JPS5983090A - Subcriticality monitoring device - Google Patents

Subcriticality monitoring device

Info

Publication number
JPS5983090A
JPS5983090A JP57193089A JP19308982A JPS5983090A JP S5983090 A JPS5983090 A JP S5983090A JP 57193089 A JP57193089 A JP 57193089A JP 19308982 A JP19308982 A JP 19308982A JP S5983090 A JPS5983090 A JP S5983090A
Authority
JP
Japan
Prior art keywords
neutron
subcriticality
monitoring device
neutron beam
nuclear fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57193089A
Other languages
Japanese (ja)
Inventor
桜田 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Nippon Atomic Industry Group Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP57193089A priority Critical patent/JPS5983090A/en
Publication of JPS5983090A publication Critical patent/JPS5983090A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野J 本発明は気体、液体ま1=は固体の核燃1′il物質等
の核分裂性物質を内蔵した処理槽や配管等の未臨界1り
をRh視りる装置に関りる。
[Detailed Description of the Invention] [Technical Field of the Invention J] The present invention relates to the treatment of subcritical reactors such as processing tanks and piping containing fissile materials such as gaseous, liquid, or solid nuclear fuel materials. Related to viewing devices.

[発明の技術的背相とその問題点1 核燃料や使用済核燃y!10謂綿、製造、再処理、貯R
等の/Ai段にお4Jる臨稈安全111(未臨界性の保
証)は、施設の安全性を確保Jる」C′必ず行なわなG
Jればならない重要な管理で゛ある。
[Technical background of the invention and its problems 1 Nuclear fuel and spent nuclear fuel! 10 Cotton, manufacturing, reprocessing, storage
The critical safety 111 (guarantee of subcriticality) in the /Ai stage of the above ensures the safety of the facility.''C' Must be carried out.
This is an important management that must be carried out.

従来より、これらの/11設の未臨界性を保Δ11りる
ために、適当な濃度おにび組成の核分裂fノ[物質を含
む場合についてδ1綽によっ(未臨界度を求め、運転中
はその核分裂性物質のIA度を制御しくいる。
Conventionally, in order to maintain the subcriticality of these /11 facilities, the nuclear fission f of an appropriate concentration and composition has been calculated by δ1 (for cases containing substances) (to find the degree of subcriticality during operation). is used to control the IA degree of the fissile material.

しかしながら、これらの施設の装置は一般に複fitな
形状をしCおり、未臨界度を求める61粋の精度も十分
ひない。
However, the equipment in these facilities generally has a complex shape, and the precision required to determine the degree of subcriticality is not sufficiently high.

また、使用済核燃11には自ブを的IJ、中性了を放出
りる核種が含まれ(いるため、再処理施設の処理槽等で
は体系からの中性子を測定づる中11i子検出器を配置
し、オンラインで未臨界1召を監視4るh法を採用しく
いるところもある。εこれは体系の中性子束φが次式(
・表わされるため(ある。
In addition, since spent nuclear fuel 11 contains nuclides that emit IJ and neutral ions, a neutron detector that measures neutrons from the system is installed in the processing tank of a reprocessing facility. Some companies use the h method, in which the neutron flux φ of the system is determined by the following formula (
・To be expressed (there is)

φ−αS/(1−川() 但しkは増イi’i * pあり、(1−k)fJ未臨
界度を表わし、Sは自発申t’1子源の強度、αは比例
定数ひある。
φ−αS/(1−川() where k is increased i'i * p, (1−k)fJ represents the subcriticality, S is the strength of the spontaneous force t'1 source, and α is the proportionality constant There is.

1ノかしながら、この方法も核分裂性物質の濃度や組成
が変化した場合には、未臨界度だけでなく自弁中性子源
の強さも変化づるのC1これだtJぐは十分な監視方法
どは言えず、厳重な濃度や組成の管JMIも必要(゛あ
る。また未照射の核燃料Cは、自発中性子の放出惜が極
めて小さいのC゛この方法はイj効Cはない。
However, even with this method, if the concentration or composition of fissile material changes, not only the subcriticality but also the strength of the self-developed neutron source will change. However, a tube JMI with a strict concentration and composition is also required.Also, unirradiated nuclear fuel C has an extremely small amount of spontaneous neutron emission.This method has no effect.

[発明の目的1 本発明は以上の点に苅処してなされたもので、核分裂性
物質の濃度や組成に影響されずに施設の未臨界度をAン
ラインC監視することができる未臨界性監視装置を提供
づることを目的とりる。
[Objective of the Invention 1 The present invention has been made in consideration of the above points, and is a subcriticality monitoring system that can monitor the subcriticality of a facility without being affected by the concentration or composition of fissile material. The purpose is to provide equipment.

1光明の概要J 41 ifわj)本発明の未臨界性監視装置は、核分裂
性物質を含イ1りる被測定物に中性子線を照Q=Iする
1、:めの定常中11子線源と、該定常中1子線源から
h9出される中性子線強度を周期的に変化させる照射率
周期変化装置と、前記被測定物よりbり出される中ゼ1
子を検出りる中性子検出器とからなること「発明の実施
例」 以下本発明の訂細を図面に承り一実施例に−)いて説明
する。
1 Overview of Komei J 41 ifwa j) The subcriticality monitoring device of the present invention illuminates a neutron beam Q=I on an object to be measured containing fissile material. a radiation source, an irradiation rate periodic changing device that periodically changes the intensity of the neutron beam emitted from the stationary medium 1 ion source, and a neutron radiation source 1 emitted from the object to be measured.
``Embodiment of the Invention'' The details of the present invention will be described below with reference to the drawings and an embodiment.

第1図は本発明の未臨界性監視装置4の一実施例Cあり
、この図においC符号1は核燃才81物質2等を収容し
た未臨界度を監視すべき処理槽で、この周囲に定富中性
子源3J3よび中性子検出器4が配置される。定量゛中
1’1子源3は処理槽1に中1’l了線を照射づるため
の照射[1を除いく周囲を遮蔽体51こよ−)()■わ
れるどと()に、その照射11の前面には中性子線強度
を周期的に変化さける装置、例えばブFllツバ−6が
設訂される。
Fig. 1 shows an embodiment C of the subcriticality monitoring device 4 of the present invention, and in this figure, C numeral 1 is a treatment tank that contains nuclear fuel 81 material 2 and the like and is to be monitored for subcriticality. A Sadatomi neutron source 3J3 and a neutron detector 4 are arranged. The 1'1 radiation source 3 is used to irradiate the processing tank 1 with a 1'1 beam (with the shield 51 surrounding it except for 1). In front of the irradiation device 11, a device for periodically changing the neutron beam intensity, for example, a full tube 6 is installed.

このブーヨッパー6は第2図a、bに示1にう(ご、中
性子をよく吸収覆る物質、例え(、E小1−1ンをn0
したポリエチレンから4.る内板に一定間隔C゛複数個
のスリット20を段(]た回転1ル21と、この回!、
!、板21を回転さけるだめの回転駆動装置2?からな
り、回転板21が回転することにより周期的に中性子線
を通過させるようにした装置ひある。
This booper 6 is shown in Figures 2a and b.
4. One rotation 21 with a plurality of slits 20 at regular intervals C in the inner plate, and this time!
! , rotation drive device 2 to avoid rotating the plate 21? There is a device in which a rotating plate 21 rotates to periodically pass neutron beams.

中性子検出器1は中性子のバックグラウンドおよび自害
4にガンマ線の照射を避番ノるために遮蔽体7に囲まれ
C’ iJ)す、処理槽1がら放出される中性子を検出
する。また、中性子検出器4には中性子検出器/I h
+ lらの検出信号を処理するための削数処j!l! 
!!i盾8が接続される。
The neutron detector 1 is surrounded by a shield 7 to avoid neutron background and self-harm 4 from gamma ray irradiation, and detects neutrons emitted from the processing tank 1. In addition, the neutron detector 4 includes a neutron detector/I h
+ Reduction processing for processing the detection signals of l et al. l!
! ! i-shield 8 is connected.

次に以上のように構成された未臨界性監視装置の作用に
ついて説明ブる。
Next, the operation of the subcriticality monitoring device configured as above will be explained.

照射率周期変化装置である壬ヨッパー6にょっし強1印
を周期的に変化させた中性子線を処理槽′1(5人的さ
けると、処理槽1内の中性子束も周期的に変化し、中性
子検出器4の計数率も周期的に変fe II令。
A neutron beam with a periodic change in intensity of 1 is applied to the Mijoppa 6, which is an irradiation rate periodic change device, into the processing tank '1 (5 people). , the counting rate of the neutron detector 4 also changes periodically.

今、処理槽1に八〇=17する中性子線強度I (t 
)が周期を−1どした時次式で表わされるとりると、1
 (t ) =S (1−+−cos  (2π/−1
’) −t )・・・・・・・・・・・・・・・・・・
・・・ (I)1本系内の中11子密度++(1,)は
核燃料物質にJこる111倍にJ、っC次式に従っ゛C
変化する。
Now, the neutron beam intensity I (t
) is expressed as a temporal formula with the period divided by -1, then 1
(t) = S (1−+−cos (2π/−1
') -t )・・・・・・・・・・・・・・・・・・
... (I) The middle 11 element density ++ (1,) in a single system is J, which is 111 times larger than the nuclear fuel material, according to the following formula.
Change.

0 (t>父(SJ!、/(1−れ) l  (1+C
03(2π1/1+δ))・・・・・・(II)ここで
βは中性子ス1の、δは定数、1(は処理槽の中1(1
子指倍率で・ある。
0 (t>Father (SJ!, /(1-re) l (1+C
03(2π1/1+δ))...(II) Here, β is neutron concentration 1, δ is a constant, 1( is 1(1
It's baby finger magnification.

従つC1(1■)式より中性子検出器4の4数率は、S
/(1−k)に比例りる振幅で周期的に変化することが
わかる。りなわ<5ril数値の変化の振幅は処理4g
1の未臨界度(1−k)kこ逆比例し、臨界に近付くと
振幅は急激に増入りる。
Accordingly, from the formula C1 (1■), the 4 number rate of the neutron detector 4 is S
It can be seen that the amplitude changes periodically with an amplitude proportional to /(1-k). Rinawa < 5ril The amplitude of the change in numerical value is processed 4g
The degree of subcriticality of 1 (1-k) is inversely proportional to k, and as it approaches criticality, the amplitude increases and decreases rapidly.

−h、処理槽1内の核燃料物′j1かう自発的に71文
出される中性子【J周期的に変化しないため、目的とり
る中(’III、1.J、る剤数と容易に識別りること
ができる。
-h, the nuclear fuel in the treatment tank 1'j1 These 71 spontaneously emitted neutrons [J do not change periodically, so they can be easily identified as can be done.

また、照射された核燃料物別は一般に強いガンマ線を伴
い、中性子検出器4のバックグラウンドとi、にるが、
これも周期的に変化しないため容易に8別できる。
In addition, the irradiated nuclear fuel is generally accompanied by strong gamma rays, and the background of the neutron detector 4 and i, nil are
This also does not change periodically, so it can be easily divided into eights.

なa3ホ弁明の原理では、処理槽′1に入射さける中性
子線強度は必ずしも(1)式のJ、うに三角関数的に周
期変化させる必要はなく、イ「意の周期関故形Cj、い
。例えば第3図に承りよう’J 7、fj形型の同1ガ
変化あるいはパルス型が実際的C゛ある。
According to the principle of the a3 e defense, the neutron beam intensity incident on the treatment tank '1 does not necessarily have to be periodically changed trigonometrically as J in Equation (1); For example, as shown in FIG.

1発明の効宋] 以上の説明からも明らかなように木弁明の未臨界性監視
装置は、監視リベき対象物に含イ1される核燃料物別の
濶1哀や組成に係わらり゛、AンラインC′未臨界Ia
を監視りることができる。すなわら適当な澗1此や組成
のモデルに基づいて61粋によっ−(未臨界爪を求める
必要はイ1い。
1. Effects of the Invention] As is clear from the above explanation, Ki Benmei's subcriticality monitoring device is effective regardless of the amount and composition of each nuclear fuel substance included in the object to be monitored. A-line C' subcritical Ia
can be monitored. In other words, it is not necessary to find a subcritical value based on an appropriate composition model.

また、バックグラウンドとの識別が容易乙゛゛あるうえ
に、臨界に近いほど測定感度がよくかつ定′常Il+ 
1!4子線源の強度が小さくC済み、無用な照射を避t
)ることかひきる。
In addition, it is easy to distinguish from the background, and the closer the criticality is, the better the measurement sensitivity is, and the constant Il+
1! The intensity of the 4-ray source is small and C is completed, avoiding unnecessary irradiation.
) Tokahiru.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の未臨界性監視装置の一実施例を承り構
成概略図、第2図(a )は第1図におりるヂョツパー
を概略的に示1゛正面図、第2図(())は第2図(a
 )のII −II線に沿う断面図、第3図は中慴子照
tJI強度の矩形型の同期変化を示す−グラーノ Cu
  る 。 1・・・・・・・・・・・・処理檜 33・・・・・・・・・・・・定7ii、中性子源4・
・・・・・・・・・・・中性子検出器6・・・・・・・
・・・・・ブー1ツバ−21・・・・・・・・・・・・
11月転板22・・・・・・・・・・・・回転駆動具(
メイ代11p人弁理」二   須 山 fl?  −第
1図 □□□] 第2図 b ■ ■ 第3図
Fig. 1 is a schematic diagram of the configuration of an embodiment of the subcriticality monitoring device of the present invention, and Fig. 2 (a) schematically shows the chopper shown in Fig. 1. ()) is shown in Figure 2 (a
), Figure 3 shows the rectangular synchronous variation of the JI intensity - Grano Cu
Ru. 1・・・・・・・・・・・・Treatment cypress 33・・・・・・・・・・・・Constant 7ii, Neutron source 4・
・・・・・・・・・・・・Neutron detector 6・・・・・・・
・・・・・・Boot 1 Tub-21・・・・・・・・・・・・
November Turning plate 22・・・・・・・・・Rotating drive tool (
Meiyo 11p attorney” Nisuyama fl? -Figure 1□□□] Figure 2b ■ ■ Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)核分裂性物質を含有する被1TllI定物に中性
子線を照射りるための定常中性子線源と、該定常中性子
線源から放出される中性子線強度を周期的に変化させる
照射率周期変化装置と、前記被測定物より放出される中
性子を検出する中性子検出器とからなることを特徴とす
る未臨界性監視装置。
(1) A stationary neutron beam source for irradiating a 1TllI constant object containing fissile material with a neutron beam, and a periodic change in irradiation rate that periodically changes the intensity of the neutron beam emitted from the stationary neutron beam source. A subcriticality monitoring device comprising: a device; and a neutron detector that detects neutrons emitted from the object to be measured.
(2)照射率周期変化装置は中性子を吸収する物質′C
(′きた円板に複数個のスリットを一定間隔f。 に設【)た回転板と、該回転板を回転させるための回転
駒1riJJ″tile?どからなることを特徴とする
特許請求の範囲第1Jn記載の未臨界性監視装置。
(2) The irradiation rate periodic change device is made of a material 'C that absorbs neutrons.
Claims characterized in that the invention comprises a rotary plate in which a plurality of slits are provided at regular intervals f. The subcriticality monitoring device described in No. 1 Jn.
JP57193089A 1982-11-02 1982-11-02 Subcriticality monitoring device Pending JPS5983090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57193089A JPS5983090A (en) 1982-11-02 1982-11-02 Subcriticality monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57193089A JPS5983090A (en) 1982-11-02 1982-11-02 Subcriticality monitoring device

Publications (1)

Publication Number Publication Date
JPS5983090A true JPS5983090A (en) 1984-05-14

Family

ID=16302044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57193089A Pending JPS5983090A (en) 1982-11-02 1982-11-02 Subcriticality monitoring device

Country Status (1)

Country Link
JP (1) JPS5983090A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121156A (en) * 2005-10-28 2007-05-17 Toshiba Corp Subcriticality monitor and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121156A (en) * 2005-10-28 2007-05-17 Toshiba Corp Subcriticality monitor and method

Similar Documents

Publication Publication Date Title
Tashlykov et al. Ion-selective treatment as a method for increasing the efficiency of liquid radioactive waste reducing in accordance with acceptance criteria for disposal
JPS5983090A (en) Subcriticality monitoring device
JPH0213736B2 (en)
DeVoe Radioactive contamination of materials used in scientific research
Boulyga et al. Nuclear track radiography of “hot” aerosol particles
JPH02157696A (en) Non-destructive analysis apparatus for fissile material
Buchanan Activation analysis using a research reactor
Wald Industrial Medical Aspects of Nuclear Technology
Faust et al. Criteria for safe handling of irradiated plutonium in beta-gamma shielded cells
Shahrokhi et al. State-of-the art in non-destructive assay systems and their applications to an LMFBR aqueous fuel reprocessing plant
Umbarger et al. Portable radioactivity monitor for liquid effluents, surface contaminations, and bulk solid wastes
Zaitsev et al. THE USE OF ION-EXCHANGE MATERIAL IN PREPARING LOW-ACTIVITY RADIATION SOURCES
Tsuruno Inspection of Pu particle in UO2-PuO2 pellet by neutron radiography
Miyake et al. LEAKAGE TEST OF HOT CELLS, NAIG RESEARCH LABORATORY
Bokacheva et al. CALCULATION OF THE $ gamma $-COMPONENT OF HEAT GENERATION
Chupp et al. Measurement of High‐Energy Gamma‐Rays with a Photographic Bent Crystal Spectrograph
Logsdon et al. Operational experience in radiological control during the NS Savannah fuel shuffle
Laverlochere et al. RADIOACTIVE METHODS OF ANALYSIS
Beck RECENT ADVANCES IN NONDESTRUCTIVE EXAMINATION OF IRRADIATED FUEL CAPSULES
Arlman TECHNICAL PROBLEMS OF PRODUCTION. PREPARATION AND DELIVERY OF RADIOACTIVE ISOTOPES
Langendorff et al. RADIATION PROTECTION CONTROL BY THE FILM DARKENING METHOD FOR PERSONNEL WORKING WITH RADIOACTIVE MATERIALS
Morgan Release of radioactive materials from reactors
Baecklin et al. On the Properties of the s {sub 1/2}-> d {sub 3/2} Transition in {sup 199} Au
Deigl et al. Guidelines for determining frequency of wipe surveys
Philippot NEW ASPECTS OF RADIOACTIVITY MEASUREMENTS ISOCHRONIC MEASUREMENTS AND MEASUREMENTS OF CONTROLLED DURATION