JPS5983903A - Production of hydrogen - Google Patents

Production of hydrogen

Info

Publication number
JPS5983903A
JPS5983903A JP57194555A JP19455582A JPS5983903A JP S5983903 A JPS5983903 A JP S5983903A JP 57194555 A JP57194555 A JP 57194555A JP 19455582 A JP19455582 A JP 19455582A JP S5983903 A JPS5983903 A JP S5983903A
Authority
JP
Japan
Prior art keywords
water
reaction
h2so4
stage
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57194555A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakanishi
博 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57194555A priority Critical patent/JPS5983903A/en
Publication of JPS5983903A publication Critical patent/JPS5983903A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce efficiently H2 by the combination of a multistage cycle, by reacting SO2 with I2 and water to form HI and H2SO4, photodecomposing HI to form I2 and H2, and decomposing H2SO4 thermally to form water and SO4. CONSTITUTION:SO2 is reacted with I2 and water thermochemically to form H2SO4 and HI in the first step, and the resultant H2SO4 is then thermochemically decomposed to form water, SO2 and oxygen in the second step. The HI formed in the first step is decomposed with the light energy of visible light or ultraviolet light region in the presence of a photoreaction catalyst to form H2 and I2 in the third step. A multistage cycle is formed from the above-mentioned three stages, and hydrogen is produced in a high production efficiency with a little consumption of thermal energy.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は水素の製造方法、更に詳しくは、水を原料とし
、熱と光エネルギーを利用した多段の反応サイクルを形
成して水素を製造する方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing hydrogen, and more specifically, a method for producing hydrogen by using water as a raw material and forming a multi-stage reaction cycle using heat and light energy. Regarding.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

石炭、石油など、いわゆ、)化石燃料資源の枯渇の虞れ
から、近年、新しいエネルギー開発技術が強く求められ
ている。
In recent years, there has been a strong demand for new energy development technologies due to the threat of depletion of fossil fuel resources (so-called coal, oil, etc.).

いくつかのエネルギー源のうち、近年、水素が注目を集
めている。これは、水素が■水を原料とする場合資源上
の制約がなり、シかも地域による偏在はない、■燃焼生
成物が水であるためクリーンで公害を発生しない、■地
球の物質循環サイクルを乱さない、■貯蔵が比較的容易
であるなどの種々の利点を持っておシ、もし水素が容菖
に製造できるようになれば、現在のエネルギー問題を解
決できる有力な手段となり得ると考えられるためである
Among several energy sources, hydrogen has attracted attention in recent years. This is because hydrogen: ■ If water is used as a raw material, there will be resource constraints and it will not be unevenly distributed depending on the region, ■ The combustion product is water, so it is clean and does not cause pollution, and ■ It can improve the earth's material circulation cycle. It has various advantages such as not being disturbed and being relatively easy to store.If hydrogen could be produced in a simple manner, it could be a powerful means to solve current energy problems. It's for a reason.

従来、水素の工業的製造法として実用化されているのは
、主に、天然ガス、石油などの炭素化合物を原料とする
製造方法と、水を原料とする電気分解法である。
Conventionally, the methods that have been put to practical use industrially to produce hydrogen are mainly those that use carbon compounds such as natural gas and petroleum as raw materials, and electrolysis methods that use water as raw materials.

しかしながら、前者の方法娃:、長期的に見た場合、資
源の炭素化合物が枯渇化するので、新たなエネルギー源
としての目的にそぐわない。
However, the former method is unsuitable for the purpose of being a new energy source because, in the long term, the resource carbon compounds will be depleted.

また、後者の’F[気分解法も、分解に必要なエネルキ
ー源が、大部分石油を燃焼させて得られた電気を利用す
るため、現状ではコスト高となる。
Furthermore, the latter 'F [gas decomposition method] is currently expensive because the energy source required for decomposition is mostly electricity obtained by burning petroleum.

そのため、上記した方法に代って、最近では水を原料と
し、この水を、各種の熱化学反応を組合せた多段階の反
応サイクルを利用して分解する、いわゆる熱化学法が検
討されている。この方法では、−次エネルギー源として
原子炉(高温ガス炉)の核熱の利用が考えられており、
また、組合せる熱化学反応のサイクルも今日までに10
0種類にあまる方法が提案されている。
Therefore, instead of the above-mentioned method, a so-called thermochemical method has recently been considered, which uses water as a raw material and decomposes this water using a multi-step reaction cycle that combines various thermochemical reactions. . This method considers the use of nuclear heat from a nuclear reactor (high-temperature gas reactor) as a secondary energy source.
In addition, the number of cycles of thermochemical reactions that can be combined is 10 to date.
There are 0 methods proposed.

例えば、ニートラム・イスグラ研究所(イタリア)によ
って、無機ハロダン化合物及びハロゲン元素を主な媒体
とした水の多段熱分解による水素の製造方法、いわゆる
マーク方式が十数方式提案されている( Procee
ding of the 4 th World Hy
drogen EnergyC!onference、
Tokyo、 1981年参照)。
For example, the Nietram Isgra Institute (Italy) has proposed more than a dozen hydrogen production methods, the so-called mark method, by multi-stage thermal decomposition of water using inorganic halodane compounds and halogen elements as main media (Procee
ding of the 4th World Hy
drogen EnergyC! onference,
(See Tokyo, 1981).

これらのマーク方式のうち、マーク15方式の開発研究
が進められているが、その化学反応サイクルは、以下に
示す4段階の熱化学反応を利用し組合せて水の分解を行
なう方法である。
Among these mark methods, the Mark 15 method is being developed and researched, and its chemical reaction cycle is a method of decomposing water by utilizing and combining the four steps of thermochemical reactions shown below.

第1段: 3 Fec/2 + 4H20−+Feg0
4+ 6HO/ 十H2(650℃)第2段: Fe1
04 + 8HC1−+ Fe04 +2FeO,/3
+4H20(160’C)第3段: 2 pec1g+
 2Fec4+clff(280℃)第4段: CIJ
2 +H!O→2HC1+jz02  (600℃)全
反応: H,O−+ )(、+−!−o。
1st stage: 3 Fec/2 + 4H20-+Feg0
4+ 6HO/ 10H2 (650℃) 2nd stage: Fe1
04 + 8HC1-+ Fe04 +2FeO, /3
+4H20 (160'C) 3rd stage: 2 pec1g+
2Fec4+clff (280℃) 4th stage: CIJ
2 +H! O→2HC1+jz02 (600°C) Total reaction: H, O−+ )(, +−!−o.

また、ゼネラルアトミック社(アメリカ)によって、以
下に示すような二酸化イオウ(SO++)、ヨウ素(工
2)ヲ用いた3段階の熱化学反応を組合せた反応サイク
ルが提案されている。
Furthermore, General Atomic Company (USA) has proposed a reaction cycle that combines three-step thermochemical reactions using sulfur dioxide (SO++) and iodine (Step 2) as shown below.

第1段: F3o! + I2 + zH,o−+Hf
1so4 + 2HI (97℃)第2段: H!90
4−+H,O+SO3+yO,(870℃)第3段+ 
2HI→工2+H1(3oo℃)全反応: H,o−+
H=+”o= しかしながら、これらの方法はいずれも全反応を熱化学
反応のみで行なうものであるためその消費する熱エネル
ギーは大きく、各段階の反応バランスの制御、全反応め
マツチングが困難であシ、シかも副反応物(例えば硫化
物)が生成するなどの問題も生じ、更には反応装置も非
常に複雑化するという欠点を避は得なかった。
1st stage: F3o! + I2 + zH, o-+Hf
1so4 + 2HI (97℃) 2nd stage: H! 90
4-+H, O+SO3+yO, (870°C) 3rd stage+
2HI → Engineering 2+H1 (3oo℃) Total reaction: H, o-+
H=+”o= However, since all of these methods perform all reactions only by thermochemical reactions, the thermal energy consumed is large, and it is difficult to control the reaction balance at each stage and match all reactions. Problems such as the formation of side reactants (for example, sulfides) also occur, and furthermore, the reaction apparatus inevitably becomes very complicated.

〔発明の目的〕[Purpose of the invention]

本発明は、部属な装置で、水素の生成反応を常温で行な
うことができて熱エネルギーの消費が少なく、水素生成
効率の高い水素の製造方法の提供を目的とする。
An object of the present invention is to provide a method for producing hydrogen that can perform a hydrogen production reaction at room temperature using a separate device, consumes little thermal energy, and has high hydrogen production efficiency.

〔発明の概要〕[Summary of the invention]

本発明者は、上記したゼネラルアトミック社(アメリカ
)の反応サイクルにおいて、第3段に示されている反応
は、ある種の光触媒の存在下では光化学的に常温で進行
するとの知見を得、この知見に基づいて、新規な光熱ハ
イブリッド法である本発明方法を完成するに到った。す
なわち、本発明方法は、二酸化イオウとヨウ素と水を熱
化学的に反応させてヨウ化水素と硫酸を生成させる第1
段工程、該硫酸を熱化学的に分解して水と二酸化イオウ
と酸素全生成させる第2段工程、該ヨウ化水素を、光触
媒の存在下で、可視光線及び/又は紫外線領域の光エネ
ルギーで分解して水素とヨウ素を生成させる第3段工程
、とを組合せたことを特徴とする。
The present inventor obtained the knowledge that the reaction shown in the third stage of the above-mentioned General Atomic Company (USA) reaction cycle proceeds photochemically at room temperature in the presence of a certain type of photocatalyst. Based on this knowledge, we have completed the method of the present invention, which is a novel photothermal hybrid method. That is, the method of the present invention involves the first step of thermochemically reacting sulfur dioxide, iodine, and water to produce hydrogen iodide and sulfuric acid.
a second step in which the sulfuric acid is thermochemically decomposed to produce water, sulfur dioxide, and oxygen; It is characterized by a combination of a third stage step of decomposing to generate hydrogen and iodine.

以下に、各工程につき説明する。Each step will be explained below.

第1段工程:SO2+工2 +2H20−+ H2SO
4+ 2HIこの工程は、後述する第2段工程で得られ
たS02 とI20、第3段工程で得られた工2を原料
とし、これらを50〜100℃の比較的低温で熱化学反
応させて、H2SO4、H工、を生成させるものである
1st stage process: SO2 + work 2 +2H20-+ H2SO
4+ 2HI This process uses S02 and I20 obtained in the second stage process described later, and Process 2 obtained in the third stage process as raw materials, and causes them to undergo a thermochemical reaction at a relatively low temperature of 50 to 100 °C. , H2SO4, H-technique.

反応生成物はH2SO4と)TIの混合物なので、これ
を例えば蒸留法でそれぞれにyj・I’j:’Cするこ
とができ、)12804は第2段工程に、H工は第3段
工程に移送する。
Since the reaction product is a mixture of H2SO4 and )TI, this can be converted to yj and I'j:'C respectively by distillation, for example, and )12804 is sent to the second stage process, and H process is sent to the third stage process. Transport.

この工程は、第1段工程で得られた■(2FI04を分
解して、I20 、 S02 、 o2を生成させるも
のである。この分解反応は800〜900℃という比較
的高温で行なわれる。また、生成したI20 、 SO
2は再び第1段工程に戻して循環利用に供する。02は
貯蔵して本発明方法は、この第3段工程に最大の特徴が
ある。この工程は、第1段工程で得られたH工を光化学
反応で分解して目的物たるH2と第1段工程の原料の1
つたる12ヲ生成させるものである。
This step decomposes (2FI04) obtained in the first step to produce I20, S02, and O2. This decomposition reaction is carried out at a relatively high temperature of 800 to 900°C. Generated I20, SO
2 is returned to the first step process again for recycling. The main feature of the method of the present invention is this third stage step. In this step, the H2 obtained in the first step is decomposed by a photochemical reaction to produce the target H2 and 1 of the raw material for the first step.
It generates 12 vines.

この第3段工程の光化学反応は、光触媒の存在下で反応
系に所定の光エネルギーを投入することによって進行す
る。
The photochemical reaction of this third stage step proceeds by injecting a predetermined amount of light energy into the reaction system in the presence of a photocatalyst.

投入する光エネルギーは、可視光線、紫外線のいずれか
又は両方である。実際的には、コストの面からすれば太
陽光をその!!ま利用することができる。また、太陽光
の外に、例えばキセノンショートアークラング、水銀放
電管からの光も利用することができる。
The light energy input is visible light, ultraviolet light, or both. Practically speaking, from a cost standpoint, solar is the way to go! ! Yes, you can use it. In addition to sunlight, for example, light from a xenon short arc lung or a mercury discharge tube can also be used.

用いる光触媒としては、可視光線及び/又は紫外線領域
の光エネルギーが照射されると触媒機能全発揮して光化
学反応を起させるものであれば何であってもよく、例え
ば半導体があげられる。
The photocatalyst to be used may be anything as long as it exhibits its full catalytic function and causes a photochemical reaction when irradiated with light energy in the visible light and/or ultraviolet region, such as semiconductors.

このような半導体としては、金属酸化物、金属硫化物、
金属リン化物、金属砒化物、金属セレン化物若しくは金
属テルル化物の1種又は2種以上から成るもので、具体
的には、Ti01 、5rTiO1、ZnO、Fe20
g 。
Such semiconductors include metal oxides, metal sulfides,
Consisting of one or more metal phosphides, metal arsenides, metal selenides, or metal tellurides, specifically, Ti01, 5rTiO1, ZnO, Fe20
g.

Cd13  、  CdSe  、  0dTe   
、  OaP 、  0aAs   、  ■nP  
、  ZnS  。
Cd13, CdSe, 0dTe
, OaP, 0aAs, ■nP
, ZnS.

Zn5eなど紮あげることができる。また、光触媒とし
ての活性能を高めるために、上記した半導体にNi 、
 Pb、 Rh 、 Ptなとの金属を担持せしめるこ
とが有用である。
Examples include Zn5e. In addition, in order to enhance the activity as a photocatalyst, Ni,
It is useful to support metals such as Pb, Rh, and Pt.

光触媒は、粉末で又は板状の形で使用される。Photocatalysts are used in powder or plate form.

このような光触媒を反応槽内に配置1虻し、ここに気体
又はHI水溶液を含む反応体を導入し、光触媒に所定の
光エネルギー金照射することにより、見掛上一段階の反
応で第3段エイ呈の光分解反応が起り馬と12が生成す
る。この反応は常温で容易に進行するので反応槽にフッ
1〜エネルギーを投入する(加熱する)必要はない。
By placing such a photocatalyst in a reaction tank, introducing a reactant containing a gas or an HI aqueous solution, and irradiating the photocatalyst with a predetermined amount of light energy, a third stage reaction can be achieved in an apparent one-stage reaction. A photodecomposition reaction occurs and 12 is produced. Since this reaction easily proceeds at room temperature, there is no need to input (heat) energy into the reaction tank.

〔発明の実施例〕[Embodiments of the invention]

第1段工程:500m6の円筒フラスコに、工2を30
重・19C含有する水溶液を入れ、ここに、SO2を底
部から20 me / minで吹き込んで全体全10
0℃に加熱しン′ζ。化学量論的に30%の変換効率で
1■工と穐so4が生成した。
1st stage process: 30 m2 of Step 2 in a 500 m6 cylindrical flask.
Add an aqueous solution containing 19C, and blow SO2 from the bottom at a rate of 20 me/min to make a total of 10
Heat to 0°C. 1 and so4 were produced with a stoichiometric conversion efficiency of 30%.

詑2段工程;長さ5crn内径1.8 clnり石英べ
、セルを900℃の電気炉中にj[f、 @ 、このベ
ッセルに21のF e20111触媒(30重−?t 
5’4、A40s担陣)’cいれて、Heガスをキャリ
アとして第1段工程で得られたH2SO4を0、5 m
l/secで流入させた。反応効率80%で分解反応が
起p H2OとSe2とO,が生成した。
2-stage process; A quartz vessel with a length of 5 crn and an inner diameter of 1.8 crn was placed in an electric furnace at 900°C.
5'4, A40s carrier)'c, H2SO4 obtained in the first stage process using He gas as a carrier was 0.5 m
The flow rate was 1/sec. A decomposition reaction occurred with a reaction efficiency of 80%, producing pH H2O, Se2, and O.

第3段工程:第1段工程で得られたHIを水に溶解して
5重量%のHI溶液を調製した。これを109m1のフ
ラスコに入れ、ここにPt2重量%担持するTiO2粉
末(平均粒径0.2μm)の光触媒300キを懸濁させ
、攪拌しながら室温(25℃)下で500Wキセノンシ
ヨートアークランプからの光を照射した。量子効率15
%の反応効率でH2と工2が生成した。
Third step: HI obtained in the first step was dissolved in water to prepare a 5% by weight HI solution. This was placed in a 109 ml flask, and 300 kg of a photocatalyst made of TiO2 powder (average particle size 0.2 μm) supporting 2% by weight of Pt was suspended therein, and a 500 W xenon shot arc lamp was placed at room temperature (25°C) while stirring. irradiated with light. quantum efficiency 15
% reaction efficiency produced H2 and H2.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明方法は■第3段
工程の反応は常温下で、光エネルギーの投入によって進
行するので、全体として消費する熱エネルギーが大幅に
節減される。■また、装置が簡単でかつ全工程における
反応制御も容易となる、などの効果を奏するのでその工
業的価値は犬である。
As is clear from the above description, in the method of the present invention, (1) the reaction in the third step proceeds at room temperature by inputting light energy, so that the overall thermal energy consumption can be greatly reduced. (2) In addition, it has advantages such as simple equipment and easy reaction control in all processes, so its industrial value is great.

Claims (1)

【特許請求の範囲】 二酸化イオウとヨウ素と水を熱化学的に反応させてヨウ
化水素と硫酸を生成させる第1段工程、該硫酸を熱化学
的に分解して水と二酸化イオウと酸素を生成させる第2
段工程、 該ヨウ化水素を、光触媒の存在下で、可視光線及び/又
は紫外線領域の光エネルギーで分解して水素とヨウ素を
生成させる第3段工程、とを組合せたことを特徴とする
水素の製造方法。
[Claims] A first step in which sulfur dioxide, iodine, and water are thermochemically reacted to produce hydrogen iodide and sulfuric acid, and the sulfuric acid is thermochemically decomposed to produce water, sulfur dioxide, and oxygen. The second to generate
hydrogen iodide, which is characterized by a combination of a step step and a third step step of decomposing the hydrogen iodide with light energy in the visible light and/or ultraviolet region in the presence of a photocatalyst to generate hydrogen and iodine. manufacturing method.
JP57194555A 1982-11-08 1982-11-08 Production of hydrogen Pending JPS5983903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57194555A JPS5983903A (en) 1982-11-08 1982-11-08 Production of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57194555A JPS5983903A (en) 1982-11-08 1982-11-08 Production of hydrogen

Publications (1)

Publication Number Publication Date
JPS5983903A true JPS5983903A (en) 1984-05-15

Family

ID=16326472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57194555A Pending JPS5983903A (en) 1982-11-08 1982-11-08 Production of hydrogen

Country Status (1)

Country Link
JP (1) JPS5983903A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099359A (en) * 2002-09-09 2004-04-02 Yukio Wakahata Energy supply system using hydrogen energy and various systems as its applied patterns
CN112142001A (en) * 2020-08-31 2020-12-29 山东大学 Iodine-sulfur circulation hydrogen production method and system based on efficient light energy utilization
WO2024009275A1 (en) * 2022-07-07 2024-01-11 Whydron S.R.L. Plant and process for the production of hydrogen and/or methanol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109888A (en) * 1974-02-08 1975-08-29
JPS50113491A (en) * 1974-02-15 1975-09-05
JPS50140392A (en) * 1974-04-27 1975-11-11
JPS5220394A (en) * 1975-08-04 1977-02-16 Gen Atomic Co Thermoochemical manufacture of hydrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109888A (en) * 1974-02-08 1975-08-29
JPS50113491A (en) * 1974-02-15 1975-09-05
JPS50140392A (en) * 1974-04-27 1975-11-11
JPS5220394A (en) * 1975-08-04 1977-02-16 Gen Atomic Co Thermoochemical manufacture of hydrogen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099359A (en) * 2002-09-09 2004-04-02 Yukio Wakahata Energy supply system using hydrogen energy and various systems as its applied patterns
CN112142001A (en) * 2020-08-31 2020-12-29 山东大学 Iodine-sulfur circulation hydrogen production method and system based on efficient light energy utilization
WO2024009275A1 (en) * 2022-07-07 2024-01-11 Whydron S.R.L. Plant and process for the production of hydrogen and/or methanol

Similar Documents

Publication Publication Date Title
AU2011280799B2 (en) Method for synthesizing ammonia
Chao Thermochemical water decomposition processes
CN102553407B (en) Thermochemical cycle reaction system for decomposing CO2And H2O method and device
JP5900992B2 (en) Hydrogen gas generation method and apparatus
Ozcan et al. Thermochemical looping technologies for clean hydrogen production–Current status and recent advances
JPH0551201A (en) Production of hydrogen and oxygen from water with aqueous carbonate solution having high concentration and metal carrying semiconductor photocatalyst
WO2007002614A2 (en) A thermochemical cycle for production of hydrogen and/or oxygen via water splitting processes
Rebordinos et al. BrOx cycle: A novel process for CO2-free energy production from natural gas
JPS5983903A (en) Production of hydrogen
CN102553408B (en) Method and device for thermo chemolysis of CO2 and H2O based on reaction substance circulation
Kawai et al. Production of H 2 and CO from liquid water and carbon using solar energy
US3995012A (en) Process of producing hydrogen and oxygen from H2 O in a thermochemical cycle
US4010249A (en) Process for the preparation of hydrogen
US4045546A (en) Process for the preparation of hydrogen
CN112117020A (en) Method for treating tritium water by photo-thermal concerted catalysis
CN115072670B (en) Reaction device for preparing elemental sulfur and hydrogen by decomposing hydrogen sulfide with molten salt
JPS58176101A (en) Production of hydrogen
CN105776175B (en) It is a kind of by carbon dioxide conversion be carbon simple substance method and apparatus
Naterer et al. Thermochemical water-splitting cycles
US20240182375A1 (en) System and method for production of calcium oxide with reduced carbon footprint
JP2014520744A (en) Method for producing hydrogen by a multi-step copper-chlorine thermochemical cycle
Babu et al. Thermochemical cycles for hydrogen production
Dorner et al. Hydrogen production from decomposition of water by means of nuclear reactor heat
Chao et al. An analysis of hydrogen production via closed-cycle schemes
Oosawa et al. Proposal of a new H2S decomposition process using solar energy