JPS598441A - Photoelectric converter having resistance to water pressure - Google Patents

Photoelectric converter having resistance to water pressure

Info

Publication number
JPS598441A
JPS598441A JP57117426A JP11742682A JPS598441A JP S598441 A JPS598441 A JP S598441A JP 57117426 A JP57117426 A JP 57117426A JP 11742682 A JP11742682 A JP 11742682A JP S598441 A JPS598441 A JP S598441A
Authority
JP
Japan
Prior art keywords
photoelectric converter
container
converter
resin
water pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57117426A
Other languages
Japanese (ja)
Inventor
Shoichi Otani
大谷 昇一
Kenji Kobayashi
賢治 小林
Takenobu Higashimoto
東本 武信
Kimitoshi Aoto
青戸 公敏
Yutaka Hibino
豊 日比野
Saburo Yoshimura
吉村 三郎
Toshiyuki Ikemiya
池宮 敏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sumitomo Electric Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57117426A priority Critical patent/JPS598441A/en
Publication of JPS598441A publication Critical patent/JPS598441A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To make the size of a converter small and the weight light, by embedding a photoelectric converter in a protective container consisting of a pressuretight container and a through-mouthpiece by filling and curing of a resin, to form a distortion absorbing layer made of a flexible cushion member or a space around the converter. CONSTITUTION:The protective vessel of an optical fiber 6 is constituted with the pressuretight container 11 and the through-mouthpiece 10, a filling resin 13 is filled and cured in this protective container and the photoelectric converter incorporated in an auxiliary case 12 is embedded. An electric wire 9 is connected to the electrode 1 of the converter 8 through a through-hole 15 of the through- mouthpiece 10 and a coated optical fiber 6' is penetrated through the other through-hole 15. Further, a distortion absorbing layer 14 made of a space or a flexible cushion member is formed around the converter 8 storing the auxiliary container 2, and the assembling of the photoelectric conversion is made easy, and thereby making the photoelectric converter used under high water pressure compact and light weight.

Description

【発明の詳細な説明】 本発明は光ファイバからの光信号を電気信号に変換して
電線セ取出す。又は電線からの電気信号を光信号として
、光ファイバで取り出す光電変換器で特に深海中の高水
圧下で使用される耐水圧光電変換器に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention converts an optical signal from an optical fiber into an electric signal and extracts it from an electric wire. Alternatively, the present invention relates to a photoelectric converter that extracts an electric signal from an electric wire as an optical signal using an optical fiber, and particularly relates to a water-resistant photoelectric converter used under high water pressure in the deep sea.

光ファイバによる信号伝送方式(光フアイバ伝送システ
ムと称される)は光ファイバが軽量である、誘導による
ノイズがない信号の減衰が小さいさらには大容量の信号
伝送が可能等、従来の電線による伝送方式と比較して秀
れた特徴を有するため、各方面で利用されつつある。光
フアイバ電送システムにおいては、情報信号の発生機構
(例えばITVカメラ)や処理機構(例えばTV ブラ
ウン管やコンピュータ)が電気信号を扱うために光電変
換器はシステムを構成する上で不可欠なものである。こ
のため光フアイバ伝送システム用光電変換器は各種のも
のが開発され、実用化されているが、いずれも常圧、常
温といった通常の環境下での使用を前提としており、従
来、大きな水圧のかかる深海での使用に耐え得るものは
なく、例えば深海探査艇と母船の信号伝送に光フアイバ
伝送システムを利用する場合などの深海で使用できる耐
水圧光電変換器の開発が切望されていた。
Signal transmission methods using optical fibers (referred to as optical fiber transmission systems) are superior to transmission using conventional electric wires, as optical fibers are lightweight, have no noise due to induction, have low signal attenuation, and can transmit large-capacity signals. Because it has superior features compared to conventional methods, it is being used in various fields. In an optical fiber transmission system, a photoelectric converter is essential in configuring the system because the information signal generation mechanism (eg, ITV camera) and processing mechanism (eg, TV cathode ray tube or computer) handle electrical signals. For this reason, various types of photoelectric converters for optical fiber transmission systems have been developed and put into practical use, but all of them are designed to be used under normal environments such as normal pressure and room temperature. There was no such thing that could withstand use in the deep sea, and there was a strong desire to develop a water-resistant photoelectric converter that could be used in the deep sea, for example, when an optical fiber transmission system was used to transmit signals between a deep-sea exploration vessel and a mother ship.

本発明はかかる要請に応じてなされたもので、その特徴
とするところは通常の光電変換器を小型かつ軽量の保護
容器中に樹脂の充填固化による埋込み構造とし、深海の
高水圧下での使用に耐え得るために光電変換器の周囲に
高水圧により生じる歪を吸収する空間、又は柔軟なりッ
ション層を設けることにある。
The present invention was made in response to such a request, and is characterized by having a structure in which an ordinary photoelectric converter is embedded in a small and lightweight protective container by filling and solidifying resin, and is suitable for use under high water pressure in the deep sea. In order to withstand this, it is necessary to provide a space or a flexible cushioning layer around the photoelectric converter to absorb the strain caused by high water pressure.

以下、図面により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

図1は一般的な光電変換器の構造例を示すもので、(a
)の0/Eユニツトでは1対の電極(1)から入る電気
信号はセラミック基盤(2)上に置かれた発光ダイオー
ドチップ(3)で光信号に変換され固定金具(4)とス
リーブ(5)で固定されている光ファイバ(6)の端面
に入射される。(b)のE10ユニットでは光ファイバ
(6)中を透過してくる光信号はフォトダイオードチッ
プ(3)上に放射され、電気信号に変換されて、電極(
1)から取出される。ファイバ(6)の端面とダイオー
ドチップ(3)との位置関係は厳密な精度を要求される
もので、例えばコネクタ(7)による挿入方式を用いる
場合でも固定金具(4)とコネクタ(7)には高度の位
置決め精度が必要である。かかる構成の光電変換器を深
海中で使用する場合の致命的な問題点としては、ダイオ
ードチップ(3)や電極(1)が海水により絶縁不良を
生じることと、深海の強大な水圧により固定金具(4)
や変換器全体に歪を生じ、光ファイバ(6)の端面とダ
イオードチップ(3)の位置関係が変化するために端面
とチップ間の光の結合効率が悪化し、正常な機能を果さ
なくなり、さらに水圧が大きくなると破壊されることが
予想される。
Figure 1 shows an example of the structure of a general photoelectric converter.
) In the 0/E unit, an electric signal input from a pair of electrodes (1) is converted into an optical signal by a light emitting diode chip (3) placed on a ceramic substrate (2), and then sent to a fixing metal fitting (4) and a sleeve (5). ) is incident on the end face of an optical fiber (6) fixed at a In the E10 unit shown in (b), the optical signal transmitted through the optical fiber (6) is radiated onto the photodiode chip (3), converted into an electric signal, and then the electrode (
1). The positional relationship between the end face of the fiber (6) and the diode chip (3) requires strict precision. For example, even when using the insertion method using the connector (7), there is requires a high degree of positioning accuracy. Fatal problems when using a photoelectric converter with such a configuration in the deep sea include poor insulation of the diode chip (3) and electrodes (1) caused by seawater, and the fact that the fixing metal fittings are damaged due to the strong water pressure of the deep sea. (4)
This causes distortion in the entire converter and changes the positional relationship between the end face of the optical fiber (6) and the diode chip (3), which deteriorates the coupling efficiency of light between the end face and the chip, making it no longer able to function normally. It is expected that if the water pressure increases further, it will be destroyed.

発明者らはかかる問題点を解決するために光ファイバと
電線を貫通させる口金部を有する金属製の保護容器中に
光電変換器を収納し、保護容器内を樹脂で充填固化する
構造を創案し、検討を重ねた結果、保護容器や光ファイ
バ及び電線等との接着性が良い樹脂を選択することで、
2.oooyyi以上の深海下でも防水性は確保される
ことを確認したが光電変換器に生じる歪を伝送特性上問
題とならない程度に小さくするためには、例えばステン
レス製保護容器を使用し、深海2,000mに相当する
200に9/an”の圧力下では容器の肉厚が10m以
上も必要であり、重く大きい物とならざるを得ないとの
結論に達したため、さらに開発活動を行った結果、第2
図に示す軽量、かつ小型の耐水圧光電変換器を発明する
に至つに0 第2図は本発明の一実施例を示す構造断面図であって、
光ファイバ(6)は樹脂との接着性のよい、例えばナイ
ロン等の被覆を施された状態(6yで、又光電゛変換器
(8)の電極(1)に接続されている電線(9)もエナ
メル線やナイロン被覆線等が用いられ、それぞれ貫通口
金σQを介して外部に導かれている。01)は円筒状の
耐圧容器であり、本例では貫通口金aaiとで保護容器
を形成しており、内部の補助容器亜は隙間なく充填固化
された熱硬化性樹脂α3中に埋込まれている。補助容器
μsは光電変換器(8)の周辺に空間又は柔軟なりッシ
ョン材からなる歪吸収層04)を形成している。かかる
構成の耐水圧光電変換器は深海の大きな耐水圧下におい
て保護容器は水圧により破壊しないだけの強度を有して
ふ・ればよく、水圧による歪は歪吸収層0褐があるため
、内部の光電変換器(8)には何ら影響を及ぼすことが
ないのが大きな特徴である。このため耐圧容器OBの肉
厚は歪吸収層を設けない場合と比較して非常に薄いもの
とすることが可能で、全体の軽量、小型化が実現される
ものである。
In order to solve this problem, the inventors devised a structure in which a photoelectric converter is housed in a metal protective container that has a base for passing optical fibers and electric wires through, and the inside of the protective container is filled and solidified with resin. After careful consideration, we decided to select a resin that has good adhesion to protective containers, optical fibers, electric wires, etc.
2. It has been confirmed that waterproofness is ensured even under deep sea conditions exceeding 200 m2, but in order to reduce the distortion that occurs in the photoelectric converter to the extent that it does not pose a problem in terms of transmission characteristics, it is necessary to use, for example, a stainless steel protective container, As a result of further development activities, we came to the conclusion that under a pressure of 200 to 9/an", which is equivalent to 200m, the container would need to have a wall thickness of 10m or more, making it heavy and large. Second
2 is a structural sectional view showing an embodiment of the present invention,
The optical fiber (6) is coated with a material such as nylon that has good adhesion to resin (6y), and the electric wire (9) is connected to the electrode (1) of the photoelectric converter (8). Enameled wire, nylon coated wire, etc. are also used, and each wire is guided to the outside via a through-cap σQ.01) is a cylindrical pressure-resistant container, and in this example, a protective container is formed with the through-cap aai. The internal auxiliary container sub-container is embedded in thermosetting resin α3 filled and solidified without any gaps. The auxiliary container μs forms a space or a strain absorbing layer 04) made of a flexible cushioning material around the photoelectric converter (8). In a water-resistant photoelectric converter with such a configuration, the protective container only needs to have enough strength not to be destroyed by the water pressure under the large water pressure of the deep sea, and since there is a strain absorbing layer of 0 brown, the internal strain is resistant to distortion due to water pressure. A major feature is that it does not have any effect on the photoelectric converter (8). Therefore, the wall thickness of the pressure-resistant container OB can be made much thinner than in the case where no strain absorption layer is provided, and the overall weight and size can be reduced.

耐圧容器θ心は均一に応力が加わる円筒状のものが良い
ことは言うまでもないが、その材質として、例えばカー
ボン繊維やガラス繊維などの軽量で圧縮応力に対する高
ヤング率の繊維強化プラスチックを用いると、金属製の
ものと比較して、より軽量化が可能で海水に対する耐食
性もよく、かつ内部の充填樹脂との接着力も向」ユして
より安定した構造のものが得られるため、非常に望まし
いことである。貫通部の貫通孔OQは充填樹脂03に直
接水圧がかかる部分であり、貫通孔oQの内面は積榛的
に樹脂との接着強度を向上させる工夫が望ましく、実施
例ではネジ切加工を施している。充填樹脂oJは一般的
に熱硬化性のエポキシ樹脂、ウレタン樹脂、シリコーン
樹脂、不飽和ポリエステル樹脂等の低粘度液体樹脂が好
ましい。又、選択の基準としては保護容器の材質及び光
ファイバ(6yや電線(9)との接着力の大きいことが
望ましい。
It goes without saying that a cylindrical core to which stress is applied uniformly is best for the pressure-resistant container θ core, but if the material is a lightweight fiber-reinforced plastic with a high Young's modulus against compressive stress, such as carbon fiber or glass fiber, Compared to metal products, it is extremely desirable because it is lighter, has better corrosion resistance against seawater, and has better adhesion with the internal filling resin, resulting in a more stable structure. It is. The through-hole OQ of the penetration part is a part where water pressure is applied directly to the filled resin 03, and it is desirable that the inner surface of the through-hole OQ be designed to constructively improve the adhesive strength with the resin, and in the example, it is threaded. There is. The filling resin OJ is generally preferably a low-viscosity liquid resin such as a thermosetting epoxy resin, urethane resin, silicone resin, or unsaturated polyester resin. Also, as criteria for selection, it is desirable that the material of the protective container has a high adhesive strength with the optical fiber (6y or electric wire (9)).

歪吸収層0弔の厚さと、材質は保護容器の強度と使用水
深との関係で決まるものであって、歪吸収層(搏の外面
に生じる歪量具」−の厚さを有する空間又は歪量を吸収
しうる厚さの発泡プラスチック等の柔軟なりッション材
が選ばれる。
The thickness of the strain-absorbing layer and the material are determined by the relationship between the strength of the protective container and the water depth in which it is used, and the space or strain having the thickness of the strain-absorbing layer (a device for measuring strain that occurs on the outer surface of the rack) A flexible cushioning material such as foamed plastic is selected that is thick enough to absorb the

補助容器曽は樹脂充填の際の歪吸収層αΦの形成及び保
護が主たる役割であるが、薄肉金属製の場合、繊維強化
プラスチックの耐圧容器09と充填樹脂03を透過して
くる水蒸気の遮蔽層として働く効果もある。
The main role of the auxiliary container is to form and protect the strain absorption layer αΦ during resin filling, but if it is made of thin metal, it is a shielding layer for water vapor that passes through the fiber-reinforced plastic pressure container 09 and the filled resin 03. It also has the effect of working as a

以上、詳しく細部の構成について説明したが、深海2,
000mでの使用を前提として設計したものの具体的な
実施例を紹介すると、耐圧容器に3B厚のカーボンファ
イバ繊維強化プラスチック製の薄肉円筒を用いたもので
、300に9/c+y+”の水圧テスト及び1,000
回の圧力サイクルテスト(200KP/c1n2  と
常圧間〕を実施し、設計通り2,000mの深海におい
て十分な伝送特性を有することが確認されている。
I have explained the detailed structure above, but Deep Sea 2,
To introduce a specific example of a product designed with the assumption of use at 300m, a thin cylinder made of carbon fiber reinforced plastic with a thickness of 3B is used as a pressure-resistant container, and the water pressure test of 300m and 9/c+y+" and 1,000
A pressure cycle test (between 200 KP/c1n2 and normal pressure) was conducted twice, and it was confirmed that it had sufficient transmission characteristics in the deep sea of 2,000 m as designed.

以上、紹介した実施例の他にも、耐圧容器と貫通口金を
一体のものとしたり、全体を繊維強化プラスチック製と
したり、光ファイバと電線をひとつの貫通孔に収納する
等の構造例が考えられるが、本発明の要点は、保護容器
中に光電変換器を樹脂の充填固化により埋込むことによ
り、防水性を得、さらに光電変換器の周辺に歪吸収層を
設けることにより、強大な深海の水圧で保護容器に生じ
る歪を吸収することにあって、以上の如き構造例も本発
明の一実施態様にすぎないことは言うまでもない。
In addition to the examples introduced above, other structural examples include integrating the pressure container and the through cap, making the entire body made of fiber-reinforced plastic, and housing the optical fiber and electric wire in one through hole. However, the key point of the present invention is to obtain waterproof property by embedding the photoelectric converter in a protective container by filling and solidifying resin, and furthermore, by providing a strain absorption layer around the photoelectric converter, it can be used in the powerful deep sea. Needless to say, the above-described structural examples are only one embodiment of the present invention in order to absorb the strain caused in the protective container by the water pressure.

本発明は数ミクロンの組立精度を要求される精密な光電
変換器を強大な水圧下で簡便に使用し得る軽量かつ小型
の耐水圧光電変換器とするもので、あらゆる種類の光電
変換器に適用が可能であるなどの大きな利点を有するも
のである。
The present invention is a lightweight and compact water-resistant photoelectric converter that can easily be used under strong water pressure, and is applicable to all types of photoelectric converters, which require assembly accuracy of several microns. This has the great advantage of being possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な光電変換器の構造例で、(a)はE1
0ユニット、 (b)は0/Eユニツト、第2図は本発
明の一実施例を示す縦断面図である。 ■、・・・電 極 3、・・・ダイオードチップ 6、・・・光ファイバ 8、・・・光電変換器 第1頁の続き 0発 明 者 日比野豊 大阪市此花区島屋1丁目1番3 号住友電策工業株式会社大阪製 作所内 0発 明 者 吉相三部 大阪市此花区島屋1丁目1番3 号住友電気工業株式会社大阪製 作所内 (参発 明 者 池宮敏之 鹿沼型さつき町3番の3住友電 気工業株式会社関東製作所内 ■出 願 人 住友電気工業株式会社 大阪市東区北浜5丁目15番地
Figure 1 shows an example of the structure of a general photoelectric converter, and (a) shows E1
0 unit, (b) is an 0/E unit, and FIG. 2 is a longitudinal sectional view showing an embodiment of the present invention. ■, ... Electrode 3, ... Diode chip 6, ... Optical fiber 8, ... Photoelectric converter Continued from page 1 0 Inventor Yutaka Hibino 1-1-3 Shimaya, Konohana-ku, Osaka-shi No. Sumitomo Electric Industries, Ltd., Osaka Works, Inventor: Kisso Sanbe, 1-1-3 Shimaya, Konohana-ku, Osaka City, Sumitomo Electric Industries, Ltd. 3 Sumitomo Electric Industries, Ltd., Kanto Works ■Applicant: Sumitomo Electric Industries, Ltd., 5-15 Kitahama, Higashi-ku, Osaka

Claims (2)

【特許請求の範囲】[Claims] (1)耐圧容器部と貫通口金部とで構成される保護容器
中に光電変換器を樹脂の充填同化により埋込む構造であ
って、光電変換器の周辺に空間又は柔軟なりッション材
による歪吸収層を有することを特徴とする耐水圧光電変
換器。
(1) A structure in which a photoelectric converter is embedded in a protective container consisting of a pressure-resistant container part and a through-cap part by filling and assimilating resin, and strain is absorbed by a space or a flexible cushioning material around the photoelectric converter. A water pressure photoelectric converter characterized by having a layer.
(2)保護容器の全体又は一部を繊維強化プラスチック
にて構成することを特徴とする特許請求の範囲第1項記
載の耐水圧光電変換器。
(2) The water-resistant photoelectric converter according to claim 1, wherein the entire or part of the protective container is made of fiber-reinforced plastic.
JP57117426A 1982-07-05 1982-07-05 Photoelectric converter having resistance to water pressure Pending JPS598441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57117426A JPS598441A (en) 1982-07-05 1982-07-05 Photoelectric converter having resistance to water pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57117426A JPS598441A (en) 1982-07-05 1982-07-05 Photoelectric converter having resistance to water pressure

Publications (1)

Publication Number Publication Date
JPS598441A true JPS598441A (en) 1984-01-17

Family

ID=14711347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57117426A Pending JPS598441A (en) 1982-07-05 1982-07-05 Photoelectric converter having resistance to water pressure

Country Status (1)

Country Link
JP (1) JPS598441A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724786U (en) * 1993-10-12 1995-05-12 住江織物株式会社 Package
JP2015214805A (en) * 2014-05-08 2015-12-03 公益財団法人地球環境産業技術研究機構 Diagnostic system in rock, container for use in the same, diagnostic method in rock and fluid injection method into ground rock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724786U (en) * 1993-10-12 1995-05-12 住江織物株式会社 Package
JP2015214805A (en) * 2014-05-08 2015-12-03 公益財団法人地球環境産業技術研究機構 Diagnostic system in rock, container for use in the same, diagnostic method in rock and fluid injection method into ground rock

Similar Documents

Publication Publication Date Title
US8910743B2 (en) Acoustic Reflectors
US3825320A (en) High-pressure optical bulkhead penetrator
US5367376A (en) Planar and linear fiber optic acoustic sensors embedded in an elastomer material
US6591046B2 (en) Method for protecting optical fibers embedded in the armor of a tow cable
US4296996A (en) Feedthrough for optical fiber
GB2111243A (en) Underwater optical fiber connector
US5883857A (en) Non-liquid filled streamer cable with a novel hydrophone
CN104851512A (en) Opto-electronic combined trailing cable used for hydrophone system
US4388710A (en) Submarine cable tension telemetering system
JPS598441A (en) Photoelectric converter having resistance to water pressure
US7745522B2 (en) Acoustic waveguide plate with nonsolid cores
CN109765561B (en) Optical fiber hydrophone array segment structure and optical fiber hydrophone array structure
CN207638885U (en) Underwater acoustic transducer with pressure sensor
US20010018302A1 (en) Adhesively bonded pressure-resistant glass bodies
CN113960725B (en) High-pressure-resistant fiber cabin penetrating connector sealed by combined glue and sealing method
US3663934A (en) Self-supporting transducer assembly
US4967071A (en) Fiber optic position sensor
CN112954578A (en) Vibration balance type low-noise deep sea hydrophone and manufacturing method thereof
US7496246B1 (en) Ruggedized fiber optic sound velocity profiler
CN111497351A (en) Sandwich composite pressure-resistant shell and application thereof
CN110525601B (en) Protective structure of metal ship body and preparation method thereof
JPS582B2 (en) Feedthrough for optical submarine repeaters
JPS5930246B2 (en) Optical fiber submarine cable connection equipment
CN115900882A (en) System and method for realizing regional tidal water level monitoring by using offshore pile foundation
KR850008411A (en) Optical conduit