JPS5984978A - Liquefaction of coal - Google Patents

Liquefaction of coal

Info

Publication number
JPS5984978A
JPS5984978A JP19456982A JP19456982A JPS5984978A JP S5984978 A JPS5984978 A JP S5984978A JP 19456982 A JP19456982 A JP 19456982A JP 19456982 A JP19456982 A JP 19456982A JP S5984978 A JPS5984978 A JP S5984978A
Authority
JP
Japan
Prior art keywords
coal
liquefaction
hydrogen
reaction
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19456982A
Other languages
Japanese (ja)
Inventor
Masahito Kaneko
雅人 金子
Hirotoshi Horizoe
浩俊 堀添
Hikokusu Kajimoto
梶本 彦久寿
Takafumi Shimada
嶋田 隆文
Kazuto Masai
政井 一登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19456982A priority Critical patent/JPS5984978A/en
Publication of JPS5984978A publication Critical patent/JPS5984978A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain a liquefied product having high light oil content in high efficiency with reduced consumption of hydrogen, by extracting a specific liquefied coal oil obtained by the second-stage of coal liquefaction process as a hydrogen-donative solvent, treating the coal, and converting to asphaltene. CONSTITUTION:Coal is converted to a slurry composed mainly of asphaltene in the presence of a hydrogen-donative solvent, and the slurry is hydrogenated in the presence of a catalyst containing Ni-Co and/or Co-Mo metal sulfide. In the above second-stage coal liquefaction, the hydrogenated coal oil having a boiling point of >=200 deg.C and containing >=5wt% of a fraction having a boiling point of >=450 deg.C is separated as the hydrogen-donative solvent from the liquefied coal oil obtained by the second stage, and the coal is treated with the hydrogen- donative solvent at 200-320 deg.C for >=5min under a pressure higher than the vapor pressure of the liquefied coal oil at 320 deg.C. The obtained product is used for the conversion of the product composed of asphaltene to a slurry.

Description

【発明の詳細な説明】 た石炭液化生成物を得ることのできる石炭液化法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coal liquefaction method capable of obtaining a coal liquefaction product.

従来より石炭を転化させて有用な石Ml+様液体生成物
を製造する方法は、多数知られている。
Many methods are known in the art for converting coal to produce useful stone Ml+-like liquid products.

石炭を液化するには、石炭を高湿に加熱して熱分解留出
分を回1次する乾留液化法、石炭を溶剤にて抽出する溶
剤抽出液化法、水素移行又は水素供与性溶剤にて石炭を
抽出と同時に分角イ、水素化する溶剤分解液化法、高圧
水素ガス(分子状水素)の供給下で溶剤抽出を行う抽出
水添液化法、高圧水素ガスの供給下で触媒を使用して石
炭の水素化分解を行う直接水添液化法等がある0 上述の各々の液化法は、単独の1段液化法としてみるな
らば、乾留液化法は液化油の収率が低く、又、+1:、
1 <から知られているベンゼン、トルエン、キシレン
、石炭酸、クレオソート油、クレゾール、アントラセン
油等を用いる溶剤抽出液化法は、抽出時間が長く抽出効
率が縣く液化油の収率が低い欠点があった。テトラリン
に代表される水素化された芳香族化合物は、石炭液化の
初期反応で石炭分子の架橋構造が熱分解して生成するフ
ラグメントに水素を供与して安定化させる作用を有する
ことは旧くから知られており、このような物質を含有す
る溶剤を用いる溶剤分解液化法及び抽出水添液化法は、
比較的短時間で高い液化油の収率が得られる特徴を有す
る反面、得られた液化油は概して高分子量の液化油比率
が高く軽質化の進行が不充分である欠点があった。又、
抽出水添液化法に於いて、比較的長時間の処理で溶剤分
解液化法より液化油の軽質化を計る方法が試みられてい
るが、これは、石炭の灰分と共存する触媒物質の作用で
水素化分解の効果に期待するものであり、消極的な方策
で灼象石炭種に大きく依存する方法である。触媒を添加
し、積極的に石炭の水素化分解を行う直接水添液化法は
、上記説明の液化法の欠点である液化収率及び液化油の
軽質化に関して、はくその欠点を解決し得る方法である
が、反応湿度、反応圧力などの反応条件が苛酷であり、
石炭液化の経済性に大きな比重を占める水素消費量が」
二記賭方法に比較して大きくなる欠点を有することは周
知である。
To liquefy coal, there are two methods: carbonization liquefaction method in which coal is heated to high humidity and the pyrolysis distillate is extracted once, solvent extraction liquefaction method in which coal is extracted with a solvent, hydrogen transfer or hydrogen donating solvent. The solvent decomposition and liquefaction method involves simultaneously extracting and hydrogenating coal, the extraction hydrogenation and liquefaction method involves solvent extraction under the supply of high-pressure hydrogen gas (molecular hydrogen), and the method using a catalyst under the supply of high-pressure hydrogen gas. There are direct hydrogenation and liquefaction methods in which coal is hydrocracked.0 If each of the above-mentioned liquefaction methods is viewed as a single one-stage liquefaction method, the carbonization liquefaction method has a low yield of liquefied oil, and +1:,
The solvent extraction liquefaction method using benzene, toluene, xylene, carbolic acid, creosote oil, cresol, anthracene oil, etc., which is known from 1. there were. It has been known for a long time that hydrogenated aromatic compounds, such as tetralin, have the effect of donating hydrogen to and stabilizing the fragments that are generated when the cross-linked structure of coal molecules is thermally decomposed during the initial reaction of coal liquefaction. The solvent decomposition liquefaction method and extraction hydrogenation liquefaction method using solvents containing such substances are
Although it has the characteristic that a high yield of liquefied oil can be obtained in a relatively short time, it has the drawback that the obtained liquefied oil generally has a high proportion of high molecular weight liquefied oil, and the progress of lightening is insufficient. or,
In the extraction hydrogenation liquefaction method, attempts have been made to make the liquefied oil lighter than the solvent decomposition liquefaction method through a relatively long treatment time, but this is due to the action of catalyst substances coexisting with the coal ash. This method relies heavily on the effects of hydrocracking, and is a passive method that is highly dependent on the type of hot coal. The direct hydrogenation and liquefaction method, which actively hydrocracks coal by adding a catalyst, can solve the disadvantages of the liquefaction method described above in terms of liquefaction yield and lightening of liquefied oil. However, the reaction conditions such as reaction humidity and reaction pressure are harsh;
Hydrogen consumption plays a large role in the economics of coal liquefaction.
It is well known that it has significant drawbacks compared to the two-book betting method.

石炭から高い液化1■率で、しかもより軽質化の進行し
た液化油を取得するには、何らかの要式で水素を利用す
ることは必装で、水素を利用する液化法では、この水素
消費fi、をイ;訛小に抑えることは経済性を高める基
本どなるものである。
In order to obtain liquefied oil with a high liquefaction rate and a lighter weight from coal, it is essential to use hydrogen in some kind of formula, and in the liquefaction method that uses hydrogen, this hydrogen consumption fi , Keeping the accent to a small level is a fundamental way to increase economic efficiency.

石炭液化の主反応しま、石炭→ブレアスファルテン(ピ
リジン可溶、ベンゼン不溶分)→アスファルテン(ベン
ゼン可溶・ペンタン不溶分)→油の順に進む逐次反応で
あり、反応速度は後段に進むにつれて著しく小さくなる
ことは周知である。反応条件を緩和し、水素消費量を低
減するためには、加熱により速やかに反応の進行する石
炭→アスファルテンの一次液化反応に止め、メタン等の
ガス生成を抑制する套装があり、父、主反応である水素
化分解を効果的に促進させるためには、触媒の被毒とな
り得る物質を共存させないことが望ましい。
The main reaction of coal liquefaction is a sequential reaction that proceeds in the order of coal → Blair asphaltene (pyridine soluble, benzene insoluble) → asphaltene (benzene soluble, pentane insoluble) → oil, and the reaction rate decreases significantly as it progresses to the later stages. It is well known that this will happen. In order to ease the reaction conditions and reduce hydrogen consumption, there is a method to stop the primary liquefaction reaction of coal → asphaltene, which progresses rapidly by heating, and to suppress the production of gases such as methane. In order to effectively promote hydrogenolysis, it is desirable not to coexist with substances that can poison the catalyst.

か\る観点から、反応速度の速い石炭→アスファルテン
の反応と、反応速度の遅いアスファルテン→MI+の反
応に分け、−入部化物から触媒被毒原因物質を除去して
Co−に4o又けN1−Mo /アルミナ等の触媒で二
次液化を促進する2段液化法が提案されている。
From this point of view, the reaction is divided into the coal->asphaltene reaction, which has a fast reaction rate, and the asphaltene->MI+ reaction, which has a slow reaction rate, and removes the catalyst poisoning substance from the - entry compound and converts Co- into 4o and N1-. A two-stage liquefaction method has been proposed in which secondary liquefaction is promoted using a catalyst such as Mo/alumina.

2段液化法の一次液化(第1段反応工程)としては、上
記説明の溶剤分解液化法と抽出水添液化法が適用されて
いて、いずれも液化反応の媒体油として水素移行又は水
素供与溶剤を用いる。抽出水添液化法は、水素供与性溶
剤として2環芳香族炭化水素の芳香族環の部分水素化物
を中心とする比較的軽質な媒体油を用い高圧水素ガス供
給下で比較的長時間の反応時間をかけて石炭→アスファ
ルテンの液化反応を遂行させる方法であり、また溶剤分
解液化法では、水素供与性溶剤として、好ましくけ、5
〜5fJAの多環芳香族炭化水素及びそのアルキル誘導
体の芳香族環の一部が水素化された部分水素化物を中心
とする中質媒体油に水素化処理された沸点4500以上
の留分を混合して用い、実質上、水素ガスを用いず比較
的常用に近い低圧力条件下で、且つ比較的短時間の反応
時間で石炭→アスファルテンの一次液化反応を遂行させ
る方法である。
As the primary liquefaction (first stage reaction step) of the two-stage liquefaction method, the solvent decomposition liquefaction method and the extraction hydrogenation liquefaction method described above are applied, and both use a hydrogen transfer or hydrogen donating solvent as the medium oil for the liquefaction reaction. Use. The extraction hydrogenation liquefaction method uses a relatively light medium oil mainly consisting of partially hydrogenated aromatic rings of two-ring aromatic hydrocarbons as a hydrogen-donating solvent, and involves a relatively long reaction time under high-pressure hydrogen gas supply. This is a method of carrying out the liquefaction reaction of coal → asphaltene over time, and in the solvent decomposition liquefaction method, preferably 5.
Mixing a hydrotreated fraction with a boiling point of 4,500 or higher with medium medium oil mainly consisting of partially hydrogenated aromatic rings of ~5fJA polycyclic aromatic hydrocarbons and their alkyl derivatives. This is a method in which the primary liquefaction reaction of coal to asphaltene is carried out under relatively conventional low pressure conditions without using hydrogen gas, and in a relatively short reaction time.

石炭→アスファールテンの一次液化反応は、アスファル
テン→油の二次液化反応に比較して反応速度が連く、上
記の溶剤分解液化法、抽出水添液化法共に、更に反応湿
度を上げて、例えば5〜4分の短時間で一次液化反応を
実施する高温短時間反応2段液化法が提案されている1
)しかし乍ら、この方法の第1段反応は、イ1)ら11
た液化物のアスファルテンに対するプレアスファルテン
比率が高く、液化率が満足されCいるにも拘らず軽質化
度合の充分な液化物が得られず、高分子量、高粘性に由
来する液化りQ渣の錘分離性、第2(2水素化分解反応
の画分解性など大きな問題を有する欠点がある。更に電
型なことは、高温短時間の反応であるために、得られた
液化物の軽質化度合からみての相対的な媒体油の損失及
び水素消費量が高く効率的な水素消費がなされていない
という欠点がある。
The primary liquefaction reaction of coal → asphaltene has a faster reaction rate than the secondary liquefaction reaction of asphaltene → oil. In both the solvent decomposition liquefaction method and the extraction hydrogenation liquefaction method described above, the reaction humidity is further increased. For example, a high-temperature, short-time reaction two-stage liquefaction method has been proposed in which the primary liquefaction reaction is carried out in a short time of 5 to 4 minutes.
) However, the first stage reaction of this method is
The ratio of pre-asphaltene to asphaltene in the liquefied product is high, and even though the liquefaction rate is satisfied, a liquefied product with a sufficient degree of lightening cannot be obtained, and the weight of the liquefied residue due to high molecular weight and high viscosity. There are major drawbacks such as separability and fractional decomposition of the second (dihydrogenolysis reaction).Furthermore, because the reaction is a high-temperature and short-time reaction, the degree of lightening of the obtained liquefied product is limited. There are disadvantages in that the relative loss of media oil and the amount of hydrogen consumption are high, and hydrogen consumption is not efficient.

本発明にらは、上記のような状況に鑑み、第1段液化反
応を短時間接触反応とする2段液化法の実用性肚つ経済
性のある技術について種々検討を重ねた結果、以下に゛
述べる発明をするに至った。即ち、本発明は、溶剤分解
液化法の液化反応方法全水素消費量が少なく、短時間接
触反応のままで、液化生成物の軽質化度の進行が可能で
ある新規な改良された方法であって、これを第一段液化
反応とする新規な改良2段液化法を提供するものである
In view of the above-mentioned circumstances, the present invention has conducted various studies on practical and economical technologies for a two-stage liquefaction method in which the first stage liquefaction reaction is a short-time contact reaction. I came to make the invention described below. That is, the present invention provides a new and improved liquefaction reaction method using a solvent decomposition liquefaction method, in which the total hydrogen consumption is small, and the degree of lightness of the liquefied product can be increased while the contact reaction continues for a short time. Therefore, a new and improved two-stage liquefaction method using this as the first-stage liquefaction reaction is provided.

即ち、本発明に於いては、液化反応の媒体油として、石
炭自生前を元素周期律表■族および/またけ■族の金属
硫化物を含有する触媒の存在下で水素化処理して得られ
る媒体油を、沸点が200〜450℃の水素化物を主体
とする軽中質媒体油及び沸点が4500以上の成分を主
体とする重質媒体油とに分割し、その軽中質媒体油に対
して重質媒体油の量が5重量−以上になるように混合調
整(以下、これを液化媒体用1という)したものを用い
、1αr1石炭に該液化媒体油を加えて200−520
[の7Ilii度条件下にて5〜120分間1呆持した
後、4(〕0〜480℃の反応湿度で5〜20分間反応
処理して得られた液化物、好まL<は主成分であるアス
ファルテン分主体に分離し軽質媒体油を加えて、元素周
期律表■族および/またはVl族の金属硫化物を含有す
る触媒の存在下で280C〜480℃の反応湿度で水素
化処理と水素化分カイを行ない目的とする4i1(質化
された石炭液化油を用いることを骨子とするものである
。以下に、この方法の作用と効果について説明する。
That is, in the present invention, as a medium oil for the liquefaction reaction, coal obtained by hydrotreating pre-natural coal in the presence of a catalyst containing a metal sulfide of group (I) and/or group (I) of the periodic table of elements is used. The medium oil is divided into a light medium oil mainly composed of hydrides with a boiling point of 200 to 450°C and a heavy medium oil mainly composed of components with a boiling point of 4500 or higher, and the light medium oil is divided into In contrast, the mixture was adjusted so that the amount of heavy medium oil was 5 weight or more (hereinafter referred to as 1 for liquefied medium), and the liquefied medium oil was added to 1αr1 coal to give 200-520
After holding for 5 to 120 minutes under 7Ilii degree conditions, the liquefied product obtained by reaction treatment for 5 to 20 minutes at reaction humidity of 4 () 0 to 480°C, preferably L< is the main component. A certain asphaltene component is separated, a light medium oil is added, and hydrogenation is carried out at a reaction humidity of 280C to 480C in the presence of a catalyst containing a metal sulfide of Group I and/or Group VI of the Periodic Table of Elements. The main purpose of this method is to use 4i1 (quality coal liquefied oil) to perform chemical fractionation.The operation and effects of this method will be explained below.

一般に、石炭に有効な、かつ水素移行又は水素供与に有
効な溶剤としては、テトラリンに代表されるような部分
水素化された芳香族化合物であることが知られている。
In general, partially hydrogenated aromatic compounds such as tetralin are known as solvents that are effective for coal and effective for hydrogen transfer or hydrogen donation.

石炭自生前の中には、これらの水素供与性物質としてテ
トラリン等の低沸点物質以外に5〜5環の多環芳香族炭
化水素及びその誘導体、例えば、フェナントレン、アン
トラセンフルオランテン、ヒ゛レン、クリセン、チョラ
ントレン、ベンゾ(a)ヒ゛レン等及びそのアルキル誘
導体の部分水素化物等の比較的沸点の高い水素供与性物
質が存在する。一方、石炭の液化反応は、先ず初期反応
で石炭分子中の架橋構造が熱分解してフラグメントを生
成し、熱的に不安定なこのフラグメントに上記水素移行
又は水素供q性の物質が関与して水素を供4し安定化さ
れた石炭より低分子なプレアスファルテン、アスファル
テン、油、ガスが生成されるとされている。本発明者ら
は、この初期反応過程を更に考究の結果、この初期反応
の主反応は、石炭→ブレアスファルテン→アスファルテ
ンの遂次反応で進行し、特にプレアスファルテン→アス
ファルテンの反応は充分な水素供与性溶剤又は励起水素
が存在しない限り満足的な進行はないことを確認した。
In addition to low-boiling substances such as tetralin, 5-5 ring polycyclic aromatic hydrocarbons and their derivatives, such as phenanthrene, anthracenefluoranthene, hylene, and chrysene, are present as hydrogen-donating substances in coal before it grows. There are hydrogen-donating substances with relatively high boiling points, such as cholanthrene, benzo(a)hylene, etc., and partially hydrogenated products of alkyl derivatives thereof. On the other hand, in the coal liquefaction reaction, the cross-linked structure in the coal molecules is thermally decomposed in the initial reaction to generate fragments, and the above-mentioned hydrogen-transferring or hydrogen-donating substances are involved in these thermally unstable fragments. It is said that pre-asphaltenes, asphaltenes, oil, and gas with lower molecular weight than stabilized coal are produced by supplying hydrogen. As a result of further study of this initial reaction process, the present inventors found that the main reaction of this initial reaction proceeds as a sequential reaction of coal → breasphaltene → asphaltene, and in particular, the reaction of preasphaltene → asphaltene requires sufficient hydrogen donation. It was confirmed that satisfactory progress could not be made unless a neutral solvent or excited hydrogen was present.

即ち初期反1・誘ち更に初期に始る石炭→ブレアスファ
ルテンの反応は、フラグメントの安定化に移行性水素に
よるか、又は供与性水素によっても必朝な水素量は極〈
わずかであると推1i11?1される。更に、実験的に
は石炭→ブレアスファルテンの極〈初期の反応段醇では
、必留以上の水素供与性溶剤が存在している場合、温度
条件が満足されていれば、フラグメントの安定化に必オ
な以外の供与J葭水素は分子状水素として放出されるこ
とが確認されている。
In other words, the reaction of coal → breasphaltene, which starts at an early stage due to the initial reaction, is stabilized by migrating hydrogen or by donating hydrogen, but the necessary amount of hydrogen is extremely small.
If it is a little, it is estimated to be 1i11?1. Furthermore, it has been experimentally shown that the coal→breasphaltene pole (in the initial reaction stage, if more hydrogen-donating solvent is present than the required amount, if the temperature conditions are satisfied, it is necessary for fragment stabilization). It has been confirmed that the donated hydrogen other than the hydrogen is released as molecular hydrogen.

すなわち、上記説明の通り、第1段液化反応の主反応は
石炭→アスファルテンの転換であり、従来より行なわれ
ている短時間接触反応VCも・ける液化反応生成物が重
質であることは容易に理解できる。よって、本発明者ら
は、この第1段液化反応の前段として石炭の前処理を実
頗iすることで第1段液化生成物の軽質化を達成するこ
とを見出した。一般に、亜瀝青炭及び瀝青炭クラスの石
炭をテトラリンに代表されるに1ζ分水素化された芳香
族化合物と混合加熱すると、しXわゆる膨潤することが
知られてネ3・す、こt]汁j 1ワljの石炭の溶解
反応と考えられており、物理的な現象として石炭スラリ
の粘度が上昇することが観察されている。従来は、この
膨潤現象が石炭スラリの加熱9τ内にて生起する為、石
炭スラリの粘度上昇の要因により加熱管内の石炭スラリ
流動不良を引起すおそれがあり、各石炭液化プロセスに
おいてはいかV?:、加熱管内の流動不良を防止するか
に配慮がなされていた。
In other words, as explained above, the main reaction of the first stage liquefaction reaction is the conversion of coal to asphaltene, and it is easy to see that the liquefaction reaction product is heavy, even though the conventional short-time contact reaction VC can be carried out. can be understood. Therefore, the present inventors have discovered that the first-stage liquefaction product can be made lighter by actually pre-treating the coal as a pre-stage of the first-stage liquefaction reaction. In general, it is known that when sub-bituminous coal and bituminous coal are mixed and heated with an aromatic compound that has been hydrogenated by 1ζ, such as tetralin, they swell. This reaction is considered to be a dissolution reaction of coal, and it has been observed that the viscosity of coal slurry increases as a physical phenomenon. Conventionally, this swelling phenomenon occurs within 9τ of heating the coal slurry, which may cause poor flow of the coal slurry in the heating tube due to the increase in viscosity of the coal slurry. : Consideration was given to preventing flow defects within the heating tube.

一方、本発明者らはこの石炭膨潤現象が石炭の溶剤への
溶解反応であることに着目し、この石炭の膨潤現象を石
炭の液化反応の前段階として完全に行なわせることによ
り石炭液化生成物の軽質化に効果が著しいこと、更にこ
の石炭と溶剤の混合前処理知際し溶剤として前記した液
化媒体油を使用することでより一層の石炭液化生成物の
軽質化が達成できることを見出した。
On the other hand, the present inventors focused on the fact that this coal swelling phenomenon is a dissolution reaction of coal in a solvent, and by completely performing this coal swelling phenomenon as a pre-stage of the coal liquefaction reaction, the coal liquefaction product can be produced. It has been found that the coal liquefaction product has a remarkable effect in lightening the coal, and further, by using the above-mentioned liquefaction medium oil as a solvent during pre-treatment of mixing coal and a solvent, it has been found that further lightening of the coal liquefaction product can be achieved.

以下、本発明の詳細を図面に沿って説明する。Hereinafter, details of the present invention will be explained along with the drawings.

第1図は本発明方法の一実施態様例のフローを示す図で
ある。
FIG. 1 is a diagram showing a flow of an embodiment of the method of the present invention.

第1図に於いて、原料石炭1は液化媒体油2とスラリ調
整槽11f〕においてスラリとして混合、調整され、該
石炭スラリ5はスラリ加熱器120において昇温され2
00〜520℃の渇11’Cとされ、当該加熱された石
炭スラリ4しよ、スラリ1)11処理槽150にて5〜
120分の間1呆持される。
In FIG. 1, raw coal 1 is mixed and adjusted as a slurry with liquefied medium oil 2 in a slurry adjustment tank 11f], and the coal slurry 5 is heated in a slurry heater 120.
The heated coal slurry is heated to 11'C at 00 to 520 degrees Celsius, and the slurry 1) is heated to 11'C in the treatment tank 150.
You will be left stunned for 120 minutes.

当該スラリ前処理槽150の操作圧力は、液化媒体油を
620℃の温度にて加熱した際の蒸気圧以上であって、
当該圧力を1呆持したまま前処理され原料石炭は液化媒
体油2中で膨潤し、その粘度はスラリ加熱器120に供
給された石炭スラリ5の数倍〜数十倍となり、短時間接
触反応が容易に促進されるようになる。当該前処理され
た石炭スラリ5は、石炭液化反応器140に供給され、
第1段液化反応としての短時間接触反応を行なわせる。
The operating pressure of the slurry pretreatment tank 150 is equal to or higher than the vapor pressure when the liquefied medium oil is heated at a temperature of 620°C,
The raw coal that is pretreated while maintaining the pressure for a moment swells in the liquefied medium oil 2, and its viscosity becomes several to several tens of times that of the coal slurry 5 supplied to the slurry heater 120, resulting in a short-time contact reaction. will be easily promoted. The pretreated coal slurry 5 is supplied to the coal liquefaction reactor 140,
A short time contact reaction is carried out as a first stage liquefaction reaction.

′石炭液化及応益140の操作条件は、400〜480
℃、5〜20分の条件にてその出力は液化媒体油を40
0〜480Cの温度にて保持した際の蒸気圧以上である
必要があり、当該石炭液化反応器140にて石炭は、ガ
ス、生成油、アスクアルテン1シびプレアスファルデン
へと転換される。当該液化生成物のうち、ガス入び4+
成油のうちの軽質油分け、液化反応生成ガス及び軽質油
7としてプロセス糸外へυ1:出され、これら以外の石
炭液化生成油、アスファルテン、プレアスファルテン及
び未反応炭並びに石炭中の灰分は石炭液化生成油スラリ
6として固液分離器150に供給される。
'The operating conditions of coal liquefaction and profit 140 are 400-480
℃ for 5 to 20 minutes, the output is 40% of the liquefied medium oil.
It is necessary that the vapor pressure is higher than that when maintained at a temperature of 0 to 480C, and in the coal liquefaction reactor 140, coal is converted into gas, produced oil, asqualtenes, and preasphaldenes. Among the liquefied products, gas-containing 4+
The light oil of the mature oil is separated, and the liquefied reaction product gas and light oil 7 are discharged to the outside of the process line. The liquefied oil slurry 6 is supplied to the solid-liquid separator 150.

固液分離器150は、適度な温度、圧力の下で操作され
、石炭液化生成ffl+スラリー中の主として未反応炭
と灰分を液化残有9としてプロセス系外へ排出し、それ
以外の石炭液化生成油、アスファルテン及びプレアスフ
ァルテン分1d 14 型外が除去された液化生成油8
として水添反応器160に供給される。
The solid-liquid separator 150 is operated under moderate temperature and pressure, and discharges mainly unreacted coal and ash in the coal liquefaction product ffl + slurry as liquefaction residue 9 to the outside of the process system, and removes other coal liquefaction products. Oil, asphaltene and pre-asphaltene content 1d 14 Liquefied product oil with outside mold removed 8
is supplied to the hydrogenation reactor 160 as

水添反応器16oにおいては、Ni−MQ系及びC。In the hydrogenation reactor 16o, Ni-MQ system and C.

−MO系の金属の硫化物を含有する触媒の存在下におい
て、液化生成油8け、水素1oと適度な反応圧力、温度
、時間の下で反応させられ、液化生成油は液化反応vc
最適な部分水素化を多量に含むよう反応処理される。当
該反応の反応生成物のうち水添反応生成ガス12は糸外
へ排出され、fall方1(1;分水素化物を多情に含
有する水添液化ボ111け蒸留塔+70へ供給される。
- In the presence of a catalyst containing a MO-based metal sulfide, 8 parts of liquefied oil and 1 part of hydrogen are reacted under appropriate reaction pressure, temperature, and time, and the liquefied oil is reacted with liquefaction reaction vc.
The reaction is processed to include a large amount of optimal partial hydrogenation. Among the reaction products of the reaction, the hydrogenation reaction product gas 12 is discharged to the outside and is supplied to the hydrogenation and liquefaction tank 111 distillation column +70 containing a large amount of hydrogenated product.

当該蒸留塔170は、適度な77111度、I−E−力
の下で迎転され、液化反応に必要な液化媒体油2を製造
するよう操業される。液化媒体油2け、沸点200〜4
50℃の留分を主体とする石炭自生油の水添前であって
、その中に沸点450℃以上の留分を少なくとも5重石
チ以」二含有するものである。仲、方、当該蒸留塔17
0よりりi重質油、重質油が製品油15として糸外へN
13出される。
The distillation column 170 is rotated under moderate 77111 degrees I-E-force and operated to produce the liquefied medium oil 2 required for the liquefaction reaction. 2 bottles of liquefied medium oil, boiling point 200-4
It is a coal-based oil that is mainly composed of a 50° C. fraction before hydrogenation, and contains at least 5 or more fractions with a boiling point of 450° C. or higher. Naka, Ho, the relevant distillation column 17
From 0, heavy oil is transferred to the outside of the thread as product oil 15.
13 will be served.

以下、具体的実施例をもって本発明方法を詳細に1税明
する。
The method of the present invention will be explained in detail below with specific examples.

実施例 表1VC示す条件にて豪州亜源肖炭の液化を行い、得ら
れた結果を表1と第2〜4図に図表化して示す。
Example 1: Liquefaction of Australian submerged coal was carried out under the conditions shown in Table 1VC, and the results obtained are shown graphically in Table 1 and Figures 2 to 4.

第2図は石炭前処哩の効果を明確にするための図表であ
る。成因から明らかなように、石炭の前処理を行わない
Run随Aと前処理を行ったRun NαI、J、に、
L、IJの石炭転換率(+0O−TI(Fr%)けII
′!ぼ同等であるが、石炭液化生成油中のアスファルテ
ン/ブレアスファルテン比けfltfJ 処理を行った
1〜Mが行わないAの4〜5倍となっており、軽質化が
非常に進んでいることが判るっ第5図は液体々II(体
油の性状による効果を明確にする/こめの図表である。
Figure 2 is a chart to clarify the effects of coal pretreatment. As is clear from the cause, Run Zui A, which did not pre-treat the coal, and Run NαI, J, which pre-treated the coal,
L, IJ coal conversion rate (+0O-TI (Fr%) ke II
′! However, compared to asphaltene/breasphaltene in coal liquefaction product oil, fltfJ of 1 to M with treatment is 4 to 5 times that of A without treatment, indicating that the lightening is very advanced. I understand. Figure 5 is a diagram of Liquids II (clarifying the effects of body oil properties).

成因から明らかなように、液体媒体油の沸点200〜4
50℃留分中に450℃十留分が増加するにつれて石炭
転換率およびアスファルテン/プレアスファルテン比が
上昇し、軽質化の傾向が大となり、−万液体媒体油′l
r、〜200C留分のみとすると石炭転換率4ゴよびア
スファルテン/プレアスファルテン比が非常に低いこと
が判る。
As is clear from the origin, the boiling point of liquid medium oil is 200~4
As the 450°C fraction increases in the 50°C fraction, the coal conversion rate and asphaltene/pre-asphaltene ratio increase, and the tendency toward lighter weight increases, resulting in -10,000 liquid medium oil'l
It can be seen that when only the r, ~200C fraction is considered, the coal conversion rate and asphaltene/pre-asphaltene ratio are very low.

更に第4図は石炭0↑I処理を怖じた時(T1t+nm
r、O,P、Q )の液体媒体油の性状による効果を明
確にするための図で、成因より石炭転湧率けはCグ一定
であるが、軽質化朋、すなわちアスファルテン/ブレア
スファルテンの比i、450C”留分を5wt%以上添
加することにより良好となることが判る。また450C
″−留分け50 lJtチ混合されても石炭転換・・β
および軽質化度に大きな変化はみられないが、50wt
%以上の混合では溶剤の粘度上昇があり、操作−にから
実用的でなくなる。従って、450C+留分の混合割舒
の上限はS U wtφとすることが好ましい。
Furthermore, Figure 4 shows that when coal 0↑I treatment is feared (T1t+nm
This is a diagram to clarify the effects of the properties of the liquid medium oil (r, O, P, Q), and although the coal turnover rate is constant at Cg due to its origin, it is It can be seen that the ratio i becomes better by adding 5 wt% or more of the 450C'' fraction.
''- Even if distillation 50 lJt is mixed, coal conversion...β
There is no significant change in the degree of weight reduction, but 50wt
% or more, the viscosity of the solvent increases, making the operation impractical. Therefore, it is preferable that the upper limit of the mixing proportion of the 450C+ fraction is S U wtφ.

第5図は液化反応時間との関係を明確にするための図表
である。成因から明らかなように、液化反応時間は5〜
15分がI[・k ;INでこれより短くてもJi <
でも石炭転換率、アスファルデン/ブレアスファルテン
比共低下することが判る。
FIG. 5 is a chart for clarifying the relationship with liquefaction reaction time. As is clear from the cause, the liquefaction reaction time is 5~
15 minutes is I[・k;IN, even if it is shorter than this, Ji <
However, it can be seen that both the coal conversion rate and asphaldene/breasphaltene ratio decrease.

また、液体媒体油の水添触媒としては、水添触媒として
市販されているCO−MOとNi−Moを用いたが、い
ずれの触媒でも7fり化率、軒IjJj化率共に変化H
−なかった( T(u、n Nαへ、Nネジ照)。
In addition, CO-MO and Ni-Mo, which are commercially available hydrogenation catalysts, were used as hydrogenation catalysts for liquid medium oil, but both the 7f conversion rate and the eave IjJj conversion rate showed a change in H.
-There was no (T(u, n to Nα, N screw light).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施1:ip様例のフローを示
す図、第2〜5図は本発明の実癩例で得られた結果を示
す図表である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 走 ”                 l’に1   
               ・・ 閣反ff、哨開
(分) 丁・続袖正書 昭和58年 4 月 、?  IJ 1寺許庁長信゛若杉和夫殿 1、小角の表示 11tイ和” ”I−!I”+’i?’l願第1945
i号2°発明′> 名+4・ 石炭。液化方法3、補止
をする者 りi (1との関係  q、sd′t−111+Ipr
1人fi:  +i+i   東京都千代田区丸の内圧
丁目5番1号4、復代 理 人 fiIすj  東ぢ略1へ港区虎)門−丁1]16番2
号1左/ 閂r(Vlllビルili話(504) 1
894番1(名         ブ1゛J々口 (7
]791    内    111        明
(ほか1名) 5 、 ?11i+l命令の11イ・J  自発補正6
 、 ?1li1[により増加する発明の故 なしl補
正の対象 明細書の「特許請求の範囲」の項 a補正の内容 明細書の「特許請求の範囲」を別紙の通り訂正します。 2、特許請求の範囲 水素供与性溶剤の存在下で石炭金主としてアスファルテ
ンよ!llする生成物スレリに転化する第1工程、次い
で主としてアスファルテンよシなる生成物スラリf:N
i−Mo系及び/又はCo−M。 系の金属の硫化物を含有する触媒の存在下で水素化処理
する第2工程からなる2段石炭液化法において、前記第
2工程で得られた石炭液化油のうち沸点450℃以上の
留分子 5 wt%以上含む沸点200℃以−1二の水
素化された石炭液化油を水素供与性溶剤として取出し、
これを用いて石炭を200〜320℃の温度条件下、か
つ該水素化された石炭液化油の520℃での蒸気圧以上
の圧力条件下で、少くとも5分間処理する工程を前記第
1工程の前処理工程として付加することを特徴とする石
炭の液化方法。 563−
FIG. 1 is a diagram showing the flow of one embodiment of the method of the present invention: IP example, and FIGS. 2 to 5 are charts showing the results obtained in the leprosy example of the present invention. Sub-agent 1) Meikoku agent Ryo Hagiwara - 1 in "l'"
... Cabinet response ff, Sōkai (minute) Dō・Tsokusode Seisho April 1983, ? IJ 1 Temple Head Office Director Kazuo Wakasugi 1, small corner display 11t I-! I"+'i?'l request No. 1945
No. i 2° Invention'> Name + 4・Coal. Liquefaction method 3, supplementary person i (relationship with 1 q, sd't-111+Ipr
1 person fi: +i+i 5-1-4 Marunouchi Otsu-chome, Chiyoda-ku, Tokyo;
No. 1 left / Bolt r (Vllll building ili story (504) 1
894 No. 1 (No. 1)
]791 out of 111 Akira (and 1 other person) 5, ? 11i/J spontaneous correction 6 of 11i+l instruction
, ? 1li1 [Increased Claims of the Invention Nonel Item ``Scope of Claims'' of the Specification Subject to the Amendment a. Contents of the Amendment The ``Scope of Claims'' of the Specification of the Amendment will be corrected as shown in the attached sheet. 2. Claims Asphaltene as a coal metal in the presence of a hydrogen-donating solvent! A first step of converting the product slurry f:N to a product slurry consisting primarily of asphaltenes.
i-Mo system and/or Co-M. In a two-stage coal liquefaction method consisting of a second step of hydrotreating in the presence of a catalyst containing sulfides of metals of 5 wt% or more of hydrogenated coal liquefied oil with a boiling point of 200°C or higher is extracted as a hydrogen-donating solvent,
The first step includes a step of treating coal using the same at a temperature of 200 to 320°C and under a pressure higher than the vapor pressure of the hydrogenated coal liquefied oil at 520°C for at least 5 minutes. A method for liquefying coal, characterized in that it is added as a pre-treatment step. 563-

Claims (1)

【特許請求の範囲】 水素供与性溶剤の存在下で石炭を主としてアスファルテ
ンよりなる生成物スラリに転化する第1工程、次いで主
としてアスファルテンよりなる生成物スラリf、Ni−
Mo 系及び/又ViCo−+J。 系の金属の硫化物を含有する触媒の存在下で水素化処理
する第2工程からなるプ段石炭液化法において、前記第
2工程で得られた石炭液化油のうち沸点4500以上の
留分を5vt%以上含む沸点200℃以上の水素化され
た石炭液化油を水素供与性溶剤として取出し、これを用
いて石炭を200〜520℃の温度条件下、かつ該水素
化された石炭液化油の520℃での蒸気圧以上の圧力条
件下で、少くとも5時間処理する工程をiq記第1工程
の前処理工程として月別することを特徴とする石炭の液
化方法。
Claims: A first step of converting coal to a product slurry consisting primarily of asphaltenes in the presence of a hydrogen-donating solvent, followed by a product slurry consisting primarily of asphaltenes f, Ni-
Mo-based and/or ViCo-+J. In the step-stage coal liquefaction method, which consists of a second step of hydrotreating in the presence of a catalyst containing sulfides of metals of Hydrogenated coal liquefied oil containing 5vt% or more and having a boiling point of 200°C or higher is taken out as a hydrogen-donating solvent, and using this, coal is heated under a temperature condition of 200 to 520°C and 520% of the hydrogenated coal liquefied oil is A method for liquefying coal, characterized in that a step of treating it for at least 5 hours under a pressure condition equal to or higher than the vapor pressure at °C is divided into months as a pretreatment step of the first step of step iq.
JP19456982A 1982-11-08 1982-11-08 Liquefaction of coal Pending JPS5984978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19456982A JPS5984978A (en) 1982-11-08 1982-11-08 Liquefaction of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19456982A JPS5984978A (en) 1982-11-08 1982-11-08 Liquefaction of coal

Publications (1)

Publication Number Publication Date
JPS5984978A true JPS5984978A (en) 1984-05-16

Family

ID=16326709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19456982A Pending JPS5984978A (en) 1982-11-08 1982-11-08 Liquefaction of coal

Country Status (1)

Country Link
JP (1) JPS5984978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469693A (en) * 1987-09-09 1989-03-15 Kobe Steel Ltd Method of coal liquefaction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382804A (en) * 1976-12-27 1978-07-21 Chevron Res Coal liquefaction
JPS5634789A (en) * 1979-08-30 1981-04-07 Gulf Research Development Co Coal modifying method
JPS5634792A (en) * 1979-08-30 1981-04-07 Gulf Research Development Co Novel fuel composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382804A (en) * 1976-12-27 1978-07-21 Chevron Res Coal liquefaction
JPS5634789A (en) * 1979-08-30 1981-04-07 Gulf Research Development Co Coal modifying method
JPS5634792A (en) * 1979-08-30 1981-04-07 Gulf Research Development Co Novel fuel composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469693A (en) * 1987-09-09 1989-03-15 Kobe Steel Ltd Method of coal liquefaction

Similar Documents

Publication Publication Date Title
US4101416A (en) Process for hydrogenation of hydrocarbon tars
JPS62256888A (en) Hydroconversion method
US3997422A (en) Combination coal deashing and coking process
Dehkissia et al. Catalytic (Mo) upgrading of Athabasca bitumen vacuum bottoms via two-step hydrocracking and enhancement of Mo–heavy oil interaction
US4347116A (en) Two-stage coal liquefaction
US4333815A (en) Coal liquefaction in an inorganic-organic medium
JPH01161087A (en) Catalytic two-step hydrogenation of coal
US4374725A (en) Process for coal liquefaction
JPS5984978A (en) Liquefaction of coal
JPS61185590A (en) Coal liquefaction
US4173528A (en) Multistage residual oil hydrodesulfurization process employing segmented feed addition and product removal
EP0035864B1 (en) Process for upgrading heavy hydrocarbonaceous oils
JPS581784A (en) Coal liquefaction
FR2467879A1 (en) METHOD FOR TWO-STAGE COAL LIQUEFACTION WITH SOLVENT PRODUCTION FROM THE PROCESS
US4221654A (en) Hydroprocessing coal liquids
US4200521A (en) Catalytic hydroprocessing of solvent refined coal to provide a liquid and a solid fuel
Mochida et al. Liquefaction of Australian brown coal with mixed solvents of different qualities and reactivities of transferable hydrogens
JPS5924790A (en) Manufacture of low asphaltene-content hydrocarbon mixture
US4596650A (en) Liquefaction of sub-bituminous coal
CS270226B2 (en) Method of light products and usually applicable fuel oils production from ends-after oil treatment
JPS5945711B2 (en) coal liquefaction method
US4170546A (en) Multistage residual oil hydrodesulfurization process
US4170545A (en) Multistage residual oil hydrodesulfurization process with an interstage flashing step
US4257869A (en) Liquefaction of acid treated coal
US4545890A (en) Coal liquefaction and hydrogenation