JPS5983548A - Magnetic pole structure for rotary electric machine - Google Patents
Magnetic pole structure for rotary electric machineInfo
- Publication number
- JPS5983548A JPS5983548A JP19240882A JP19240882A JPS5983548A JP S5983548 A JPS5983548 A JP S5983548A JP 19240882 A JP19240882 A JP 19240882A JP 19240882 A JP19240882 A JP 19240882A JP S5983548 A JPS5983548 A JP S5983548A
- Authority
- JP
- Japan
- Prior art keywords
- dovetail
- stress
- magnetic pole
- cross
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/28—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は回転電機の磁極取付構造の改善にかかり、特に
、揚水式水車発電機のような高速大容量機の座屈強度の
向上に好適な磁極取付構造に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a magnetic pole mounting structure for a rotating electrical machine, and particularly to a magnetic pole mounting structure suitable for improving the buckling strength of a high-speed, large-capacity machine such as a pumped water turbine generator.
従来の磁極取付構造を第1図に、その応力発生機構を第
2図に示す。第2図に示すように、従来型の磁極取付構
造には、ダブテールと称する磁取付用突起物の内周側中
心域に、L6屈事故の発生原因となる過大な圧縮応力が
発生し易い欠点があった。A conventional magnetic pole mounting structure is shown in FIG. 1, and its stress generation mechanism is shown in FIG. As shown in Figure 2, the conventional magnetic pole mounting structure has the disadvantage that excessive compressive stress, which can cause L6 bending accidents, is likely to occur in the center area of the inner circumferential side of the magnetic mounting protrusion called a dovetail. was there.
本発明の目的は、ダブテール応力を十分小さくすること
によって座屈争故を防ぎ、かつ、製作工数的にも従来型
ダブテールと同程反の工数内に収まる磁極取付構造全提
供するにある。An object of the present invention is to provide an entire magnetic pole mounting structure that prevents buckling failure by sufficiently reducing dovetail stress, and that can be manufactured within the same number of man-hours as conventional dovetails.
近年、我国の電力需要は昼夜の差が著しくピーク電力の
供給と夜間頒剰電力の有効活用のため、水力発電設備は
大容量化してきている。In recent years, the power demand in Japan has a significant difference between day and night, and hydroelectric power generation facilities have been increasing in capacity in order to supply peak power and effectively utilize surplus power distributed at night.
仁のような大容量揚水発電設備は、経済性向上のために
高速化されて来ておシ、従来の300rpln級に対し
、最近は700rpm級が計画されている。このように
、高速化がすすむと機器の強度上、従来にない問題が生
じてくる。本発明の対象である磁極取付構造部の座屈現
象もその1つである。第3図は従来の磁極取付構造を示
す立断面図、第4図は、第3図の軸直角断面図である。Large-capacity pumped storage power generation facilities such as those in the 1990s have been made faster in order to improve economic efficiency, and recently, 700 rpm class is being planned, compared to the conventional 300 rpm class. In this way, as speed increases, unprecedented problems arise in terms of the strength of the equipment. One such phenomenon is the buckling phenomenon of the magnetic pole mounting structure, which is the object of the present invention. FIG. 3 is an elevational cross-sectional view showing a conventional magnetic pole mounting structure, and FIG. 4 is a cross-sectional view perpendicular to the axis of FIG. 3.
第4図で、磁極1は−7の内周側にダブテールと称する
内側に向って末広がりの突起部4?もら、一方、ロータ
リム2は、外周にダブテール4と類似形状のダブテール
解5に−もつ。磁極1は、ダブテール4をロータリム2
のダブテール溝5に挿入し、ダブテール4とダブテール
溝5の間に生ずる空隙にコック3全圧入することによっ
て、ロータリム2に固定褌れる。In FIG. 4, the magnetic pole 1 has a protrusion 4, which is called a dovetail, on the inner circumferential side of -7 and widens toward the inside. On the other hand, the rotor rim 2 has a dovetail 5 having a similar shape to the dovetail 4 on its outer periphery. Magnetic pole 1 connects dovetail 4 to rotor rim 2
The cock 3 is inserted into the dovetail groove 5 of the rotor rim 2, and the cock 3 is fully press-fitted into the gap formed between the dovetail 4 and the dovetail groove 5.
1コータリムの回転によって生じる磁極遠心力F、は、
リム反力Pとベクトル的に釣合って磁極の飛散が押えら
れる。F、とPのベクトル関係全第4図に示す。1 The magnetic pole centrifugal force F caused by the rotation of the coater rim is
The scattering of the magnetic poles is suppressed by vectorial balance with the rim reaction force P. The entire vector relationship between F and P is shown in FIG.
本構造は磁極ダブテールの座屈強贋に関し、次のような
欠点tもち、高速化の一つの障害となっている。以下、
これt説明する。This structure has the following drawbacks regarding buckling of the magnetic pole dovetail, which is an obstacle to increasing speed. below,
Let me explain this.
第1図は、磁極取付構造の拡大図を示す。コツタ反力P
は、強度対象断面に石に直角な力Fイと平行な力Ffに
分解される。これらの力によって発生する応力状態を第
2図に示す。FIG. 1 shows an enlarged view of the magnetic pole mounting structure. Kotsuta reaction force P
is decomposed into a force Fi perpendicular to the stone and a force Ff parallel to the cross section of interest. The stress state caused by these forces is shown in FIG.
F@は、同図a)に示すように断面ABi圧縮し、これ
によって圧縮応力σ、が生ずる。一方、prは断面AB
に対して曲げモーメントM=Ii”、Xeを生じせしめ
る。ここに、eは断面r1の中心Cとリム反力Pの作用
線の距離である。此の曲げモーメン)Mによって、第2
図b)のように、曲げ応力音生じる。曲げ応力は、断面
に1の両端、即ち、ダブテールの付根Aとダブテールの
内周側中心Bにおいて最大値σ、1−生じ、且つ、曲げ
モーメントの向きからB点では圧縮応力、A点で引張応
力となる。F@ compresses the cross section ABi as shown in a) of the same figure, thereby generating a compressive stress σ. On the other hand, pr is the cross section AB
A bending moment M=Ii'', Xe is generated for
As shown in Figure b), bending stress noise occurs. The maximum bending stress occurs at both ends of the cross section, i.e., the root A of the dovetail and the center B on the inner circumference of the dovetail, and from the direction of the bending moment, the stress is compressive at point B, and the stress at point A is tensile. It becomes stress.
更に、第1図のFTは、第2図C)に示すように剪断応
力τヶ生じる。Furthermore, the FT of FIG. 1 generates a shear stress τ as shown in FIG. 2C).
AB断面には、結局、これらy&:行成した応力が発生
する。とりわけ、圧縮応力σ、と曲げ応力σbの影響が
大きい。かかる観点から、σゎとσbの合成結果を第2
図d)に示す。A点ではσ、とσbが逆向きであるが故
に相殺し合って値が小さくなるのに対し、13点はσ、
とσ1が共に圧縮であるため重畳し、一層、大きい値と
なる。Eventually, these y&: stresses occur in the AB cross section. In particular, compressive stress σ and bending stress σb have a large influence. From this point of view, the composite result of σゎ and σb is
Shown in Figure d). At point A, σ and σb are in opposite directions, so they cancel each other out and the value becomes smaller, whereas at point 13, σ,
Since both σ1 and σ1 are compressed, they overlap and become even larger values.
以上は、説明用に解析式で示したが実際の応力分布は複
雑な形状をする。此の分布状態は、電子計算機による有
限要素法プログラム勿使ってもとめることかできる。第
5図に、−例として従来型標準寸法比をもつダブテール
の有限要素法計算結果を示す。両端の応力が大きく、向
きが反対の場合を示し、且つ、その向きは第2図b)に
示す曲げモーメントの向きと同じである。このことから
、従来型ダブテールでは、曲げ応力が大きな割合を占め
ていたことが判る。従って、座屈強度を向上するには第
一に曲げ応力を小さくすることである。Although the above is shown as an analytical formula for explanation, the actual stress distribution has a complicated shape. This distribution state can be determined using a finite element method program using an electronic computer. FIG. 5 shows, as an example, the results of finite element method calculation of a dovetail having a conventional standard size ratio. The stress at both ends is large and the direction is opposite, and the direction is the same as the direction of the bending moment shown in FIG. 2b). This shows that in the conventional dovetail, bending stress occupies a large proportion. Therefore, the first step to improving buckling strength is to reduce bending stress.
曲げ応力の大きさσbは、AB断面の長さt(第1図)
の2乗に逆比例する。即ち、
が
そこで、第5図と同じ荷重、境界東件の下で、断面長さ
tを変えたときの有限要素法計算に基づくAB断面の応
力分布を第6図に示す。第6図a)と第5図は同じもの
を示す。第6図で、B点の応力は、現在採用しているa
)が最も大きく、断面tが増加するにつれて急激に小さ
くなる。しかし、第6図d)に示すに至っては垂直応力
の最大値σ3 ・ntaxはむしろ大きくなる傾向にあ
る。この理由は、AB断面に働く曲げモーメントが、第
6図a)とd)では向きが逆になるためである。第7図
は、第6図d)の応力発生機構を示す。Flによる純圧
縮応力の向きは第2図a)と第7図a)で同じであるの
に対し、曲げモーメントの向きは、第2図b)と第7図
b)では互いに逆となる。これは、ロータリム反力Pの
作用線に対するに不断面の中点Cの位置関係が逆になっ
たためである。The magnitude of bending stress σb is the length t of the AB cross section (Fig. 1)
is inversely proportional to the square of That is, FIG. 6 shows the stress distribution of the AB section based on the finite element method calculation when the section length t is changed under the same load and boundary conditions as in FIG. 5. Figures 6a) and 5 show the same thing. In Figure 6, the stress at point B is a
) is the largest, and decreases rapidly as the cross section t increases. However, as shown in FIG. 6d), the maximum value of the normal stress σ3·ntax tends to become larger. The reason for this is that the direction of the bending moment acting on the AB cross section is opposite in FIGS. 6a) and 6d). FIG. 7 shows the stress generation mechanism of FIG. 6d). The direction of the net compressive stress due to Fl is the same in FIG. 2a) and FIG. 7a), whereas the direction of the bending moment is opposite in FIG. 2b) and FIG. 7b). This is because the positional relationship of the non-cross-sectional midpoint C with respect to the line of action of the rotor rim reaction force P is reversed.
以上より、第2図d)では、A点における応力σ、とσ
bは相殺し合って小さい合成応力となっているのに対し
、第7図では、逆に同じ向きに重畳し合うことになる。From the above, in Figure 2 d), the stress σ at point A and σ
b cancel each other out, resulting in a small resultant stress, whereas in FIG. 7, on the contrary, they overlap in the same direction.
これが垂直応力の最大値σ、・n1aXが大きくなって
いる理由である。このように、従来構造にはダブテール
断面を大きくしていっても応力がある程度以下には小さ
くならないという欠点があった。本発明はこの欠点ケ無
くすために、従来のに不断面の応力発生機構の改善全す
るものである。即ち、既述のように従来構造は、K1断
面に曲げ応力と剪断応力が同時に発生する。本発明は、
これらの応力のうち純圧縮応力σ、(第2図a)参照)
の発生を無くする。原理的には、第1図に於けるロータ
リム反力Pの作用線がAB断面と平行することである。This is the reason why the maximum value σ,·n1aX of the normal stress is large. As described above, the conventional structure has the drawback that even if the dovetail cross section is increased, the stress cannot be reduced below a certain level. In order to eliminate this drawback, the present invention is an attempt to improve the conventional stress generating mechanism without a cross section. That is, as described above, in the conventional structure, bending stress and shear stress occur simultaneously in the K1 cross section. The present invention
Of these stresses, the net compressive stress σ, (see Figure 2 a))
Eliminate the occurrence of In principle, the line of action of the rotor rim reaction force P in FIG. 1 is parallel to the AB section.
此の原理に依って、AB断面へのPの分力Fわけ零とな
り、AB断面には線面は応力のみが残る。既述のように
、材料力学の梁理論によって、曲げ応力はAB断面長さ
tの2乗に逆比例するので、tf大きくすることによっ
て従来、過大な圧縮応力が発生していたB域の圧縮応力
全充分小さく押えることができる。Based on this principle, the component force F of P on the AB section becomes zero, and only stress remains on the line surface of the AB section. As mentioned above, according to the beam theory of materials mechanics, bending stress is inversely proportional to the square of AB cross-sectional length t, so by increasing tf, compression in region B, where conventionally excessive compressive stress has occurred, is reduced. The total stress can be kept sufficiently small.
第8図に、本発明の磁極取付構造の一実施例?示す。本
発明の原理によってβ=90展である。FIG. 8 shows an embodiment of the magnetic pole mounting structure of the present invention. show. According to the principles of the present invention, β=90.
従って、ロータリム反力PのAB断面に対する分力は零
となり、AB断面にはPによって剪断応力τと曲げモー
メントM=PXeによる曲げ応力σトのみが発生する。Therefore, the component force of the rotor rim reaction force P on the AB section becomes zero, and only the shear stress τ due to P and the bending stress σ due to the bending moment M=PXe are generated on the AB cross section.
ここで既述のように曲げ応力σbはAB断面長さtの2
乗に逆比例するので、全体の応力は、t’z増すこと即
ち、第8図の角度αを小さくすることによって小さくす
ることができる。従って、本実施例によれり、ダブテー
ルの座屈防止の効果がある。Here, as mentioned above, the bending stress σb is 2 of AB cross-sectional length t.
The total stress can be reduced by increasing t'z, ie by decreasing the angle α in FIG. 8. Therefore, this embodiment has the effect of preventing buckling of the dovetail.
本発明に依れば、従来ダブテール内周域に同時に発生し
ていた曲げ圧縮応力と純圧縮応力のうち、純圧縮応力の
発生全阻止できるのでトータルとしてのダブテール応力
デ小さくすることができ、座屈強度向上の効果がある。According to the present invention, of the bending compressive stress and the pure compressive stress that conventionally occur at the same time in the inner peripheral area of the dovetail, the generation of the pure compressive stress can be completely prevented, so the total dovetail stress can be reduced, and the dovetail stress can be reduced. It has the effect of improving bending strength.
第1図は従来の磁極取付構造の拡大図、第2図a)〜d
)は従来の磁極における応力発生機構図、第3図は従来
の発電機の縦断面図、第4図は、第3図の■−■矢視断
面図、第5図、第6図a)〜d)は従来のダブテールの
有限要素法による応力分布図、第7図a)〜C)は第6
図d)の応力発生機構図、第8図は本発明の一実施例の
磁極構造図である。
4・・・ダブテール。
第 1 口
0
′i43図
′#7[¥1
第 8mFigure 1 is an enlarged view of the conventional magnetic pole mounting structure, Figure 2 a) to d
) is a diagram of the stress generation mechanism in a conventional magnetic pole, FIG. 3 is a vertical cross-sectional view of a conventional generator, FIG. 4 is a cross-sectional view taken along the ■-■ arrow in FIG. 3, and FIGS. 5 and 6 a) - d) are stress distribution diagrams obtained by the conventional dovetail finite element method, and Fig. 7 a) - C) are
Figure d) is a diagram of the stress generation mechanism, and Figure 8 is a diagram of the magnetic pole structure of an embodiment of the present invention. 4... Dovetail. 1st mouth 0 'i43 figure'#7 [¥1 8th m
Claims (1)
ダブテールをそtしそれ設け、組立状態において前記ダ
ブテールと前記ダブテール溝の間に生ずる空隙にコツタ
を打込んで前記磁極を前記ロータリムに固定する磁極構
造において、前記コックと前記ダブテールの接触面と前
記ダブテールの付根と前記ダブテールの内側中心を結ん
だ線が直角となるように構成したことr%徴とする回転
電機の磁極構造。1. A magnetic pole in which a dovetail groove is provided on the outer periphery of the rotor rim, a dovetail is cut and disposed on the inside of the magnetic pole, and in an assembled state, the magnetic pole is fixed to the rotor rim by driving a stud into the gap created between the dovetail and the dovetail groove. A magnetic pole structure for a rotating electric machine, wherein the structure is such that a contact surface between the cock and the dovetail, a line connecting the root of the dovetail and an inner center of the dovetail are perpendicular to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19240882A JPS5983548A (en) | 1982-11-04 | 1982-11-04 | Magnetic pole structure for rotary electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19240882A JPS5983548A (en) | 1982-11-04 | 1982-11-04 | Magnetic pole structure for rotary electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5983548A true JPS5983548A (en) | 1984-05-15 |
Family
ID=16290816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19240882A Pending JPS5983548A (en) | 1982-11-04 | 1982-11-04 | Magnetic pole structure for rotary electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5983548A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6154833A (en) * | 1984-08-27 | 1986-03-19 | Hitachi Ltd | Salient-pole rotor of rotary electric machine |
-
1982
- 1982-11-04 JP JP19240882A patent/JPS5983548A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6154833A (en) * | 1984-08-27 | 1986-03-19 | Hitachi Ltd | Salient-pole rotor of rotary electric machine |
JPH0452699B2 (en) * | 1984-08-27 | 1992-08-24 | Hitachi Ltd |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8410656B2 (en) | Segmented stator assembly | |
EP0013157A1 (en) | Permanent magnet rotors, especially for dynamo-electric machines | |
EP2602911A1 (en) | Rotor with embedded permanent magnets for power transmission chain in a mobile working machine | |
JPS5983548A (en) | Magnetic pole structure for rotary electric machine | |
CN106438230B (en) | Reinforced main bearing for a wind turbine | |
JPS6149629A (en) | Stator for rotary electric machine | |
JPS6346665B2 (en) | ||
JPS6240935B2 (en) | ||
CN219643773U (en) | Noise-reducing vibration-damping multi-chute motor rotor | |
JPS6149103A (en) | Turbine rotor blade linking equipment | |
JPS6035931A (en) | Salient-pole type rotor | |
JPS59153429A (en) | Rotor for rotary electric machine | |
CN209823524U (en) | Stator punching sheet and stator core | |
CN216819530U (en) | Water-cooled motor rotor punching sheet | |
JPS60249837A (en) | Rotor of rotary electric machine | |
US4748354A (en) | Rotor for salient-pole machine | |
US11239734B2 (en) | Double stator rotating electrical machine | |
CN114172283B (en) | Stator punching sheet, stator core, motor and vehicle | |
JPS6069211A (en) | Radial turbine | |
JPS6154834A (en) | Attachment structure for rotor rim of rotary electric machine | |
JPS60195301A (en) | Bucket coupling structure | |
JP2001128398A (en) | Projected pole type rotor for dynamo-electric machine | |
JPS59209053A (en) | Ac generator for vehicle | |
JPH0475441A (en) | Rotor wedge of electric rotating machine | |
JPH09324603A (en) | Turbine rotor blade of high speed rotary machine |