JPS5984134A - Eccentricity compensating method in imbalance measurement - Google Patents

Eccentricity compensating method in imbalance measurement

Info

Publication number
JPS5984134A
JPS5984134A JP19453082A JP19453082A JPS5984134A JP S5984134 A JPS5984134 A JP S5984134A JP 19453082 A JP19453082 A JP 19453082A JP 19453082 A JP19453082 A JP 19453082A JP S5984134 A JPS5984134 A JP S5984134A
Authority
JP
Japan
Prior art keywords
eccentricity
bearing
rotating shaft
phase
unbalance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19453082A
Other languages
Japanese (ja)
Other versions
JPS6256453B2 (en
Inventor
Tadashi Umoto
宇本 正
Minoru Oshima
大島 実
Kazuhiko Yamaguchi
和彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akashi Seisakusho KK
Original Assignee
Akashi Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akashi Seisakusho KK filed Critical Akashi Seisakusho KK
Priority to JP19453082A priority Critical patent/JPS5984134A/en
Publication of JPS5984134A publication Critical patent/JPS5984134A/en
Publication of JPS6256453B2 publication Critical patent/JPS6256453B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • G01M1/16Determining imbalance by oscillating or rotating the body to be tested
    • G01M1/22Determining imbalance by oscillating or rotating the body to be tested and converting vibrations due to imbalance into electric variables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Balance (AREA)

Abstract

PURPOSE:To perform accurate eccentricity compensation in an optional phase of a sleeve bearing by finding the compensation amount of eccentricity originating from a driven-side bearing from the phase difference between the driven-side and driving-side bearing parts, and compensating imbalance measured values in plural correction surfaces. CONSTITUTION:A reference signal generator 27 is connected to imbalance detecting circuits 29-31 to which pickups 11, 16, and 18 are connected and a phase difference detecting circuit 36. A subordinate reference signal generator 28 is connected to the circuit 36 to detect the phase difference between sleeve bearings 2 and 3. The amounts of imbalance detected by the circuits 29-31 are inputted to a correction surface separating and sensitivity circuit 32 and converted into the amounts of imbalance of respective correction surfaces, which are inputted to eccentricity compensating circuits 33-35. A compensation amount calculating circuit 37 receiving signals from a compensating value storage circuit 38 and the circuit 36 is connected to the circuits 33-35. The circuits 33-35 calculate the amounts of dynamic imbalance and the amount of imbalance due to eccentricity with regard to the respective correction surfaces to detect the final amounts of imbalance corresponding to the respective correction surfaces, and they are displayed on display meters 39-41 respectively.

Description

【発明の詳細な説明】 本発明は不つりあい測定における偏心補償法、特にスリ
ープ軸受によって支持された回転軸体と不つ9あい試験
機との間の偏心補償を行う方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an eccentricity compensation method in unbalance measurement, and particularly to a method of performing eccentricity compensation between a rotating shaft supported by a sleep bearing and an unbalance testing machine.

回転軸体、中でもプロペラシャフトのような回転軸体は
、第1図に示すように、回転軸体1とスリーブ軸受2,
3を備えた不つりあい試験機6にかけ、これを回転させ
て不つりあいを測定するものがあるが、かかる方式によ
る不つりあい試験機6によって回転II’ql+休1の
不つりあいを測定すると、スリーブ軸受2,3と回転軸
体1との間に偏心がある場合、当該偏心による不つりあ
いを検出してしまうこ七がある。即ち、例えばスリープ
軸受2による回転軸体1支持部において、軸受部に嵌装
したロータ4の回転中心11117と回転、i!i+l
I体10回転中心軸8との間に偏心aが存在し、またス
リーブ軸受3の軸受部に嵌装したロータ5の回転中心軸
9と回転軸体1の回転中心軸8との闇に偏心すが存在し
ているとすると、回転軸体1自身の不っりあいが0であ
っても偏心aおよびbに比例する不つりあいが検出され
る。このような偏心a、bに起因する不つりあいを検出
し且つ修正するための偏心補償法の例としては電気的偏
心補償法があるが、かかる電気的偏心補償法の従来例と
しては例えば第2図に示すようなものがある。
As shown in FIG. 1, a rotating shaft body, especially a rotating shaft body such as a propeller shaft, is composed of a rotating shaft body 1, a sleeve bearing 2,
There is an unbalance tester 6 equipped with 3, which is rotated to measure the unbalance, but when the unbalance of rotation II'ql + rest 1 is measured with the unbalance tester 6 using this method, it is found that the sleeve bearing If there is eccentricity between 2 and 3 and the rotating shaft body 1, there is a possibility that an unbalance due to the eccentricity will be detected. That is, for example, in the support part of the rotating shaft body 1 by the sleep bearing 2, the rotation center 11117 of the rotor 4 fitted in the bearing part and the rotation, i! i+l
There is an eccentricity a between the rotation center axis 8 of the I body 10, and an eccentricity a exists between the rotation center axis 9 of the rotor 5 fitted in the bearing part of the sleeve bearing 3 and the rotation center axis 8 of the rotation shaft body 1. If there exists an unbalance, an unbalance proportional to the eccentricities a and b will be detected even if the unbalance of the rotating shaft body 1 itself is zero. An example of an eccentricity compensation method for detecting and correcting the unbalance caused by such eccentricities a and b is an electrical eccentricity compensation method. There is something like the one shown in the figure.

これは、長手方向所定の位置に軸受部12 、13 。This has bearing parts 12 and 13 at predetermined positions in the longitudinal direction.

142有する回転軸体10両端部をスリーブ軸受2及び
3によって支持すると共に、この回転軸体1の軸受部1
32弾性部材15によって支持し且ツヒックアッフ16
を連結する一方、スリーブ軸受2を弾性部材1oによっ
て支持し且つ当該スリーブ軸受2にピックアップ11を
連結し、さらにスリーブ軸受3を弾性部材17によって
支持し且つ当該スリーブ軸受3にピックアップ18ト連
結し、各ピックアップ11 、16 、18によってそ
れぞれの部位の振動を検出して不っりあいft−測定す
るようになっている。スリーブ軸受3のロータ5Ii、
ジヨイント部20 、21を有するユニバーサルジヨイ
ント19.!:、このユニバーサルジヨイント19に軸
連結されたプーリ22と、このプーリ22にベルト23
を介して連結され且っモータδの出力軸26に固定連結
されたプーリ24とと介して上記モータδに作動連結さ
れ、モータbの駆動カを受けて回転軸体1を高速回転さ
せる。また、上記p−夕5には基準信号発生器Iが接続
してあり、スリーブ軸受3と回転軸体1との間の位相変
化と検出できるようになっている一方、各ピックアップ
11 、16 、18は、図示外の記憶装置に電気的に
接続されている。そして、不っりあい試@様6に回転軸
体1を装填した後、(A)  先ず、モータδの駆動に
より回転111体1に回転させ、その時の各ピックアッ
プ11 、16 。
Both ends of the rotating shaft body 10 having 142 are supported by sleeve bearings 2 and 3, and the bearing portion 1 of this rotating shaft body 1
32 supported by the elastic member 15 and supported by the elastic member 16
while supporting the sleeve bearing 2 by the elastic member 1o and connecting the pickup 11 to the sleeve bearing 2, further supporting the sleeve bearing 3 by the elastic member 17 and connecting the pickup 18 to the sleeve bearing 3, The pickups 11, 16, and 18 detect the vibrations of the respective parts and measure the unbalanced ft-. Rotor 5Ii of sleeve bearing 3,
Universal joint 19 having joint parts 20 and 21. ! :, a pulley 22 is connected to this universal joint 19, and a belt 23 is connected to this pulley 22.
The rotary shaft body 1 is operatively connected to the motor δ via a pulley 24 which is fixedly connected to the output shaft 26 of the motor δ, and receives the drive force of the motor b to rotate the rotary shaft body 1 at high speed. Further, a reference signal generator I is connected to the pickup 5 so as to be able to detect a phase change between the sleeve bearing 3 and the rotating shaft body 1, while each of the pickups 11, 16, 18 is electrically connected to a storage device not shown. After loading the rotating shaft body 1 into the unbalanced test @6, (A) first, the rotating shaft body 1 is rotated by the drive of the motor δ, and each pickup 11, 16 at that time is rotated.

18の検出値に基づく各軸受面での測定値を記憶回路に
記憶する。
Measured values on each bearing surface based on the detected values of 18 are stored in a storage circuit.

01次に、一方のスリーブ軸受(例えばスリーブ軸受3
)はそのままにしておき、他方のスリーブ軸受2と回転
軸体1との接続部分でその接続を180°反転して取付
けた後、当該回転軸体1を回転させ、その時の各軸受面
の測定値と記憶回路に記憶する。
01 Next, one sleeve bearing (for example, sleeve bearing 3)
), leave the connection between the other sleeve bearing 2 and the rotary shaft body 1, reverse the connection by 180 degrees, and then rotate the rotary shaft body 1 and measure each bearing surface at that time. value and store it in the memory circuit.

(O更に、スリーブ軸受2はそのままにしておき、スリ
ーブ軸受3と回転軸体1との接続部分でその接続を18
0°反転して取付け7(後、当該回転軸体1を回転させ
、その時の各軸受面の測定、値と記憶回路に記憶する。
(O Furthermore, leave the sleeve bearing 2 as it is, and connect the sleeve bearing 3 and the rotating shaft body 1 at the connection part 18
0 degree inversion and installation 7 (after that, the rotary shaft body 1 is rotated, and the measurements and values of each bearing surface at that time are stored in the memory circuit.

以上の三段階にわたる操作によって得られた各測定値を
演算器に入力して演算し、この演算結果に基づいて各ス
リーブ軸受上で偏心補償操作う。これ以後の同一形状、
同一重量の回転軸体の不つりあい測定時にはこの偏心補
償量を記憶しておき、この値で補償することにより、(
4)〜(C)の偏心補償操作を省略できる。
Each measured value obtained through the above three-step operation is input to a computing unit and computed, and eccentricity compensation operation is performed on each sleeve bearing based on the computed results. The same shape after this,
When measuring the unbalance of rotating shaft bodies of the same weight, this eccentricity compensation amount is memorized and by compensating with this value, (
4) The eccentricity compensation operations of (C) can be omitted.

しかし、このような電気的偏心補償法においては、当該
補償法が成り立つためにはスリーブ軸受2及び3と、基
準信号発生器2Tとの間の位相関係が測定時と補償を行
った時の状態と同じでなければならない。しかし、第2
図からも明らかなように、上記従来の偏心補償法では、
スリーブ軸受3は基準信号発生器27に機械的′に直接
接続されているため、位相関係が変ることはないが、ス
リーブ軸受2の方は回転軸体1を介して他方のスリーブ
軸受3及び基準信号発生器27に接続されて・いるため
、一度、試験体である回転軸体1を取り外すとスリーブ
軸受2は自由に回転し、このスリーブ軸受2の接続部で
以後の同一形状の回転軸体1の不つりあい測定の時再び
回転軸体1分取付けた場合、スリーブ軸受2と基準信号
発生器Hとの間の位相ずれによって偏心補償が正確に出
来ない恐れがあった。このため、回転軸体1の取付時に
両軸受の位相角度を合わせるようにして接続する必要が
あった。
However, in such an electrical eccentricity compensation method, in order for the compensation method to work, the phase relationship between the sleeve bearings 2 and 3 and the reference signal generator 2T must be in the state at the time of measurement and the state at the time of compensation. must be the same as However, the second
As is clear from the figure, in the conventional eccentricity compensation method described above,
Since the sleeve bearing 3 is mechanically directly connected to the reference signal generator 27, the phase relationship does not change, but the sleeve bearing 2 is connected to the other sleeve bearing 3 and the reference signal via the rotating shaft body 1. Since it is connected to the signal generator 27, once the rotating shaft body 1, which is the test object, is removed, the sleeve bearing 2 rotates freely, and the connection part of the sleeve bearing 2 is used to connect subsequent rotating shaft bodies of the same shape. If the rotating shaft body was reattached for one minute during unbalance measurement in step 1, there was a risk that eccentricity compensation could not be performed accurately due to a phase shift between the sleeve bearing 2 and the reference signal generator H. For this reason, when installing the rotary shaft body 1, it was necessary to connect the two bearings so that the phase angles of both bearings were matched.

本発明は、この様な従来の間顧点に着目してなされたも
ので、その目的は、不つりあい試験機によって偏心補償
を行う場合、試験体を支持するスリープ軸受が任意の位
相にあっても常に正確な偏心補償が出来るようにした偏
心補償方法?提供し上記従来の問題点と解決することで
ある。
The present invention has been made by focusing on such conventional considerations, and its purpose is to ensure that the sleep bearing supporting the test specimen is in any phase when performing eccentricity compensation using an unbalance tester. Is there an eccentricity compensation method that always allows accurate eccentricity compensation? The purpose is to provide and solve the above conventional problems.

そして本発明は、不つ9あい測定における偏心補償法に
おいて、その両端を試験機のスリープ軸受等に取付ける
ことにより、支持、[ij1転でき、不つりあいの測定
が可能になる被試験回転軸体のためのつゆあい試験機で
、かつその被試験回転軸体を介して以外、機械的に接続
されない被駆動側のスリープ軸受等を有するつりあい試
験機における、両スリーブ軸受等と被試験回転4−1体
との取付部分の偏心によって生ずる不つりあいゃ、軸受
自身の残留土つりあいを電気的に補償する装置について
、被試験回転軸体の試験機への着脱により被駆動側スリ
ーブ軸受の位相が駆動側軸受に対して変化して接続され
ても偏心補償動作を正常に作動させるために、被駆動側
軸受部にその位相を検知する副位相基準信号発生器を接
続し、駆動側に設けられた主位相基準信号発生器との被
駆動filll 1iLIl+受の位相差を検11−)
する回路を設け、この位相差により被駆動側軸受に起因
する偏心補償量の記憶値を位相回転して現時点での補償
量に変換する補償用算出回路を設け、複数の修正面での
不つりあい測定値より上記補償量を差引くようにしたこ
とを要旨とするものである。
In the eccentricity compensation method for unbalance measurement, the present invention provides a rotating shaft to be tested that can be supported and rotated by attaching both ends to sleep bearings or the like of a testing machine, making it possible to measure unbalance. This is a balance testing machine for the purpose of testing, and has a sleep bearing, etc. on the driven side that is not mechanically connected except through the rotating shaft under test. Regarding the device that electrically compensates for unbalance caused by the eccentricity of the mounting part between the bearing and the bearing itself, the phase of the sleeve bearing on the driven side is driven by the attachment and detachment of the rotating shaft under test to the testing machine. In order to operate the eccentricity compensation operation normally even if the side bearing is connected with a change in connection, a sub-phase reference signal generator is connected to the driven side bearing to detect the phase, and a sub-phase reference signal generator is installed on the drive side. Detect the phase difference between the driven fill 1iLI1 + receiver and the main phase reference signal generator 11-)
A compensation calculation circuit is provided that uses this phase difference to phase-rotate the stored value of the eccentricity compensation amount caused by the driven side bearing and converts it into the current compensation amount. The gist is that the compensation amount is subtracted from the measured value.

以下、本発明と添付図面に示す実施例に基づいて詳細に
説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.

第3図及び第4図は本発明の一実施例を示す図である。FIGS. 3 and 4 are diagrams showing an embodiment of the present invention.

このうち、第3図は本発明による電気的偏心補償方法を
採用した不つりあい試験機における測定機構を示すもの
である。ここにおいて、符号1乃至27 ll1JZ記
従来における不つりあい試験機の各部と同一部位を示す
。IIIち、この実施例においでも、回転軸体1の両Q
::5部をスリーブ1llr受2及び3によって支持し
、回転軸体1の1i+It受部13を連結部利15によ
って支持し旧つピックアップ16を連結する一方、スリ
ープ軸受2.3のそれぞれを弾性部材10 、17で支
持し又これらのスリーブ軸受2,3にピックアップ11
゜18を連結し、各ピックアップ11 、16 、18
によってそれぞれの部位の振動を検出して不つ9あいを
測定するようになっており、スリープ軸受3が作114
連結されたモータbを駆動させることにより回転軸体1
を高速回転させる。そして本発明においては、スリープ
軸受2に、ス1)−ブ軸受3に接続した基準信号発生器
Iと回様の副基準信号発生器28が接続してあり、また
この副基準信号発生器28は基準信号発生器77に電気
的に接続されている。そして、回転軸体1を不つりあい
試験機6から取外した時、スリープ軸受2が自由回転し
ても、この回転は副基準信号発生器28によって検知さ
れ、この副基準信号発生器28からの信号に基づいて基
準信号発生器27は上記スリープ軸受2における自由回
転源?測定し、これらスリーブ軸受2七基準信号発生器
27との間の位相のずれをなくすようになっている。
Of these, FIG. 3 shows a measuring mechanism in an unbalance testing machine that employs the electrical eccentricity compensation method according to the present invention. Here, reference numerals 1 to 27 ll1JZ indicate the same parts as those of the conventional unbalance testing machine. III. Also in this embodiment, both Q of the rotating shaft body 1
::5 parts are supported by the sleeve 1llr bearings 2 and 3, and the 1i+It bearing part 13 of the rotating shaft body 1 is supported by the connecting part 15 to connect the old pickup 16, while each of the sleep bearings 2.3 is elastically It is supported by members 10 and 17, and a pickup 11 is mounted on these sleeve bearings 2 and 3.
゜18 are connected, and each pickup 11, 16, 18
The sleep bearing 3 is designed to detect the vibration of each part and measure the discrepancy.
The rotating shaft body 1 is rotated by driving the connected motor b.
Rotate at high speed. In the present invention, the sleep bearing 2 is connected to the reference signal generator I connected to the sleeve bearing 3 and the auxiliary reference signal generator 28. is electrically connected to the reference signal generator 77. When the rotating shaft body 1 is removed from the unbalance tester 6, even if the sleep bearing 2 rotates freely, this rotation is detected by the sub-reference signal generator 28, and a signal from the sub-reference signal generator 28 is detected. The reference signal generator 27 is based on the free rotation source in the sleep bearing 2? The phase difference between the sleeve bearing 27 and the reference signal generator 27 is eliminated.

第4図は本発明の偏心補償方法を実施するための測定回
路を示す。ピックアップ11 、16 、18は、それ
ぞれ不クリあい検出回路29 、30 、31に接続さ
れており、これら不つりあい検出回路29゜30 、3
1は、そこからの出力信号が修正面分離及び感度回路3
2に人力するように接続されている。
FIG. 4 shows a measuring circuit for implementing the eccentricity compensation method of the invention. The pickups 11, 16, 18 are connected to unbalance detection circuits 29, 30, 31, respectively, and these unbalance detection circuits 29, 30, 3
1, the output signal from which is modified plane separation and sensitivity circuit 3
It is connected to 2 so that it can be operated manually.

一方、基準信号発生器27は、各ピックアップ11゜1
6 、18が接続された不つりあい検出回路29 、3
0 。
On the other hand, the reference signal generator 27
6, 18 are connected to the unbalance detection circuit 29, 3
0.

31に信号を送るべく接続されると共に位相差検出回路
36にも又接続されている。この位相差検出回路36に
は、さらに副基準信号発生器28が接続され、回転軸体
1の付は換え時におけるスリープ軸受2と3との間の位
相差と検出するようになっている。不つりあい検出回路
29,30,31によって検出された各ピックアップ1
1 、1(i 、18部分における不つりあい尿は、修
正面分離及び感度回路32に入力されて、不つりあい修
正を行うべき各修正面における不つりあい鷲に換狼され
る。さらに、この修正面分離及び感度DJl路32から
は各修正m1に対応した不つりあい信号が出力され、同
じく各修正面に対応して設けられた偏心補償回路33 
、34 、35へと入力される。
31 and is also connected to a phase difference detection circuit 36. This phase difference detection circuit 36 is further connected to a sub-reference signal generator 28, which detects the phase difference between the sleep bearings 2 and 3 when the rotating shaft body 1 is replaced. Each pickup 1 detected by the unbalance detection circuits 29, 30, 31
The unbalanced urine in the 1, 1 (i, 18 portions) is input to the correction surface separation and sensitivity circuit 32, and is converted into an unbalanced portion in each correction surface on which unbalance correction is to be performed.Furthermore, this correction surface An unbalance signal corresponding to each correction m1 is output from the separation and sensitivity DJl path 32, and an eccentricity compensation circuit 33 is also provided corresponding to each correction surface.
, 34 and 35.

他方、基準信号発生器I及び副基準信号発生器28から
の信号についてみると、位相差検出回路36からは位相
差信号が出力源れ、補償量算出回路37へ入力される。
On the other hand, regarding the signals from the reference signal generator I and the sub-reference signal generator 28, the phase difference signal is output from the phase difference detection circuit 36 and is input to the compensation amount calculation circuit 37.

この補償量算出回路3Tは、両スリーブ軸受2,3間に
おける位相差に応じた偏心補償値が“予め記憶せしめら
れた補償値記憶回路38に接紅1されていてこの補償値
記憶回路38及び上記位相差検出回路36からの信号を
受けて偏心による不つりあい補償量を算出する。また、
この補償用算出回路37は、偏心補償回路33゜34 
、35のそれぞれに接続されており、当該補償ffi算
出[i’ji路37からの出力信号が入力される。これ
により、偏心補償回路33 、34 、35には、修正
面分離及び感度回路32からの信号と補償量算出回路3
7からの信号とが入力されることになり、各修正面にお
ける動的率っりあい量と、スリーブ軸受2.3及び回転
軸体1[ハ1の偏心による不つりあい量とが演算され、
双方、の不クリあい量を考慮した、各修正面に対応する
最終的な不っりあい鰍が検出され、各表示メータ39 
、40 、41に表示される。した′力;って、この表
示メータ39゜40 、41における表示に従って各修
正面における不つりあい修正2行えば回転軸体の動的な
バランスσ1′l整を行うことができる。
In this compensation amount calculation circuit 3T, an eccentricity compensation value corresponding to the phase difference between both sleeve bearings 2 and 3 is pasted in a compensation value storage circuit 38 which is stored in advance. The amount of unbalance compensation due to eccentricity is calculated by receiving the signal from the phase difference detection circuit 36.
This compensation calculation circuit 37 includes eccentricity compensation circuits 33 and 34.
, 35, and the output signal from the compensation ffi calculation [i'ji path 37 is inputted thereto. As a result, the eccentricity compensation circuits 33 , 34 , 35 receive the signal from the correction surface separation and sensitivity circuit 32 and the compensation amount calculation circuit 3 .
The signal from 7 is input, and the dynamic balance amount on each correction surface and the amount of unbalance due to eccentricity of the sleeve bearing 2.3 and the rotating shaft body 1 [C1] are calculated.
The final mismatch corresponding to each correction surface is detected, taking into account the amount of mismatch between both sides, and each display meter 39
, 40 and 41. The dynamic balance σ1'l of the rotating shaft body can be adjusted by correcting the unbalance on each correction surface according to the indications on the display meters 39, 40, 41.

かかる構成を有する不つりあい試験機において、上記し
た(3)乃至(00手順で回転軸体1の不つりあい測定
を行う。この測定操作において、A項における測定値と
B項における測定値の変化から、 (1)スリープ軸受2を反転した時の第1の修正面への
影響値       Ell (2)スリーブ軸受22反転した時の第2の修正面への
影響値       B1□ (3)スリープ軸受2を反転した時の第3の修正面への
影響値       、ElBのそれぞれが求められる
。また、 B項における測定値と0項における測定値の変化から、 (4)スリープ軸受3を反転した時の第10修正面への
影響値       P21 (5)スリープ軸受3を反転した時の第2の修正面への
影響値       E22 (6)スリープ軸受3を反転した時の第3の修正面への
影響値       123 のそれぞれが求められる。上記B項における測、定操作
から0項における測定操作に移行する際、回転軸体1の
取外しによりスリープ軸受2が自由回転しても、この自
由回転によって生じる位相のずれは副基準信号発生器2
8によって位相差検出回路36へ伝達されるから、位5
相関係がずれることはない。
In the unbalance tester having such a configuration, the unbalance of the rotating shaft body 1 is measured using the steps (3) to (00) described above.In this measurement operation, from the change in the measured value in the A term and the measured value in the B term , (1) Influence value on the first correction surface when the sleep bearing 2 is reversed Ell (2) Influence value on the second correction surface when the sleeve bearing 22 is reversed B1□ (3) When the sleep bearing 2 is reversed The influence value , ElB on the third correction plane when reversed is obtained. Also, from the change in the measured value in the B term and the measured value in the 0 term, (4) the influence value when the sleep bearing 3 is reversed 10 Influence value on the correction surface P21 (5) Influence value on the second correction surface when the sleep bearing 3 is reversed E22 (6) Influence value on the third correction surface when the sleep bearing 3 is reversed 123 When moving from the measurement and determination operations in item B above to the measurement operations in item 0, even if the sleep bearing 2 rotates freely due to the removal of the rotating shaft 1, the phase shift caused by this free rotation is calculated. is the sub reference signal generator 2
8 to the phase difference detection circuit 36.
The correlation never shifts.

したがって上記各修正面における影響値としては正確な
値が得られることになる。よって、各修正面における偏
心補償量は、 第1の修正面においては  No + E21第2の修
正面においては  ”u−+E2を第3の修正面におい
ては  E+s+ E2にで求められる。
Therefore, accurate values can be obtained as influence values for each of the above correction planes. Therefore, the eccentricity compensation amount for each correction surface is determined by: No + E21 for the first correction surface, ``u-+E2'' for the second correction surface, and E+s+E2 for the third correction surface.

なお、上式における偏心補償量はベクトル量として求め
られる。そして、各々のベクトル基準信号発生器28及
び偏心補償操作を行った時の副基準信号発生器27 、
28間の位相差がとっである。
Note that the eccentricity compensation amount in the above equation is obtained as a vector amount. Then, each vector reference signal generator 28 and the sub-reference signal generator 27 when performing eccentricity compensation operation,
The phase difference between 28 and 28 is significant.

以」二のようにして、偏心補償量が決定された後は、次
からの測定に際しては、スリーブ軸受20位相が変らな
い限り、前の測定段階に、おけると同様の作用によって
補償される。スリーブiii+It受2の位相が変った
場合は、当該スリーブ軸受2の偏心による影響も上記位
相が変った分だけ回転するから、基準信号発生器27及
び副基準信号発生器28の間における位相差を検出し、
偏心補償操作を行った時の基準信号発生器21と副基準
信号発生器28との位相差からずれた角度だけ上記(1
) 、 (2) 、 (31に:おける各修正面への影
竹値Ell l E+21島、を位相回転させ、その上
でE、、+E2. IE+2+ E22 + 、Fi+
s+ B2s ft n 出スtL u ヨI、n。
After the eccentricity compensation amount is determined as described above, in the next measurement, unless the phase of the sleeve bearing 20 changes, compensation will be performed in the same manner as in the previous measurement step. When the phase of the sleeve iii+It receiver 2 changes, the effect of eccentricity of the sleeve bearing 2 also rotates by the amount that the phase changes, so the phase difference between the reference signal generator 27 and the sub reference signal generator 28 can be detect,
The above (1
) , (2) , (In 31: The shadow value Ell l E+21 island on each correction plane in 31 is rotated in phase, and then E, , +E2. IE+2+ E22 + , Fi+
s+ B2s ft n out S tL u Yo I, n.

このように、本発明に係る不つりあい試験における偏心
補償法では、回転軸体全両端部で支えるスリープ軸受に
任意の状態で使用できるという利点があり、またスリー
ブ軸受に存在する残留不クリあいも同時に補償できる。
As described above, the eccentricity compensation method in the unbalance test according to the present invention has the advantage that it can be used in any state for the sleep bearing supported at both ends of the rotating shaft, and it can also be used in any state to remove residual debris present in the sleeve bearing. It can be compensated at the same time.

このため、例えば自動車用プロペラシャフト等の回転軸
体の不つりあい測定等において、回転軸体の取、何時に
両スリーブ軸の角度を合わせて接続する操作が不要にな
り、作業手順の簡略化と測定精度の向上とを共に達成で
きるという効果が得られる。
Therefore, for example, when measuring unbalance of a rotating shaft body such as an automobile propeller shaft, there is no need to remove the rotating shaft body or connect the sleeve shafts while aligning the angles of both sleeve shafts, which simplifies the work procedure. This has the effect of improving measurement accuracy at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、回転軸体?スリーブ軸受によって支持し不つ
りあい測定にする一般的な構成を示す概略図であろう 第2図は、回転軸体の不つりあい測定において、スリー
ブ軸受の偏心補償法の一従来例を示す世E略説明図であ
る。 第3図は、本発明の一実施例に係るスリーブ軸受の偏心
補償法?示す州、略説明図である。 第4図は、本発明の不つりあい測定法における不つりあ
い検出手順と示すブロック図である。 1・・・回転軸体    2,3・・・スリーブ軸受6
・・・不つりあい試験ta  7 、8 、9・・・回
転+4’V+已・他11特許出願人  株式会社明石製
作所
Is the rotating shaft in Figure 1? Fig. 2 is a schematic diagram showing a general configuration for measuring unbalance supported by a sleeve bearing, and shows a conventional example of a method for compensating eccentricity of a sleeve bearing in measuring unbalance of a rotating shaft body. It is an explanatory diagram. FIG. 3 shows a sleeve bearing eccentricity compensation method according to an embodiment of the present invention. It is a schematic explanatory diagram of the states shown. FIG. 4 is a block diagram showing the unbalance detection procedure in the unbalance measurement method of the present invention. 1... Rotating shaft body 2, 3... Sleeve bearing 6
...Unbalance test TA 7, 8, 9...Rotation + 4'V + 已 and 11 other patent applicants Akashi Seisakusho Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 主位相基準発生器を接続した駆動側軸受と、被駆動側軸
受と?有し、被試験回転軸体の両端を上記双方の軸受に
取付けることにより支持回転すると共に、この回転軸体
を介して両軸受が機械的に接続されるようになったつ9
あい試験機によって両軸受と回転軸体との取付部分の偏
心によって生ずる不つりあいゃ、軸受自身の残留不つり
あい2電気的に補償する方法において、被駆動側軸受に
、当該軸受の位相と検知する副位相基準信号発生器分接
続し、この副位相基準信号発生器と上記主位相基準信号
発生器との間の位相差を検出し、この位相差に基づいて
被駆動側軸受の自由回転に伴う偏心補償量の記憶値を位
相回転し且つ上記自由回転後における補償量を算出し、
複数の修正面での不つりあい測定値から上記補償量を差
し引くことにより、回転軸体のつりあい試験機への着脱
により被駆動側軸受の位相が駆動側軸受に対して変位し
ても上記偏心補償動作と正常に作動させるようにしたこ
とと特徴とする不つりあい測定における偏心補償法。
The driving side bearing connected to the main phase reference generator and the driven side bearing? By attaching both ends of the rotating shaft to be tested to both of the bearings, it is supported and rotated, and both bearings are mechanically connected via this rotating shaft.
In the method of electrically compensating for unbalance caused by the eccentricity of the mounting part between both bearings and the rotating shaft body, the residual unbalance of the bearing itself is detected by a tester on the driven side bearing as the phase of the bearing in question. A sub-phase reference signal generator is connected, and the phase difference between this sub-phase reference signal generator and the above-mentioned main phase reference signal generator is detected, and based on this phase difference, the drive side bearing rotates freely. Phase-rotating the stored value of the eccentricity compensation amount and calculating the compensation amount after the free rotation,
By subtracting the above compensation amount from the unbalance measurement values on multiple correction planes, even if the phase of the driven side bearing is displaced with respect to the driving side bearing due to the attachment and detachment of the rotating shaft body to the balance tester, the eccentricity compensation described above is achieved. An eccentricity compensation method in unbalance measurement characterized by ensuring normal operation.
JP19453082A 1982-11-08 1982-11-08 Eccentricity compensating method in imbalance measurement Granted JPS5984134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19453082A JPS5984134A (en) 1982-11-08 1982-11-08 Eccentricity compensating method in imbalance measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19453082A JPS5984134A (en) 1982-11-08 1982-11-08 Eccentricity compensating method in imbalance measurement

Publications (2)

Publication Number Publication Date
JPS5984134A true JPS5984134A (en) 1984-05-15
JPS6256453B2 JPS6256453B2 (en) 1987-11-26

Family

ID=16326064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19453082A Granted JPS5984134A (en) 1982-11-08 1982-11-08 Eccentricity compensating method in imbalance measurement

Country Status (1)

Country Link
JP (1) JPS5984134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021431A (en) * 1983-07-15 1985-02-02 Toyota Motor Corp Method for improving measuring accuracy of dynamic balance of long shaft part

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2429930A (en) * 1945-04-23 1947-10-28 Chrysler Corp Method and apparatus for balancing fluid couplings

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2429930A (en) * 1945-04-23 1947-10-28 Chrysler Corp Method and apparatus for balancing fluid couplings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021431A (en) * 1983-07-15 1985-02-02 Toyota Motor Corp Method for improving measuring accuracy of dynamic balance of long shaft part

Also Published As

Publication number Publication date
JPS6256453B2 (en) 1987-11-26

Similar Documents

Publication Publication Date Title
EP0133229B2 (en) Wheel balancer two plane calibration method
US4366707A (en) Apparatus for optimizing tire or wheel characteristics
US4776215A (en) Dynamic balancing system and method
JPH06281527A (en) Method and equipment for balancing rotating body
US5309377A (en) Calibration apparatus and method for improving the accuracy of tire uniformity measurements and tire testing method using same
JPS63169531A (en) Calibration of balancer and circuit thereof
KR20220038702A (en) Methods and drivetrain test benches for detecting imbalance and/or misalignment
US20030230142A1 (en) Apparatus and method for testing rotational balance of crankshaft
JPS6244641A (en) Balance testing method and device
JPS5984134A (en) Eccentricity compensating method in imbalance measurement
US4495811A (en) Correlation procedure and device for rotor balancing
JPH0124249B2 (en)
JPH0222327B2 (en)
US4162633A (en) Balancing machine
JPS6256452B2 (en)
JP2777715B2 (en) Automatic adjustment device for bearing eccentricity of balancing tester
JP3223621B2 (en) Rotating body unbalance measuring device
JP3221202B2 (en) Dynamic balance testing machine
JPH063408B2 (en) Method for correcting measurement error of tire uniformity machine
JP2003322581A (en) Holder for body to be tested for dynamic balance tester
JPH0444686B2 (en)
JPS62220825A (en) Eccentricity compensating method for dynamic balance testing machine
JPS62231126A (en) Balancing machine
JPH0212587Y2 (en)
JPS62254030A (en) Dynamic balance tester