているが、このようなダイレクトな方
式を採用するとなると、切断によって生じたノロを改め
て別の工程で処理しなければならないというのに、熱利
用上大きな不利となる。ホットチャージ(ダイレクトロ
ー)L/)では、スラブ保有熱の逸散を防ぐ必要から、
いかに迅速に加熱炉(ロール)に送り込むかということ
が操業上置も重要なポイントとなるわけであるが、上記
切断後のノロ取シの突施に、このスラブの送シ込みに要
する時間を長引かせる結果となシ、有意な熱利用を不可
能にするものである。
However, recently, especially from the point of view of energy saving, continuous casting has been adopted (hereinafter abbreviated as CC slab), and the so-called hot slab charging, in which the slab is charged into the furnace as hot slabs, makes effective use of the retained heat. (hot charging) and even non-heat rolling (direct roll) have suddenly attracted attention and are being put into practical use. However, if such a direct method were to be adopted, it would be necessary to eliminate the slag caused by cutting. Although it has to be treated in a separate process, it is a big disadvantage in terms of heat utilization. In hot charge (direct low) L/), it is necessary to prevent the heat retained in the slab from dissipating.
How quickly the slab can be fed into the heating furnace (roll) is also an important point in the operation, but the time required to feed the slab after cutting is also important. This results in a prolonged period of time, which precludes significant heat utilization.

ダイレクトなかかる方式の導入に対処するには、ノロ除
去方法として、切断の進行と同時的にノロを処理してゆ
く(以下、これを同時処理と呼ぶ)方法が必要である。
In order to cope with the direct introduction of such a method, a method for removing slag that simultaneously processes the slag as cutting progresses (hereinafter referred to as simultaneous processing) is required.

同時処理法としては現在のところ、ガス吹付けによる下
記の方法(以下、これをガス吹付は法と呼ぶ)が、効果
、実用性等、全ての点から考えて最も有利なものと云え
よう。すなわち、切断時、第2図に示す如く鋼材裏面側
にノズル(5)を臨ましめ、これを切断の進行とともに
移動させながら、切断によって逐次発生してくるノロ(
3)に対し後方または斜め後方よシ酸素系ガスを吹付け
、これによシ、ノロを酸化式せて流動性を増し吹き飛ば
す、というものである。
As for simultaneous processing methods, the following method using gas spraying (hereinafter referred to as "gas spraying method") can be said to be the most advantageous method from all points of view, including effectiveness and practicality. That is, during cutting, as shown in Figure 2, the nozzle (5) faces the back side of the steel material, and as the nozzle (5) moves as the cutting progresses, it removes the slag (
3) Oxygen-based gas is sprayed backwards or diagonally backwards, which oxidizes the slag and increases its fluidity and blows it away.

ところでCCスラブの切断は、その能率面を考慮して実
際には、2本の切断トーチを同時使用する形で行われる
。すなわち、第8図に示す如く2本1組の切断トーチ(
2/X2J)を、スラブの切断予定線の両端位置(F5
CF’5から互いに近づく方向へ同時に移動させ切断を
行うのでるるか、この際両トーチの干渉を避けるためそ
の干渉寸前の位置(Q)で、片方の切断トーチ(2コ)
の進行並びに切断を停止してこれを即座に逆行、退避さ
せ、もう一方のトーチ(2/) 1本だけをそのまま切
断が完全に終える位置@まで進める方法(以下、これを
両方向切断法と呼ぶ)がとられる。
However, in consideration of efficiency, CC slabs are actually cut using two cutting torches simultaneously. That is, as shown in Fig. 8, a set of two cutting torches (
2/X2J) at both ends of the planned cutting line of the slab (F5
At this time, in order to avoid interference between both torches, one cutting torch (2) is moved at the position (Q) on the verge of interference.
A method of stopping the progress and cutting of the torch, immediately reversing and retracting it, and advancing only one torch (2/) as it is until the cutting is completed (hereinafter referred to as the two-way cutting method). ) is taken.

このような両方向切断の場合に、同図図示の如く両切断
トーチ(2/X2J)の各々に裏面側ノズル(5/)(
5コ)を対応させて前記ガス吹付は法を適用したとする
と、切断が終了するスラブ中央部付近に対してに十分な
ノロ取りが行われず、そこにノロ残シが発生する結果と
なる。すなわち、ガス吹付は法でに、ノロ除去効果の点
から、図示の如くガスの吹付は位置(財)が切断先端位
置(Qよシ稍々後方に設定でれるが、こうすると、まず
第1に、スラブ中央イτj近で最後の切断を完了してそ
の切断トーチ(21)及びこれに従動する裏面側ノズル
(51)を停止芒せた時点において、裏面側ノズ/l/
(5/)の方はスラブ中央部に未吹付は部分に)を残す
結果となるからでるる。
In the case of such bidirectional cutting, as shown in the figure, the back side nozzle (5/) (
If the above-mentioned gas blowing method is applied in accordance with item 5), sufficient slag removal will not be carried out near the center of the slab where cutting ends, resulting in slag residue being generated there. That is, by law, from the viewpoint of the slag removal effect, the position of gas spraying is set slightly behind the cutting tip position (Q) as shown in the figure. When the last cutting is completed near the center of the slab τj and the cutting torch (21) and the back side nozzle (51) driven by it are stopped, the back side nozzle /l/
(5/) results in leaving an unsprayed part in the center of the slab.

普通に考えるなら、最後の切断を担当する側のトrチ(
2/)に対応する裏面側ノズ/l/(5/)を、切断の
終了と同時に停止させるのではなく、そのtま必要なと
ころまで進行を継続しガス吹付けを続行してやれば、ス
ラブ中央部の前記ノロ残シバ防ぎ得るように思われる。
If you think about it normally, the torch on the side in charge of the final cutting (
Instead of stopping the back side nozzle /l/(5/) corresponding to 2/) at the same time as cutting ends, if you continue to advance until the required point and continue blowing gas, it will be possible to cut the center of the slab. It seems that some of the slag residue can be prevented.

しかしながらこのような措置(以下、後吹き処理という
)を実際にとると、スラブ中央部の切断ノロ除去も十分
には達せられないのに、除去された切断ノロがその吹付
は方向前方部位に再度付着し二次ノロとなるという望ま
しくない現象げかシ伴ない、とても実用には供し難いこ
とが、本発明者らの天験によシ明らかとなった。それに
この後吹き処理は、切断能率的にも問題がある。
However, when such a measure (hereinafter referred to as post-blowing treatment) is actually taken, the removed cutting slag is not completely removed from the central part of the slab, but the removed cutting slag is re-sprayed to the front part of the slab. The inventors' experience has revealed that it is very difficult to put it into practical use because it causes the undesirable phenomenon of adhesion and formation of secondary slag. Moreover, this post-blowing process also poses a problem in terms of cutting efficiency.

本発明は、両方向切断において切断溝全長に亘るノロ(
切断ノロ、二次ノロの何れをも含む)の完全除去を達成
でき、また能率的にも利がある裏面側ガス吹付けを伴う
ガス切断方法の提供を目的とするものでるる。
The present invention is characterized by the fact that when cutting in both directions, the slag (
The object of the present invention is to provide a gas cutting method that involves gas blowing on the back side, which is capable of completely removing cutting slag (including both cutting slag and secondary slag) and is also efficient.

先述のとおシ、ガス吹付けを伴う両方向切断における後
吹き処理には、の切断ノロ取υが確実でない、■一旦除
去でれたノロが再付着して二次ノロが発生する、という
効果上の問題がある。
As mentioned above, the post-blow treatment for bidirectional cutting that involves gas blowing has the following effects: the cutting slag cannot be reliably removed, and the slag that has been removed once is reattached, creating secondary slag. There is a problem.

本発明者らに、この問題の解決を狙って、前記後吹き処
理の実施条件がノロ取す状況に及ぼす影響について、詳
細な笑験を重ねた結果、この処理における特定の条件、
すなわち吹付はガス圧力とノズル進行速度の2つの条件
V?−は、切断ノロ取シおよび二次ノロ発生に対する適
正範囲が存在し、この2つの条件の適正化により上記の
、■の問題を解決し得ることを見い出した。
With the aim of solving this problem, the inventors have conducted detailed experiments on the effects of the conditions for performing the after-blowing process on the slag removal situation.
In other words, spraying is performed under two conditions: gas pressure and nozzle advancement speed. - It was found that there is an appropriate range for cutting slag removal and secondary slag generation, and that the above problem (2) can be solved by optimizing these two conditions.

すなわち本発明は、〇−濃度50%以上のガスを使用す
る裏面側ガス吹付けを伴う両方向切断において、切断の
完了以後も、片方の裏面側ノズルを切断速度の2〜20
倍の速度で切断溝に沿って継続的に移動嘔せ吹付はガス
の圧力をまず1〜5倍に上げて切断ノロを除去し、次い
でガス圧を切断時の吹付はガス圧の晃〜1倍に下げてガ
ヌ吹伺けを続行する後吹き処理を行うことを特徴とする
鋼材のガス切断方法を要旨とする。ここに、片方の裏面
側ノズルとは、スラブ中央部における最後の切断を担当
するトーチ(21)に対応する側のノズル(51)を指
すものであるのは云う迄もない。
That is, in the present invention, in bidirectional cutting involving back side gas spraying using gas with a concentration of 50% or more, one back side nozzle is operated at a cutting speed of 2 to 20% even after the cutting is completed.
Continuously moving along the cutting groove at twice the speed, the gas pressure is first increased by 1 to 5 times to remove the cutting slag, and then the gas pressure is increased to 1 to 1 times the gas pressure when cutting. The gist of this invention is a gas cutting method for steel materials, which is characterized by performing a post-blowing process in which the blowing process is continued by lowering the blowing rate to twice the original level. It goes without saying that one of the backside nozzles here refers to the nozzle (51) on the side corresponding to the torch (21) that is responsible for the final cutting in the central portion of the slab.

本発明において、まず切断時に裏面側ノズル(5)から
吹付けるガスのOコ濃度を50%以上としたのは、これ
未満では吹付はガスのノロ酸化作用か弱すぎて、十分な
切断ノロ取りが困難となるためである。
In the present invention, first, the O concentration of the gas sprayed from the back nozzle (5) during cutting is set to 50% or more.If the concentration is lower than this, the slag oxidizing effect of the gas will be too weak, so it will not be possible to remove sufficient cutting slag. This is because it becomes difficult.

切断完了以後の後吹き処理については、処理速度(裏面
側ノズ/l/(5/)の進行速度)は切断速度の2倍以
上とすることが重要でβる。処理速5tをこの値以上に
設定すれば、後述の適正レベルのガス圧で後吹きを行う
ことによシ、切断完了以後における切断ノロの除去を確
実に行うことができるのである。これは、次のように考
えることができる。
Regarding the post-blowing process after cutting is completed, it is important that the processing speed (progressing speed of the back side nozzle /l/(5/)) be at least twice the cutting speed. If the processing speed 5t is set above this value, cutting slag can be reliably removed after cutting is completed by performing post-blowing at an appropriate level of gas pressure, which will be described later. This can be considered as follows.

すなわち、第8図に示す如く両方向切断において切断が
終了した時点で鋼材中央部に残る未ガス吹付は部分(d
)に付着する切断ノロとは、先に退避嘔せた側のトーチ
(2,2)によるものに、最後の切断を行う反対側のト
ーチ(21)によるものが重畳されたものということが
できるが、このうち、トーチ(2J)によって生じた分
からみれば、後吹き処理は、ノロ発生後、通常の場合の
ガス吹付けのように即座に行われるのではなく、ある程
度時間がたってから実施されることになる。この後吹き
実施までの間に、トーチ(22)による切断ノロは、冷
却され、付着強度を増し、その分除去し難いものとなる
In other words, as shown in Fig. 8, when the cutting is completed in both directions, the unblown gas remaining in the center of the steel material is the part (d
) can be said to be the one caused by the torch (2, 2) on the side that was evacuated first, and the one caused by the torch (21) on the opposite side where the last cut was made, superimposed. However, looking at the problem caused by the torch (2J), the after-blowing process was not performed immediately after the slag was generated, as in the case of normal gas spraying, but was carried out after a certain amount of time had elapsed. That will happen. Until this post-blowing is carried out, the cutting slag produced by the torch (22) cools down and increases its adhesion strength, making it more difficult to remove.

しかるに、前記のように後吹き処理の処理速度を、切断
速度の2倍以上に上けてやれば、上記切断ノロの冷却時
間が短縮されてその冷却によるノロ付着強度の上昇が効
果的じ抑えられ、その結果前記(、i)部分の切断ノロ
をガス吹付けで確実に除去することが可能となるもので
るる。また処理速度を上げるのは、能率の改善にも直結
するという意味でも、有効である。
However, if the processing speed of the post-blowing treatment is increased to more than twice the cutting speed as described above, the cooling time of the cutting slag will be shortened and the increase in slag adhesion strength due to cooling will be effectively suppressed. As a result, it becomes possible to reliably remove the cutting slag in the portions (, i) by gas blowing. Increasing processing speed is also effective in the sense that it directly leads to improved efficiency.

このように後吹き処理の処理速度としては、切断速度の
2倍以上にしなければならないが、一方これが20倍を
こえると、高速にすぎて却って切断ノロの完全除去は達
成できなくなる。それに現突問題として、切断速度の2
0倍をこえるような高速ハ、英現に困難が伴う許シで、
メリット力;ない。このような理由から本発明では、後
吹き処理の処理速度は、切断速鳳の2〜20倍に限定し
た。
As described above, the processing speed of the post-blowing process must be at least twice the cutting speed, but if it exceeds 20 times, the speed is too high and complete removal of cutting slag cannot be achieved. In addition, as a current problem, the cutting speed
A high speed that exceeds 0 times, a speed that is difficult to express,
Merit power: None. For these reasons, in the present invention, the processing speed of the post-blowing process is limited to 2 to 20 times the cutting speed.

この後吹き処理におけるガス吹付けは、第3図(d)部
分の切断ノロに対しては、切断時における吹付はガス圧
の1〜5倍のガス圧にて行う必要がるる。すなわちこれ
が1倍未満では、切断ノロが十分に除去し得す、また5
倍をこえると切断ノロの除去効果上は問題ないが、除去
された切断ノロの再付着による二次ノロの発生が多くな
シ、後述の条件では二次ノロの完全除去が困難となる。
Gas spraying in this post-blowing process must be performed at a gas pressure that is 1 to 5 times the gas pressure during cutting for the cutting slag shown in FIG. 3(d). In other words, if this is less than 1, the cutting slag cannot be removed sufficiently;
If it exceeds twice that, there is no problem in terms of the cutting slag removal effect, but secondary slag is often generated due to the re-attachment of the removed cutting slag, and it becomes difficult to completely remove the secondary slag under the conditions described below.

したがって本発明において、切断ノロに対する吹付はガ
スの圧力、つまり切断完了直後、後吹き処理初期のガス
圧を、切断時のガス吹付けにおけるガス圧の1〜5倍と
した。このガス圧としては更に好ましくは、切断ノロ取
シ効果上、上記比を1.2以上とするのがよい。
Therefore, in the present invention, the gas pressure applied to the cutting slag, that is, the gas pressure immediately after cutting is completed and at the beginning of the post-blowing process, is set to be 1 to 5 times the gas pressure during gas spraying during cutting. More preferably, the gas pressure is such that the above ratio is 1.2 or more in view of the cutting sizing effect.

上記側)部分の切断ノロに対するガス吹付は後、続けて
ガス圧を切断時の吹付はガス圧の狛〜1倍に下げてガス
吹付けを行う。これは、前記切断ノロへのガス吹付けの
結果、除去ノロがその吹付は方向前方部位に再度付着し
た二次ノロに対するものであり、必須とされる。このガ
ス吹付けのガス圧としては、切断時の吹付はガス圧の猶
未満では、二次ノロの十分な除去が達せられない。なお
これが1倍をこえてもノロ取シ効果に変化はなく不経済
な許りであるから、1倍を上限とした。このガス吹付け
を実施する範囲については、とくに規定するものではな
いが、好ましくは両方の裏面側ノズ/’ (5/)(5
コ)によるガス吹付は範囲のオーバラップする長さくQ
が100n程度以上となるようにすることが効果上推奨
される。
After the gas is sprayed onto the cutting slag in the above-mentioned side), the gas pressure is lowered to 1 to 1 times the gas pressure during cutting. This is essential because as a result of the gas blowing to the cutting slag, the removal slag is directed against the secondary slag that has reattached to the forward part of the cutting slag. If the gas pressure for this gas blowing is less than the gas pressure during cutting, sufficient removal of secondary slag will not be achieved. Note that even if this value exceeds 1 times, there is no change in the slag removal effect and it is uneconomical, so 1 times is set as the upper limit. The range in which this gas is sprayed is not particularly specified, but preferably both back side nozzles /' (5/) (5/
The gas spraying by
Effectively, it is recommended that the distance be approximately 100n or more.

本発明において、裏面側ノズルについてその種類をとく
に限定するものではない。ノズル孔が円形の丸型ノズル
、ノズル孔がスリット状のスリットノズル、その他楕円
ノズル等、基本的fci何れの使用も可能である。丸型
ノズルを使う場合ICに、第4図の模式平面図(図は一
方向切断の場合を示す)に示す如く、切断溝(4)の左
右両側に発生するノロのそれぞれに対し切断進行方向後
方斜め後方から一本ずつのノズル(5)(5)でガス吹
付けを行う形をとるのが、ノロ除去効果上好ましい。ス
リットノズルの場合には、広いガス吹付は巾が確保でき
るため、上記のような方式を採用する必要はなく、第5
図(第4図に対応する図)に示す如く切断溝(4)両側
のノロに対し一本使用するだけで十分効果的である。ノ
ロ除去の安定性という点から、後者スリットノズルの使
用が推奨でれる。
In the present invention, the type of the back nozzle is not particularly limited. Any basic FCI can be used, such as a round nozzle with a circular nozzle hole, a slit nozzle with a slit-like nozzle hole, and other elliptical nozzles. When using a round nozzle, as shown in the schematic plan view of Fig. 4 (the figure shows the case of unidirectional cutting), the cutting progress direction is set for each of the slag generated on the left and right sides of the cutting groove (4). In view of the slag removal effect, it is preferable to spray gas from one nozzle (5) (5) from diagonally rearward. In the case of a slit nozzle, the width can be secured for wide gas spraying, so there is no need to adopt the above method, and the fifth
As shown in the figure (a figure corresponding to Fig. 4), it is sufficiently effective to use one slag on both sides of the cutting groove (4). From the standpoint of stability in removing slag, it is recommended to use the latter slit nozzle.

なお、裏面側ノズルのガス吹付は角(上向き角)(のお
よび吹付は位置(財)としては、ガス吹付は角(のはl
O〜25°程度、ガス吹付は位置(Mlは、切断先端点
(0)から切断進行方向後方へ20〜150ff離れた
位置とするのが適当である。また、このノズルからのガ
ス吹付けは、予熱炎併用の有無を問うものではない。
Note that the gas spray from the back side nozzle is at the corner (upward corner) and the position of the gas spray is at the corner (the upward corner).
It is appropriate to set the gas spraying position (Ml is a position 20 to 150ff away from the cutting tip point (0) backward in the cutting direction. Also, the gas spraying from this nozzle , it does not matter whether or not a preheating flame is used in combination.

なお、裏面側ノズルは、切断進行中は切断トーチに直結
1せて移動ちせる方式をとればよく、切断終了後におけ
る移動についても、上記切断トーチとの直結による駆動
手段をそのまま利用して、或いは例えばフックアンドビ
ニオンやシリンダー装置等、独立した駆動装置を設ける
等して、容易に行うことができる。
The back side nozzle may be moved by being directly connected to the cutting torch while cutting is in progress, and for movement after cutting is completed, the driving means directly connected to the cutting torch may be used as is. Alternatively, this can be easily accomplished by providing an independent drive device, such as a hook-and-binion or cylinder device.

次に、本発明の実施効果について説明する。Next, effects of implementing the present invention will be explained.

2700厚X1200111巾のCCヌヲフ:(温度:
1000℃)の両方向切断(巾方向に切断、切断1]:
 20 am )を行うに際し、スリットノズ/L/(
ノズル孔寸法: rl]110鱈)を第3図の裏面側ノ
ズル(5/X5.2)として用い1.第6図に示した切
断トーチ(2) 、 M材(1)との位置関係(片側に
ついてのみ図示)で、第8図に説明したガス吹付は法に
よるノロの同時処理を実施した。切断速度は8007m
’rn 。
2700 thickness x 1200111 width CC Nuwofu: (Temperature:
Bidirectional cutting (cutting in the width direction, cutting 1) at 1000°C:
20 am), when performing slit nozzle /L/(
Nozzle hole size: rl] 110 cod) was used as the back side nozzle (5/X5.2) in Fig. 3. 1. With the positional relationship between the cutting torch (2) and the M material (1) shown in FIG. 6 (only one side is shown), slag was simultaneously treated by the gas blowing method described in FIG. Cutting speed is 8007m
'rn.

裏面]−jノヌリレからの吹付はガスは、純度99.7
%の酸素ガス、吹付はガス圧力1.0%sとした。
Back side] -J The gas sprayed from Nonurire has a purity of 99.7
% oxygen gas, and the spraying was performed at a gas pressure of 1.0% s.

この切断の際、切断完了以降も、継続的にガスを吹付け
る後吹き処理を実施した。処理速度、第3図の(d)部
分(切断ノロ)並びに((3)部分(二次ノロ)のそれ
ぞれに対する吹付ガス圧は、第1表に示すとおシとした
During this cutting, a post-blowing process was performed in which gas was continuously sprayed even after the cutting was completed. The processing speed and the blowing gas pressure for each of the (d) part (cutting slag) and ((3) part (secondary slag) in FIG. 3 were shown in Table 1.

同表右欄には、上記それぞれの場合の鋼材裏面状況、す
なわち切断ノロおよび二次ノロ残シの程度を調査した結
果を示す。なお、同表には、切断完了以後のガス吹付け
を全く行なわなかった場合についても、従来例として同
様の形で調査結果を示した。
The right column of the same table shows the results of investigating the condition of the back surface of the steel material in each of the above cases, that is, the degree of cutting slag and secondary slag residue. The same table also shows the results of the investigation in the same manner as the conventional example, even in the case where no gas blowing was performed after the cutting was completed.

第1表の結果によると、後吹き処理は、処理速度:切断
速度の2〜29倍、切断ノロに対する吹付はガス圧:切
断時の同圧力の1〜5倍、二次ノロに対する吹付はガス
圧:切断時の同圧力の狛〜1倍、の本発明の条件を満た
せば、切断ノロ、二次ノロともに十分な除去を行うこと
が可能でめることが明らかでるる。すなわち、二次ノロ
に対する吹付けを行わなかった(li 、 (4)およ
び同吹付はニ突施したがそのガス圧が上記範囲より低か
った(7)、また切断ノロに対する吹付けのガス圧が上
記範囲よシ高すぎたαO9←[有]では、何れの場合に
も二次ノロ残シがかなシ認められた。
According to the results in Table 1, the processing speed for post-blowing treatment is 2 to 29 times the cutting speed, the gas pressure for spraying the cutting slag is 1 to 5 times the same pressure during cutting, and the gas pressure for spraying the secondary slag. It is clear that if the conditions of the present invention of pressure: 1 to 1 times the same pressure during cutting are satisfied, sufficient removal of both cutting slag and secondary slag can be achieved. In other words, the secondary slag was not sprayed (li, (4), the same spray was applied twice but the gas pressure was lower than the above range (7), and the gas pressure for the cutting slag was lower than the above range (7). At αO9←[Yes], which was too high than the above range, some secondary slag residue was observed in all cases.

第   1   表 注2)○:ノロ残シなし、△:ノロ残シややあシ、×:
ノロ残#)卆なシあシ 注3)A:比較例  B:本発明実 施例の説明から明らかなように本発明の方法によれば、
裏面側ガス吹付けを伴う両方向切断において、後吹き処
理を実施して、切断が終了する鋼材中央部付近にノロ残
シが発生するのを確実に防止することができ、しかもこ
の後吹き処理は処理速度が速いことから切断完了後きわ
めて短時間にて行えるものであり、したがって本発明は
ノロ付着の伴わない高能率の00771両方向切断を可
能にするものであるから、頭記したホットチャージ(ダ
イレクトロール)の導入によるCCヌフプの保有熱の有
効利用ヲ天現する上できわめて有用なものと云うことが
できる。
Table 1 Note 2) ○: No slag residue, △: Slag residue or ridge, ×:
Slag residue #) Paper sheet Note 3) A: Comparative example B: As is clear from the description of the examples of the present invention, according to the method of the present invention,
When cutting in both directions with gas blowing on the back side, it is possible to reliably prevent slag residue from being generated near the center of the steel material where cutting is completed by performing post-blowing treatment. Since the processing speed is fast, cutting can be performed in a very short time after completion of cutting, and the present invention enables highly efficient bidirectional cutting of 00771 without slag adhesion. It can be said that this is extremely useful in realizing the effective use of the heat retained in CC Nuhp by introducing a roll.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、切断ノロ付着状況を示す正面図、第2図はガ
ス吹付は法を示す概略図、第8図に本発  −明に基〈
両方向切断におけるガス吹付は法を説明する側面図、第
4図、第5図はガス吹付は法の具体例を2つ示すもので
、第4図は丸型ノズル使用、第5図はスリットノズル使
用、の場合をそれぞれ示す。第6図は本発明実施例にお
けるノズル配置状態を示す模式図、である。 図中、l:wI材、2:切断トーチ、3:ノロ、4:切
断溝、5:裏面側ノズル 出願人  住友金属工業株式会社 第    囚 l 第6図 第 3 日 第4図 第  5 囚 東京都江戸川区西小岩3丁目35 番16号小池酸素工業株式会社内 (老発 明 者 滝口穴 東京都江戸川区西小岩3丁目35 番16号小池酸素工業株式会社内 0出 願 人 小池酸素工業株式会社 東京都江戸川区西小岩3丁目35 番16号
Fig. 1 is a front view showing how cutting slag adheres, Fig. 2 is a schematic view showing the method of gas spraying, and Fig. 8 is a front view showing the state of adhesion of cutting slag.
A side view explaining the method for gas spraying in bidirectional cutting. Figures 4 and 5 show two specific examples of the method for gas spraying. Figure 4 uses a round nozzle, and Figure 5 uses a slit nozzle. The cases of use are shown respectively. FIG. 6 is a schematic diagram showing the arrangement of nozzles in an embodiment of the present invention. In the figure, l: wI material, 2: cutting torch, 3: slag, 4: cutting groove, 5: backside nozzle Applicant: Sumitomo Metal Industries, Ltd., Figure 6, Day 3, Figure 4, Figure 5: Tokyo Inside Koike Oxygen Industry Co., Ltd., 3-35-16 Nishikoiwa, Edogawa-ku, Tokyo (Old Inventor: Takiguchiana) Inside Koike Oxygen Industry Co., Ltd., 3-35-16 Nishikoiwa, Edogawa-ku, Tokyo Company 3-35-16 Nishikoiwa, Edogawa-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] (1)2本1組の切断トーチを鋼材の切断予定線の両端
から該予定線に沿って互いに近づく方向へ走行させて切
断を行い、この際切断の進行に追従する各切断トーチに
対応の裏面側ノズルによシ鋼材裏面の切断先端点の切断
進行方向稍々後方の位置に向けて同方向後方からOJ濃
度50%以上のガスを吹付けて切断ノロを除去するガス
切断において、切断完了以降も、継続的に一方の前記裏
面側ノズルを切断速度の2〜20倍の速度で切断溝に沿
って移動させながらガス圧を1〜5倍に上げて切断ノロ
を除去し、その後ガス圧を切断時の吹付はガス圧の発〜
1倍に下げてガス吹付けを行うことを特徴とする鋼材の
ガス切断方法。
(1) Cutting is performed by moving a set of two cutting torches toward each other from both ends of the planned cutting line of the steel material along the planned cutting line, and at this time, the corresponding cutting torch is moved to follow the progress of cutting. In gas cutting, gas with an OJ concentration of 50% or more is sprayed from behind in the same direction toward a position slightly behind the cutting tip point on the back side of the steel material using the backside nozzle to remove cutting slag, and the cutting is completed. Thereafter, while continuously moving one of the back side nozzles along the cutting groove at a speed of 2 to 20 times the cutting speed, the gas pressure was increased to 1 to 5 times to remove the cutting slag, and then the gas pressure was When cutting, the spraying generates gas pressure.
A gas cutting method for steel material characterized by blowing gas at a rate of 1:1.
JP19491982A 1982-11-06 1982-11-06 Gas cutting method of steel material Pending JPS5985368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19491982A JPS5985368A (en) 1982-11-06 1982-11-06 Gas cutting method of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19491982A JPS5985368A (en) 1982-11-06 1982-11-06 Gas cutting method of steel material

Publications (1)

Publication Number Publication Date
JPS5985368A true JPS5985368A (en) 1984-05-17

Family

ID=16332521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19491982A Pending JPS5985368A (en) 1982-11-06 1982-11-06 Gas cutting method of steel material

Country Status (1)

Country Link
JP (1) JPS5985368A (en)

Similar Documents

Publication Publication Date Title
TW422751B (en) Laser beam machining method and laser beam machine
JPS55156666A (en) Method of cutting metallurgical product and device for executing said method
JPS5985368A (en) Gas cutting method of steel material
US2168581A (en) Method and apparatus for thermochemically removing metal from bodies of ferrous metal
JPH03210981A (en) Laser beam cutting method for iron-base thick plate
US3608879A (en) Device for trimming flash from metal which has been worked with a machining torch
US3230116A (en) Moving end starts in mechanized scarfing
US2139957A (en) Method of cutting composite metal bodies
US2260322A (en) Deseaming and desurfacing apparatus and process
US2266552A (en) Method of cutting ferrous metal bodies
JPS5819387B2 (en) Slab welding slag removal device
TWI806303B (en) Laser welding method and laser welding device for Si-containing steel plate
JP3104443B2 (en) Hot joining method of steel
JPH067970A (en) Hot joining method for steel
US3322578A (en) Thermochemical desurfacing method
JPS59183969A (en) Fusion cutting method of billet
JPS5976667A (en) Gas cutting method
JP2616260B2 (en) High speed cutting method and apparatus
JPH0550111A (en) Method for hot-joining steel material
JPS58212866A (en) Hot gas cutting method of steel ingot
JP2515445B2 (en) How to prevent slag from sticking
JPH03281046A (en) Method for removing burr at the time of cutting slab
JPH06277829A (en) Scarfing device
JPS5819010Y2 (en) Slab welding slag removal device
JP2022167019A (en) Scarfing method for steel material