JPS5984080A - Helical coil type heat exchanger - Google Patents

Helical coil type heat exchanger

Info

Publication number
JPS5984080A
JPS5984080A JP19349682A JP19349682A JPS5984080A JP S5984080 A JPS5984080 A JP S5984080A JP 19349682 A JP19349682 A JP 19349682A JP 19349682 A JP19349682 A JP 19349682A JP S5984080 A JPS5984080 A JP S5984080A
Authority
JP
Japan
Prior art keywords
helical coil
heat transfer
coil heat
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19349682A
Other languages
Japanese (ja)
Inventor
Isao Ishikawa
石川 勲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP19349682A priority Critical patent/JPS5984080A/en
Publication of JPS5984080A publication Critical patent/JPS5984080A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1669Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having an annular shape; the conduits being assembled around a central distribution tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration

Abstract

PURPOSE:To reduce thermal stress and improve the reliability thereof by a method wherein a high-temperature part helical coil heat transfer tube and low and middle-temperature part helical coil heat transfer tube are separated by an intermediate connection tube while the former is supported and suspended by a high- temperature part support beam and the latter is suspended and supported by the low and middle-temperature part support beam. CONSTITUTION:The helical coil heat transfer tube 8 is divided into the upper helical coil heat transfer tube 8a part and the lower helical coil heat transfer tube 8b part and both of them are connected by the intermediate connection tube 10 while the upper helical heat transfer tube 8a is suspended and supported by the upper support beam 15 and the lower helical coil heat transfer tube 8b is suspended and supported by the lower support beam 18. Accordingly, the thermal expansion of the upper helical heat transfer tube 8a is absorbed by the intermediate connection tube 10 so as not to affect to the lower helical coil heat transfer tube 8b or a lower connection tube 13 while the lower connection tube 13 is enough to absorb only the thermal expansion of the lower helical coil heat transfer tube 8b, therefore, the thermal stress may be reduced remarkably.

Description

【発明の詳細な説明】 この発明QJ、−\リカルコイル形熱父換2:9に係り
、!li &L商温部・\リカルコイル伝熱ゞ―・と低
・中温スル1翫楚県4Jヨレヨー六−え無偕棲惰?−1
場1ヘリカルコイル伝熱%とを中間部連絡管にて分割し
、尚温1’?l(ヘリカルコイル伝熱管を高温部サポー
ト梁で、また低・中温部ヘリカルコイル伝熱室・を低・
中温部サポート梁でそれぞれ懸垂支持させるように構成
したことにより、高温部伝熱管と低・中温部伝熱管との
熱膨張による相互干渉全期11シ得、熱3h渡時等に高
温部伝熱管に発生する応力を大幅に低減でき、伝熱管の
耐久性お」;び信頼性を向上し得るヘリカルコイル形熱
交換器に関づる。
[Detailed Description of the Invention] This invention relates to QJ, -\ Recalcoil type thermophilic exchange 2:9! li & L Commercial Temperature Department/Recalcoil Heat Transfer--and Low/Medium Temperature Suru 1 Hanchu Prefecture 4J Yorayo 6-E Mukaisei? -1
The field 1 helical coil heat transfer% is divided by the intermediate connecting pipe, and the temperature is 1'? (The helical coil heat transfer tube is connected to the high temperature section with a support beam, and the low and medium temperature section of the helical coil heat transfer chamber is connected to the low and medium temperature sections.
By configuring them to be suspended and supported by medium-temperature section support beams, mutual interference due to thermal expansion between the high-temperature section heat exchanger tubes and the low/medium-temperature section heat exchanger tubes can be avoided during the entire period of 11 hours, and the high-temperature section heat exchanger tubes can be suspended even after 3 hours of heat transfer. This invention relates to a helical coil heat exchanger that can significantly reduce the stress generated in heat exchanger tubes and improve the durability and reliability of heat exchanger tubes.

最近、原子炉で発生した熱をヘリウドガスなどの一次熱
媒体により高温で11yり出し、これを中間熱父J見器
にてヘリウムガス等の一次熱媒体と熱父換烙ぜて得られ
た熱でシロ電の11か製鉄、化学反応。
Recently, the heat generated in a nuclear reactor is extracted at high temperature using a primary heat medium such as helium gas, and this heat is exchanged with a primary heat medium such as helium gas at an intermediate heat source. So Shiroden's 11 is iron making and chemical reactions.

池水淡水化、地域冷暖房など多目的に利用しようという
多目的高温ガス炉か研死・開発されている。
A multi-purpose high-temperature gas reactor is being researched and developed to be used for multiple purposes such as pond water desalination and district heating and cooling.

ところで、上記中f11」熱交換器には約] (100
C前後1(加熱されたガスが多用に給排されるので、伝
熱管等の熱膨張吸収はその面1久+′1.1−14余め
で重要な問題である。
By the way, the heat exchanger "f11" in the above is about ] (100
Around C 1 (Since heated gas is frequently supplied and discharged, absorption of thermal expansion of heat exchanger tubes, etc. is an important issue in terms of 1+'1.1-14 more.

次に、従来のこの種熱交換器を第1図に基づいて説明す
る。
Next, a conventional heat exchanger of this type will be explained based on FIG.

図において、atよ二次ヘリウノ・を1ALTヘリカル
コイル伝熱%゛・てあり、ヘリカルコイル伝熱管aは集
合管としての主管すの周りに螺旋状に巻回して設置i:
’+されている。二次ヘリウム&ツー、上部連絡管Cよ
りヘリカルコイル伝熱管aに導入されヘリカルコイル伝
熱′^a内を降下し、−力、約95()〜1 (100
Cの高温の一次ヘリウムは、熱又換器の容器(図示せず
)内を主管す下方よりト引の、1次ヘリウムと二次ヘリ
ウム幻2間接熱シ候される。
In the figure, the secondary helical coil is shown as 1ALT helical coil heat transfer%, and the helical coil heat transfer tube a is installed by winding it in a spiral around the main pipe as a collecting pipe.
'+ has been added. Secondary helium &2 is introduced into the helical coil heat transfer tube a from the upper connecting pipe C and descends inside the helical coil heat transfer '^a, -force is about 95 () ~ 1 (100
The high-temperature primary helium of C is pulled from below in a main pipe in a container (not shown) of a heat exchanger, and is subjected to indirect heat shrinkage of primary helium and secondary helium.

加熱され高温となった二次ヘリウムは、ヘリカルコ1イ
ル伝熱管aT部tc連設さJした下部連絡膚dを介して
主管す下端部に集合され、主管すを上列し外器外に取り
出きれる3、 ヘリカルコイル伝熱管aの支持は、十1bより下部連絡
管C部に延出されたツ”ボート梁eから吊下された多孔
板(またはラダー)により支ト)シているが、ザポート
梁eの1箇所から懸垂支持する方式なので、王イ肖すの
熱膨張量とヘリカルコイル伝熱管aおよび多孔板(長さ
約7m)の熱膨張量との熱膨張差か集中して下部連絡管
dに作用してしまう。このため、下部達!ef管dに大
きな応力が発生し、最高温部であシ熱的にも厳しい条件
下にある下部連絡管dの耐久性を低下さセることとなっ
ている。) なお、定格運転時においては)主%内周面に断熱拐fを
被着しその層厚を調整して、土層すの熱膨張量とヘリカ
ルコイル伝熱管aの熱膨張量か同じになるようにH9旧
さ−1−しているが、起動・停止などの熱過渡時にあっ
ては、−次、二次ヘリウムの温度変化と主管すや−・リ
ノノルコイル伝熱管a フj:とのり1〉跣の温厚変化
とは一致せず、主もbとへ’J ノフルコイル伝熱管a
とに熱膨張差か発生し、下部連絡惜dの応力集中は避け
られない。更VC1上部連絡管Cおよびヘリカルコイル
伝熱Wa上部の低・中諷域管群部とヘリカルコイル伝熱
%Ii’ a下部およ0・下部連絡管dの高温域(M!
jr部との間υ′(、上下方向の熱膨張差たりでなく、
ヘリカルコイル伝熱管aのコイル径方向の熱膨張7GE
 kごよっても相互に作用しあって応力か発生してしま
うという問題かある。
The heated secondary helium is collected at the lower end of the main pipe through the lower connecting skin d connected to the helical coil heat exchanger tube aT, and then the main pipe is placed in the upper row and taken out of the outer vessel. 3. The helical coil heat exchanger tube a is supported by a perforated plate (or ladder) suspended from the double boat beam e extending from section 11b to the lower connecting tube C section. Since it is a suspension support method from one point on the Zapoto beam e, the difference in thermal expansion between the amount of thermal expansion of the beam and the amount of thermal expansion of the helical coil heat exchanger tube a and the perforated plate (approximately 7 m in length) is concentrated. This acts on the lower connecting pipe d.For this reason, a large stress is generated in the lower connecting pipe d, reducing the durability of the lower connecting pipe d, which is at the highest temperature and is under severe thermal conditions. (During rated operation) A heat insulating layer is applied to the inner circumferential surface of the main part, and its layer thickness is adjusted to balance the thermal expansion of the soil layer and the helical coil transmission. H9 old -1- is used so that the amount of thermal expansion of heat tube a is the same, but during thermal transients such as starting and stopping, the temperature change of the secondary helium and the main pipe... Reno norcoil heat exchanger tube a Fuj: Tonori 1〉It does not match the change in the thickness of the thigh, and the main thing is b and he'J Nofuru coil heat exchanger tube a
A difference in thermal expansion occurs between the two, and stress concentration in the lower part is unavoidable. VC1 Upper connecting tube C and helical coil heat transfer Wa upper low and medium range tube group section and helical coil heat transfer %Ii' a lower part and 0 and lower connecting tube d high temperature area (M!
jr part υ′ (, not due to the difference in thermal expansion in the vertical direction,
Thermal expansion in the coil radial direction of helical coil heat transfer tube a 7GE
There is a problem in that even if the two elements are different, they will interact with each other and generate stress.

本発明は以上の従来の問題点を有効に加法づ“べく創案
さJしたものであり、本発明の目曲り、高温iτ1i伝
熱管と低・中温部伝熱管との熱膨張差によるイ11万作
用を分〜1し、熱過渡時等妃高温部伝熱%・に生ずる応
力を大幅に低減し得、伝熱管の向1久性および信頼性を
向−にし得るヘリカルコイル形熱父換器を提供1′るこ
とにある。。
The present invention has been devised to effectively solve the above-mentioned conventional problems, and the present invention has been devised to effectively solve the problems of the prior art. A helical coil type heat exchanger that can greatly reduce the stress that occurs during heat transfer in high-temperature parts during thermal transients, and improve the durability and reliability of heat transfer tubes. Our goal is to provide the following.

以庫に本発明の好適一実施例を添イマj図面に41tつ
で詳述−rる1゜ 第2図において、2は熱交換器1のm)杯状の容器であ
り、容器2下端部には、加熱媒体たる高幅の一次ヘリウ
ムを導入する一次ヘリウム導入D 3か形成さiしてい
る1、?♀器2内には、この−次ヘリウノ・導入U、+
 3から導入された一次ヘリウノ、をオド器21111
方向K iflつて上ケを案内する内部ダクト4力橢隻
&j[−)Iしている。内部ダクト4は節体状を/1゛
シ、答2:量2内壁よシ適’、FL’ PjlIIHノ
させて設けらi’I−1谷器2内iL内′i−iとり、
−cの内部ダクト4と外管としての容器2との二重管構
造となつでいる。内部ダクト4内にtLI、−次ヘリウ
ムか上昇1−る加熱媒体ηし路5が形成され、また内部
ダクト4上端より排出憾Jシた熱交換後の一次ヘリウム
を容器2下端tfliの一次ヘリウム排出口6へと降下
案内する筒体状の加熱媒体41F出銘7が容器2とダク
ト4とのItJ K形成部れている。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings.In Figure 2, 2 is a cup-shaped container of the heat exchanger 1; In the part, a primary helium introduction D3 is formed to introduce a wide primary helium serving as a heating medium. ♀In the container 2, this − next heliuno introduction U, +
The primary Heliuno introduced from 3. Odo unit 21111
There are four internal ducts guiding the upper case in the direction Kifl. The internal duct 4 is provided with a joint shape of /1゛, Answer 2: Amount 2 is suitable for the inner wall, FL' PjlIIH, i'I-1, valley 2, iL, i-i,
-c has a double-pipe structure with an inner duct 4 and a container 2 as an outer pipe. A path 5 is formed in the internal duct 4 for the heating medium to rise at tLI, and the primary helium discharged from the upper end of the internal duct 4 after heat exchange is transferred to the primary helium at the lower end of the container 2. A cylindrical heating medium 41F 7 is provided in the ItJK formation between the container 2 and the duct 4 to be guided downward to the discharge port 6.

また、内部グク]・4内に娃1、−二次ヘリウムを移送
するヘリカルコイル伝熱層8とこれらへリノノルコイル
伝熱1°8の二次ヘリウノ・を集合し排出する主管9と
が装入されている。主管9は容器2」二重をH通ざぜて
同郡ダクト4中心部に挿入JI+、ヘリカルコイル伝熱
′肖′8は王胃9を中心としてその周りに螺旋状に多層
に巻回濱れている(第3図参照)、、ヘリカルコイル伝
熱管8は二次ヘリウムを加セ(し比較的に低温となった
低・中rfrAの加熱媒体’/ni、路5域上yXBに
位置する倶・中温部ヘリカルコイル伝熱層とじての上部
ベリカルコイル伝熱管8a?)15吉、高幅の加〃(媒
体流fir 5城下部に(i7 Pfツ゛る高f!i冒
XBヘリカルコイル伝熱倫としての1:部へりカルコイ
ル伝熱層−8b部とに分離形成されている。そしてこれ
らの曲り中間部連絡管1ovこより連結されている。ま
た、上部ヘリカルコイル伝熱省8aに二次ヘリウムを導
入するために、容器2下部に設りられた二次ヘリウム導
入口11とI: fi1〜ヘリカルコイル1尺熱悩8a
との間は、上部連絡512pcJ、リフ中アnJ要続さ
れでいる。更VC−1・台11へリカルコイル伝熱% 
813下端部と主管9下端部との間1cは下部連絡層・
13か弁駁塾れ、下部ヘリカルコイル伝熱論8bからの
篩温となった二次ヘリウムは=に肯9下端部に集合づれ
、主管9を上列しその−1一部の二次ヘリウム1ノ1出
1」14から容器2外にIIMり出ざJ I−るように
なっている。
In addition, a helical coil heat transfer layer 8 for transferring secondary helium and a main pipe 9 for collecting and discharging secondary helium with a helium coil heat transfer rate of 1°8 are installed in the internal helium 4. has been done. The main pipe 9 is inserted into the center of the same group duct 4 by passing through the container 2, and the helical coil heat transfer 8 is wound spirally in multiple layers around the royal stomach 9. (see Figure 3), the helical coil heat exchanger tube 8 is heated with secondary helium (as a heating medium of low/medium rfrA which has become relatively low temperature), and is located at yXB above the path 5 area. Upper vertical coil heat transfer tube 8a as medium temperature helical coil heat transfer layer) 1: The helical coil heat transfer layer is formed separately from the helical coil heat transfer layer and the 8b section.Then, these curved intermediate portions are connected through the connecting pipe 1ov.In addition, secondary helium is added to the upper helical coil heat transfer layer 8a. In order to introduce
The upper connection is 512pcJ, and the nJ is connected during the riff. Further VC-1/base 11 Helical coil heat transfer%
The space 1c between the lower end of 813 and the lower end of main pipe 9 is the lower connecting layer.
13, the secondary helium that has reached the sieve temperature from the lower helical coil heat transfer theory 8b gathers at the lower end of the main pipe 9, and a part of the secondary helium 1 flows through the main pipe 9. The IIM is designed to come out of the container 2 from 14.

内部ダクト4上部の主管9には、第3図ハ゛いし第4図
に拡大示するように、主管9にその一端が溶接1^1定
され径方向外方に延出さノ1.たハ持の上部リーボート
梁15が設りられている。−j二hB−リ、I′′−1
・梁15は上部ヘリカルコイル伝熱管8aを懸垂支持1
゛るためのもので、主管9より放射状ニ設けられており
(図示例ては8本)、上部連絡管12は−に部ザボート
梁15をさけて配管きt’している。各」ニ都ザ、I?
  l、梁15からは、第3図に示づ−よう&(1゜数
本の吊棒16を介して多孔板17が吊下きれている。多
孔板17は、in長い矩形状の平板であり、多孔板17
にはヘリカルコイル伝熱管8の猶層の上下方向ピッチに
合せてその長手方向に沿って所定間隔にてヘリカルコイ
ル伝熱管8を挿通しこれを支持する多数の挿通孔か設け
られている。更に、中1uJ部連絡管10 +?ISO
主管9には、下部ヘリカルコイル伝熱管8bを懸垂支持
するために、上部ザポート梁15と同様に、放IJI状
に片持ちにて下部ザ、1?−ト梁18が設けられ、−ト
部ザボート梁18には図示省略の吊棒を介して−F部ヘ
リノノルコイル伝クツ(管8bを支持する多孔板か吊り
下けられている。なお、主管9内周面には、これを被う
適宜層厚の断熱相19が装着されている。
The main pipe 9 at the upper part of the internal duct 4 has one end welded to the main pipe 9 and a groove extending radially outward, as shown in enlarged view in FIGS. 3-4. An upper Leebor beam 15 with a retaining position is provided. -j2hB-li, I''-1
- The beam 15 suspends and supports the upper helical coil heat exchanger tube 8a.
They are provided radially from the main pipe 9 (eight pipes in the illustrated example), and the upper connecting pipe 12 is piped at the - side, avoiding the support beam 15. Each” Nito the, I?
As shown in FIG. Yes, perforated plate 17
A large number of insertion holes for inserting and supporting the helical coil heat exchanger tubes 8 are provided at predetermined intervals along the longitudinal direction in accordance with the pitch in the vertical direction of the layers of the helical coil heat exchanger tubes 8. Furthermore, the middle 1uJ part connecting tube 10 +? ISO
In order to suspend and support the lower helical coil heat exchanger tube 8b, the main pipe 9 is provided with a lower helical coil heat exchanger tube 8b cantilevered in a radial IJI shape like the upper Zaport beam 15. - A beam 18 is provided, and a perforated plate supporting the pipe 8b is suspended from the beam 18 of the bottom section through a hanging rod (not shown). A heat insulating layer 19 of an appropriate thickness is attached to the inner circumferential surface of the main pipe 9 to cover it.

次に本実施例の作用について述べる。Next, the operation of this embodiment will be described.

−次ヘリウムは、容器2下部の一次ヘリウム導入113
から内部ダメ1−4内に導入され加矛9媒体流1烙5を
上昇し、一方、二次ヘリウムは、容器2上部の二次ヘリ
ウム導入L111から−1一部連絡管12を通って加熱
媒体流路5内の上)916へすカルコイル伝熱省8a忙
導入され管内を流下し、史に中間部連絡前10.下部ヘ
リカルコイル伝熱ti8b r −F?τ1;連絡−1
3を通って降下し主層9−F部に集められる。この間に
一次ヘリウムと二次ヘリウムとの熱交換がなさt+−、
加熱され高温となった二次ヘリウムは主管9内を上列し
二次ヘリウム排出]」14より排出され、その熱エネル
ギーね、発電、製鉄等VC供ざノ1.る。他方、二次ヘ
リウムを加熱して温要降下した一次ヘリウムは加熱媒体
排出路7を下降し一次一\リウム′4す1内口6から制
用され、心却材として再び原子炉に戻される。−次ヘリ
ウノ・Q」1、−次ヘリウム導入1」3にて約1.00
0Cで導入さIL1約4 (10Cで−・次ヘリウド刊
゛出D 6から4171出きれる。また二次ヘリウムは
、二次ヘリウム導入[二111から約3’50Cにて導
入され、二次ヘリウム排出II 14から約950Cに
て排出される。。
- The next helium is the primary helium introduction 113 at the bottom of the container 2.
The secondary helium is introduced into the internal tank 1-4 and rises through the medium flow 1-4, while the secondary helium is heated through the secondary helium introduction L111 in the upper part of the container 2 through the -1 partial communication pipe 12. 10. The upper part of the medium flow path 5) 916 is introduced into the calcoil heat transfer chamber 8a, flows down the pipe, and is connected to the middle part before contacting the middle part. Lower helical coil heat transfer ti8b r -F? τ1; Contact-1
3 and is collected in the main layer 9-F. During this time, there is no heat exchange between primary helium and secondary helium t+-,
The heated secondary helium reaches a high temperature in the main pipe 9 and is discharged from the secondary helium discharge section 14, and its thermal energy is used for power generation, steel manufacturing, etc. VC supply facilities 1. Ru. On the other hand, the primary helium that has heated up the secondary helium and has warmed down descends through the heating medium discharge passage 7, is used from the primary helium \lium '4 1 inner port 6, and is returned to the reactor as core material. . -Next helium Q"1, -Next helium introduction 1"3 about 1.00
IL1 introduced at 0C is about 4 (at 10C - 4171 from the next Heliud publication D6). Also, the secondary helium is introduced at about 3'50C from the secondary helium introduction [2111, Discharge II 14 at approximately 950C.

このように、容器2内にtよ、非常に高温のヘリウムか
給排流通しているので、主管9の熱膨張−石と一\リカ
ルコイル伝熱管8等の熱膨張吊り(差か生じ、ヘリカル
コイル伝熱管8等に応力が発4にし易い。そ−こで、従
来より主管9内周而VC断熱月19を設けて主管9とヘ
リカルコイル伝熱管8等との熱膨張鼠を〜致烙ぜるよう
にしているが、この熱膨張差は、起動・停止などの熱過
渡時は勿論のこと、通常運転時にても上部と下部との温
度差により発生してしまうものであり、特に高l晶域の
ヘリカルコイル伝熱管8等1cは高い応力が生じその寿
命低下は免れない。
In this way, very high temperature helium is being supplied and discharged in the container 2, so the thermal expansion of the main pipe 9 and the thermal expansion of the recal coil heat transfer tube 8, etc. (a difference occurs, and the helical Stress is likely to be generated in the coiled heat exchanger tube 8, etc. Therefore, conventionally, a VC insulation ring 19 is provided inside the main tube 9 to prevent thermal expansion between the main tube 9 and the helical coil heat exchanger tube 8, etc. However, this difference in thermal expansion occurs not only during thermal transients such as starting and stopping, but also during normal operation due to the temperature difference between the upper and lower parts. The helical coil heat exchanger tube 8, etc. 1c in the l-crystalline region is subject to high stress, which inevitably shortens its lifespan.

ところが、本実施例では、へIJ ノノルコイル伝熱省
8を上部ヘリカルコイル伝熱型8a部と−F部−・リカ
ルコイル伝熱管8b部とに分肉[1し、これらの間を中
間部連絡實10で連結すると共に、上部ヘリカルコイル
伝熱管8aを−J−、部ザボート梁15にて懸垂支4゛
1シ、また下部ヘリカルコイル伝熱管8bを下部ザボー
ト梁18にて1上乗支持させている。
However, in this embodiment, the IJ nonorcoil heat transfer type 8 is divided into the upper helical coil heat transfer type 8a part, the -F part, and the recal coil heat transfer tube 8b part, and the middle part is connected between them. At the same time, the upper helical coil heat exchanger tube 8a is suspended by the lower support beam 15, and the lower helical coil heat transfer tube 8b is supported by the lower support beam 18. There is.

従って上部ヘリカルコイル伝熱?J 8aの熱膨張相中
間部連絡W10にて吸収さiシ、下部ヘリカルコイル伝
熱管8bや下部連絡管13シこ作L]Jぜず、下部連絡
管13は下部ヘリカルコイル伝熱’W 8 bの熱膨張
のみ吸収すれはよい。この/、:め、従来のようVこ、
主管9とヘリカルコイル伝熱自8との全熱膨張差がすべ
て下部連絡管13に集中ツーるようなことかすく、下部
ヘリカルコイル伝熱管8bの熱膨張分だけ吸収すればよ
いので、熱膨張差に起因して下部連絡管13に発生ブる
応力を大幅に低減し、高温下にある下部連絡管13の寿
命を著しく処すことができる。
Therefore, upper helical coil heat transfer? The thermal expansion phase of J 8a is absorbed by the intermediate connection W10, and the lower helical coil heat transfer tube 8b and lower communication tube 13 are absorbed by the lower helical coil heat transfer tube 8b and the lower communication tube 13. It is good to absorb only the thermal expansion of b. This/, :me, like the previous V-ko,
It is unlikely that the total thermal expansion difference between the main pipe 9 and the helical coil heat transfer pipe 8 will be concentrated in the lower connecting pipe 13, and only the thermal expansion of the lower helical coil heat transfer pipe 8b needs to be absorbed. The stress generated in the lower connecting pipe 13 due to the difference can be significantly reduced, and the life of the lower connecting pipe 13 under high temperature can be significantly shortened.

下部ヘリカルコイル伝熱管8b部の上下方向の=J法幻
1、尚渦部の管体の応力を低く抑えるのに、小さく選定
されるのが望ましく、それたり、−1一部ヘリカルコイ
ル伝熱管8a部の寸法が太きくなり、・中間部連絡管1
0の熱膨張吸収魚か犬さくなるが、中間部連絡管10は
加熱媒体流路5の中温域しくあるので、’11n4J部
連絡管10の金属は高温部連絡管に比べて充分な応力許
容量を備え問題とならない。
The vertical direction of the lower helical coil heat exchanger tube 8b section is = J law phantom 1. In order to keep the stress of the tube body in the vortex section low, it is desirable to select a small size, and -1 part of the helical coil heat exchanger tube The dimensions of section 8a are thicker, and the middle connecting pipe 1
However, since the intermediate connecting pipe 10 is in the middle temperature range of the heating medium flow path 5, the metal of the '11n4J connecting pipe 10 has sufficient stress tolerance compared to the high temperature connecting pipe. It has enough capacity so it won't be a problem.

また、上部ヘリカルコイル伝熱管8aと下部ヘリカルコ
イル伝熱管8bとのfuJKて熱膨張による相η作用が
分際Iされているため、上述のような」1下方向の熱膨
張差たりでなく、ヘリカルコイル伝熱管8のコイル径方
向の熱膨張差による相互作用も防止さノL1 これによ
って下部ヘリカルコイル伝熱管8b+下部連絡管13あ
るいは上部ヘリカルコイル伝熱管8aに生ずる応力を減
少できる。
In addition, since the phase η effect due to thermal expansion between the upper helical coil heat exchanger tube 8a and the lower helical coil heat exchanger tube 8b is divided into two, there is no difference in thermal expansion in the downward direction as described above. Interaction due to the difference in thermal expansion in the coil radial direction of the helical coil heat exchanger tube 8 is also prevented.L1 This makes it possible to reduce the stress generated in the lower helical coil heat exchanger tube 8b + the lower connecting tube 13 or the upper helical coil heat exchanger tube 8a.

なお、上記実施例では、多目的高温ガス炉の中間熱交換
器に本発明を適用した例を示したが、本発明はこれに限
らず特に高温(またtコ2低温)の熱姪体を取り扱う大
型のヘリカルコイル形態9−換器には有効である。また
、上記実施例において、加熱媒体を降下をぜ、被加〃(
妹体を止弁させて互いに向流させるように設刷変更した
熱交換器においても同様の効果が得られる。。
In addition, although the above embodiment shows an example in which the present invention is applied to an intermediate heat exchanger of a multipurpose high-temperature gas furnace, the present invention is not limited to this, and is applicable to particularly high-temperature (and low-temperature) heat exchangers. This is effective for large helical coil type 9 converters. In addition, in the above embodiment, when the heating medium is lowered, the heating medium is
A similar effect can be obtained in a heat exchanger whose construction has been changed so that the sister bodies are stopped and the flow flows counter to each other. .

以上要するに本発明にまれIU:次のような優れた効果
が得られる。
In summary, the present invention provides the following excellent effects.

(1)  高温部ヘリカルコイル伝熱管を高温部ザ;I
F−1・梁で、また低・中温部ヘリカルコイル伝熱管を
低・中温部サポート梁で懸垂支持し、これら両伝熱管の
hを中f1.iJ部連結管によシ連結して熱膨張吸収を
それぞれで行なうようにしたので、熱過渡時、通常運転
時(設言1上予期し得ない熱膨張差が生じた場合)とも
に熱膨張を研芙且つ安全に吸収できヘリカルコイル伝熱
管等の熱媒移送%に牛する応力を大幅に低減しその信頼
性を向」−シ得る。
(1) High temperature section Helical coil heat exchanger tube
The helical coil heat transfer tubes in the low and medium temperature sections are suspended and supported by the support beams in the low and medium temperature sections, and the h of these heat transfer tubes is set to the medium f1. Since the iJ section is connected to the connecting pipe to absorb thermal expansion separately, thermal expansion can be absorbed both during thermal transients and during normal operation (when an unexpected difference in thermal expansion occurs according to Proposition 1). It can be absorbed easily and safely, greatly reducing the stress on the heat medium transfer rate of helical coil heat transfer tubes, etc., and improving its reliability.

(2) 従って、ヘリカルコイル伝熱管や各種連絡官の
耐久性を保持しその寿命を延すことができる。
(2) Therefore, it is possible to maintain the durability of the helical coil heat exchanger tube and various liaisons and extend their lifespan.

それ故、構造上は従来よりやつ複雑化づるが、熱交(央
益の交換間隔、あるいはヘリカルコイル伝熱管等の補修
間隔を延長でき稼動率を向上てき長期的にみると経済性
がよい。
Therefore, although the structure is more complicated than before, it is economical in the long run because it can extend the replacement interval of heat exchangers or the repair interval of helical coil heat exchanger tubes, improve the operating rate, and so on.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱交換器の部分縦断面図、第2図は本発
明に係る熱交換器の一実施例を示″′J−MK、1すI
面図、第3図は同熱交換器の部分拡大110面図、第1
1図は第3図の平面断面図である。 1岡中、1は熱交換器、2は容器、5は加熱媒体流路、
8(ハ)、−リカルコイル伝熱管、8aはに部ヘリカル
コイル伝熱管(低・中温部ヘリカルコイル伝熱管)、8
bli下部ヘリカルコイル伝熱管(高温部ヘリカルコイ
ル伝熱管)、9は主管、10は中間部連絡管、15は上
部サポート梁(低・中温部サポート梁)、18は下部サ
ポート梁(高温部サポート梁)である。 特W「出願人 石川島播磨重工業株式会社代理人弁理士
  絹 谷 信 雄 イ1χ2 第1図 71“73図
Fig. 1 is a partial vertical sectional view of a conventional heat exchanger, and Fig. 2 shows an embodiment of the heat exchanger according to the present invention.
The top view, Figure 3 is a partially enlarged 110 side view of the heat exchanger, Figure 1
FIG. 1 is a plan sectional view of FIG. 3. 1 Oka, 1 is a heat exchanger, 2 is a container, 5 is a heating medium flow path,
8 (c), - Recal coil heat exchanger tube, 8a Part helical coil heat exchanger tube (low/medium temperature part helical coil heat exchanger tube), 8
bli lower helical coil heat transfer tube (high temperature part helical coil heat transfer tube), 9 is the main pipe, 10 is the middle part connecting pipe, 15 is the upper support beam (low/medium temperature part support beam), 18 is the lower support beam (high temperature part support beam) ). Special W "Applicant: Ishikawajima Harima Heavy Industries Co., Ltd. Representative Patent Attorney Nobui Kinutani 1χ2 Figure 1 Figure 71" Figure 73

Claims (1)

【特許請求の範囲】[Claims] 熱交換器内に供給された筒温の加熱媒体流路域の高温部
−\リカルコイル伝熱管と被加熱媒体を加熱し比較的に
低温となった低・中温の加熱媒体流路域の低・中温部ヘ
リカルコイル臥熱層との1141を中間部連絡管で連結
すると共に、主管より延出させて上記高温部ヘリカルコ
イル伝熱’tWと低・中温部ヘリカルコイル伝熱管とを
それぞれ懸垂支持する高温部す:+r゛−+・梁とa(
・中温部′v71? −ト梁とを設けたことを特徴と1
−るヘリカルコイル形熱交換器。
High-temperature part of the heating medium flow path area with cylinder temperature supplied to the heat exchanger - \Low/medium-temperature heating medium flow path area where the recal coil heat transfer tube and the heated medium are heated to a relatively low temperature 1141 with the intermediate temperature helical coil lying heating layer is connected by an intermediate communication pipe, and is extended from the main pipe to suspend and support the high temperature helical coil heat transfer 'tW and the low/medium temperature helical coil heat transfer tubes, respectively. High temperature part: +r゛-+・Beam and a(
・Medium temperature part'v71? - Features: 1.
-Helical coil heat exchanger.
JP19349682A 1982-11-05 1982-11-05 Helical coil type heat exchanger Pending JPS5984080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19349682A JPS5984080A (en) 1982-11-05 1982-11-05 Helical coil type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19349682A JPS5984080A (en) 1982-11-05 1982-11-05 Helical coil type heat exchanger

Publications (1)

Publication Number Publication Date
JPS5984080A true JPS5984080A (en) 1984-05-15

Family

ID=16309005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19349682A Pending JPS5984080A (en) 1982-11-05 1982-11-05 Helical coil type heat exchanger

Country Status (1)

Country Link
JP (1) JPS5984080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0172363A2 (en) * 1984-08-21 1986-02-26 GebràœDer Sulzer Aktiengesellschaft Heat-exchange apparatus, particularly for cooling gas from a high-temperature reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0172363A2 (en) * 1984-08-21 1986-02-26 GebràœDer Sulzer Aktiengesellschaft Heat-exchange apparatus, particularly for cooling gas from a high-temperature reactor

Similar Documents

Publication Publication Date Title
US10854344B2 (en) Air-cooled heat exchanger and system and method of using the same to remove waste thermal energy from radioactive materials
US3768554A (en) Steam generator heated with liquid metal
JPH0198996A (en) Liquid metal cooled reactor and preheating of closed bottom of sodium tank thereof
US20170028373A1 (en) Isothermal tubular catalytic reactor
CN111664427A (en) Design scheme of ultra-high temperature and ultra-high pressure pore channel type heat exchanger/evaporator
CN112071453A (en) Design scheme of direct-current countercurrent pore channel type heat exchanger/evaporator
US3245464A (en) Liquid metal heated vapor generator
JP5207053B2 (en) Heat exchanger and water heater
US4324617A (en) Intermediate heat exchanger for a liquid metal cooled nuclear reactor and method
JPS5984080A (en) Helical coil type heat exchanger
JPS62185192A (en) Nuclear reactor pressure vessel
KR100286518B1 (en) Separate Perfusion Spiral Steam Generator
US4182413A (en) Radial flow heat exchanger
US4073267A (en) Vapor generator
CN207976014U (en) A kind of tube bank coiled heat exchanger
CN219017251U (en) Molten salt reactor
KR20160115065A (en) Effective cooling flow path design and support constitution of helically coiled liquid metal-to-air heat exchanger with an external air cooling mechanism and residual heat removal system of liquid metal cooled reactors having the same
EP0014499B1 (en) Vapour generator
US4147208A (en) Heat exchanger
CN115862900A (en) Molten salt reactor and application and operation method thereof
CN113432454B (en) Non-circular cross-section double-tube-pass spiral heat exchanger tube bundle structure
CN214148398U (en) Plate-type heat exchange tube solar water tank inner container and water tank thereof
CN108253821A (en) A kind of tube bank coiled heat exchanger
CN115371465A (en) Efficient interphase type spiral pipe compact heat exchanger easy to maintain
CN111081397A (en) Integrated nuclear reactor primary loop heat exchanger