JPS598258A - Cathode-ray tube for light source - Google Patents

Cathode-ray tube for light source

Info

Publication number
JPS598258A
JPS598258A JP11594082A JP11594082A JPS598258A JP S598258 A JPS598258 A JP S598258A JP 11594082 A JP11594082 A JP 11594082A JP 11594082 A JP11594082 A JP 11594082A JP S598258 A JPS598258 A JP S598258A
Authority
JP
Japan
Prior art keywords
ray tube
light source
cathode ray
distance
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11594082A
Other languages
Japanese (ja)
Inventor
Takehiro Yamaguchi
山口 「あ」弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11594082A priority Critical patent/JPS598258A/en
Publication of JPS598258A publication Critical patent/JPS598258A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/06Lamps with luminescent screen excited by the ray or stream

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To reduce the visual distance of a cathode-ray tube greatly by specifying the distance between a structure and a fluorescent film by the inner diameter of the structure, the largest diameter of the fluorescent film, the distance between adjacent fluorescent films and the spreading angle of a non-focused electron beam. CONSTITUTION:When the inner diameter of a structure 12 is supposed to be d, the distance between the structure 12 and a fluorescent film 14 is supposed to be l, the largest diameter of the fluorescent film 14 is supposed to be D1, the distance between adjacent fluorescent films is supposed to be D2 and the spreading angle of a non-focused electron beam is supposed to be theta, these values are specified as being indicated in the formula. In a light source cathode-ray tube with such constitution, when a non-focused electron beam 10 is discharged from an electron gun 4 at a given spreading angle, the peripheral part of the beam 10 is trimmed according to the inner diameter of the cylindrical structure 12, thereby there is nothing to stimulate part of a fluorescent film 14 formed on the inner surface of a vacuum encircling case 1 which is adjacent to and other than a given part of the film 14.

Description

【発明の詳細な説明】 この発明は、主として、屋外などで使用される巨大カラ
ーディスプレイ装置の画緊を構成する陰極線管に関する
亀のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates primarily to a cathode ray tube that constitutes the backbone of a giant color display device used outdoors.

従来、たとえば、野球場の電光表示板や建物の屋上、あ
るhは、壁面などの広告用画像やメツセージの表示に使
われたυ、高速道略表どのインフォメーションディスプ
レイなどに使われる巨大なディスプレイ装置は、多数の
電球を並べ、これらを選択的に点滅させることによって
画像を作っていたために幾多の問題があった。
Conventionally, for example, electric display boards at baseball stadiums, rooftops of buildings, υ used to display advertising images and messages on walls, huge display devices used for information displays such as expressway maps, etc. created images by arranging a large number of light bulbs and blinking them selectively, which caused many problems.

そのうちのいくつかの例をあげると、たとえば電球の場
合はフィラメントの赤熱によって光を得ているために、
主として、その発光は橙ないし白橙色を呈している。こ
のため、これらの電球から、たとえば、宵や緑の色光を
大量に発生させることがかなり困難であった。また、こ
のような電球方式の場合には、各画素の輝度を変調する
にはプイフメントの印加電流をオンーオプするか、印加
電流を可変するなどの手段によらねばならないが、これ
らの電球は、その周波数レヌボンスがl0Hz以下とき
わめて低く、印加電流によって発光色自体が変ってしま
う問題などがあり、中間調の表示や任意の色光を合成す
るカフ−表示などに供するにも困難がつきまとっていた
。さらにこのような巨大ダイスプレイ装置では一般に2
0〜40W程度の電球が数十個から数万個以上も並べら
れる場合も多くあシ、その消費電力や発熱などの観点か
らしても多くの問題があった。
To give some examples, for example, in the case of a light bulb, the light is obtained from the red heat of the filament, so
Mainly, the luminescence is orange or white-orange. For this reason, it has been quite difficult to generate a large amount of light, such as night or green color light, from these light bulbs. In addition, in the case of such a light bulb method, in order to modulate the brightness of each pixel, it is necessary to turn the applied current of the equipment on and off, or to vary the applied current, but these light bulbs The frequency is very low, less than 10 Hz, and there is a problem that the color of the emitted light itself changes depending on the applied current, making it difficult to use it for halftone display or cuff display that synthesizes light of any color. Furthermore, in such a huge dice play device, generally 2
There are many cases in which dozens to tens of thousands of light bulbs of about 0 to 40 W are lined up, and there are many problems in terms of power consumption and heat generation.

そこで、この発明の発明者は、上述したよりなディスプ
レイ装置の光源として陰極線管を用いることをすでに提
案した。
Therefore, the inventor of the present invention has already proposed the use of a cathode ray tube as a light source for the above-mentioned display device.

第1図は、これまで発明者が先行発明として実施してき
た巨大デイヌプVイ月光源として供される光源用陰極線
管の構造の一例を示す図で、(1)は管内を真空に維持
するだめの、たとえば筒状の真空外囲器である。この真
空外囲器(1)はその一端に、内面に螢光面(2)が被
着されたフェースガフ7、 (3)を有し、他端に螢光
面(2)全面を非集束電子ビームOnで照射するための
電子銃部(4)および電子銃部(4)の各部に所要の電
圧を印加する端子を持つとともに、真空外囲器(1)を
閉塞する7テム部(5)を有する。(6)。(7)およ
び(8)はそれぞれ上記電子銃部(4)を構成するヒー
タ、陰極およびグリッドである。
Figure 1 shows an example of the structure of a cathode ray tube for use as a light source, which is used as a gigantic daylight source, which the inventor has developed as a prior invention. For example, it is a cylindrical vacuum envelope. This vacuum envelope (1) has at one end a face gaff 7, (3) having a fluorescent surface (2) adhered to its inner surface, and at the other end, the entire surface of the fluorescent surface (2) is covered with non-focused electrons. An electron gun part (4) for irradiating with the beam ON and a 7-tem part (5) that has terminals for applying a required voltage to each part of the electron gun part (4) and closes the vacuum envelope (1). has. (6). (7) and (8) are a heater, a cathode, and a grid, respectively, constituting the electron gun section (4).

この陰極線管の動作について説明すると、まず、グリッ
ド(8)に、陰極(7)に対して負の電圧を与えるとと
もに、ヒータ(6)にも所定の電流を与え、陰極(7)
を加熱してグリッド(8)の電圧を陰極(7)の電位に
近づけると、陰極(7)から電子ビーム(0)が螢光面
(2)に向って発射される。この電子ビームQOはグリ
ッド(8)の中央に設けられた穴(9)の直径、グリッ
ド(8)と陰極(7)との間隔および陽極電圧醇の諸条
件によって所定の拡がυ角(θ)をもつ非集束ビームと
なって螢光面(2)全面に照射され、螢光面(2)をそ
の螢光体に応じた発光色に発光させる。
To explain the operation of this cathode ray tube, first, a negative voltage is applied to the grid (8) with respect to the cathode (7), and a predetermined current is also applied to the heater (6).
When the grid (8) is heated to bring the voltage of the grid (8) close to the potential of the cathode (7), an electron beam (0) is emitted from the cathode (7) toward the fluorescent surface (2). This electron beam QO has a predetermined expansion at a υ angle (θ ) and illuminates the entire surface of the fluorescent surface (2), causing the fluorescent surface (2) to emit light in a color corresponding to the fluorescent substance.

これらの陰極線管は、たとえば第2図のように、螢光面
を有する側を手前にして規則正しく並べられる。この陰
極線管の配列は、一般に緑色に発光する陰極線管H2本
に対して赤色に発光する陰極線管に)及び青色に発光す
る陰極線管(ハ)が各1本の割合で配列されてい石、こ
れは、これらの光源の集合体で構成される画像の鮮明度
を支配する分解能が緑色の画素の数で決シ、赤色や青色
はこれに色をつけるための働きをしているにすぎないと
いう発想のもとで構成されたもので、この理論が誤まシ
でないことを、発明者らは、第2図に示す配列の巨大デ
ィスプレイを作ってすでに確認を行っている。このよう
に、たとえば、赤、緑、青などの単色螢光面を持つ小形
の陰極線管を多数並べて、所望の画像を表示するように
したものによれば、電気エネμギを光エネルギに変換す
るエネルギ変換効率が電球にくらべて大巾に数倍される
のみならず、使用螢光体の選択によシ任意の発光色の光
源が得られるなど、多くの利点がある。そしてこのよう
に、巨大ディスプレイ装置の光源として陰極線管を用い
た場合、従来の電球式のものにくらべて性能、信頼性、
維持費、消*電力などのいづれを比較しても有利に構成
できることは明らかなことである。
These cathode ray tubes are regularly arranged with the fluorescent surface facing toward you, as shown in FIG. 2, for example. Generally speaking, this arrangement of cathode ray tubes consists of two cathode ray tubes (H) that emit green light, and one cathode ray tube (C) that emits blue light, and one cathode ray tube (C) that emits blue light. The number of green pixels determines the resolution that governs the clarity of images made up of a collection of these light sources, and red and blue only serve to color this. The inventors have already confirmed that this theory is correct by creating a giant display with the arrangement shown in Figure 2. In this way, for example, a system in which a large number of small cathode ray tubes with monochromatic fluorescent surfaces such as red, green, and blue are lined up to display a desired image converts electrical energy μ into light energy. It has many advantages, such as not only the energy conversion efficiency is greatly increased several times compared to a light bulb, but also a light source with any color of emitted light can be obtained by selecting the phosphor used. In this way, when a cathode ray tube is used as a light source for a giant display device, it has better performance, reliability, and
It is clear that the configuration can be advantageous when comparing maintenance costs, power consumption, etc.

一方、上記のような陰極線管は、これまで、直径約29
鰭のものを第2図のような配列で並べた場合において、
そのピッチが、屋外での使用を考えて、防水構造の問題
や、陰極線管に諸電圧を供給するためのソケット部分の
構成や、配線の都合もあシ、40〜45fiに設定され
ていた。そして、この場合の画像の見易さ、混色の程度
などから見た最適視認距離は約70〃1以上であった。
On the other hand, cathode ray tubes like the one mentioned above have so far had a diameter of about 29 mm.
When the fins are arranged in the arrangement shown in Figure 2,
The pitch was set at 40 to 45 fi considering outdoor use, the problem of waterproof structure, the structure of the socket part for supplying various voltages to the cathode ray tube, and the convenience of wiring. In this case, the optimum viewing distance in terms of image visibility, degree of color mixing, etc. was about 70.1 or more.

この最適視認距離が70F72以上ということは、野球
場やザラカー場、競馬場などの競技場に設置されるデイ
スプレイとしてはまったく問題ないが、たとえば屋外広
告などの用途を考えるときには、この視認距離を半減す
る必要があることがわかった。
This optimum viewing distance of 70F72 or more is perfectly acceptable for displays installed in stadiums such as baseball stadiums, Zara car tracks, and racetracks, but when considering applications such as outdoor advertising, this viewing distance should be halved. I found out that I needed to.

この発明は以上の事情にかんがみてなされたものであシ
、上記視認距離を従来のものよシも大幅に減じさせるこ
とを目的としてなされたものである。
This invention was made in view of the above-mentioned circumstances, and was made for the purpose of significantly reducing the above-mentioned visual recognition distance compared to the conventional one.

すなわち、画素となる陰極線管の螢光面を複数に分割す
ることによって一木の陰極線管で複数の原色を発光させ
るという方式に着目したものであって、その要旨とする
ところは、真空外囲器の内部に、非収束電子ビームを所
定の拡がシ角で発生させる複数の電子銃部を設けるとと
もに、これらの電子銃部の陰極から到来する電子ビーム
に対応する各位置に、電子ビームのトリミング作用をも
つ筒状の構体を設け、この構体に対向する真空外囲器の
内面に赤、緑、青などの発光色を呈する螢光膜を塗着さ
せた光源用陰極線管において、構体の内径をσ、構体か
ら螢光膜までの距離をl、螢光膜の最大径をり、%隣接
する螢光膜相互間の距離を烏、非収束電子ビームの拡が
シ角をθとしたとき、 である点にある。
In other words, this method focuses on a method in which a single cathode ray tube emits multiple primary colors by dividing the fluorescent surface of the cathode ray tube, which serves as a pixel, into multiple parts. A plurality of electron guns are provided inside the device to generate unfocused electron beams at a predetermined divergence angle. In a cathode ray tube for a light source, a cylindrical structure with a trimming function is provided, and a fluorescent film emitting colors such as red, green, and blue is coated on the inner surface of a vacuum envelope facing the structure. The inner diameter is σ, the distance from the structure to the phosphor film is l, the maximum diameter of the phosphor film is %, the distance between adjacent phosphor films is %, and the divergence angle of the non-focused electron beam is θ. When, is at a point.

つぎに、この発明の実施例による光源用陰極線管を図面
にしたがって説明する。
Next, a light source cathode ray tube according to an embodiment of the present invention will be described with reference to the drawings.

第3図において、密閉円筒状の真空外囲器(1)の内部
には、複数の電子銃部(4)と、これらに各別に対応す
る加速[極θυおよび筒状の構体0枠が配置されるとと
もに、構体(6)の後端部には高圧[極(躊が配置され
る。この場合、電子銃部(4)、加速電>aυおよび構
体(6)の組合せは、たとえば、真空外囲器(1)の内
部における120度おきの三箇所に設けられたシ、ある
いは、真空外囲器(1)の内部を水平方向で三区画して
なる各区画に配置されるのであって、前者はデルタ配置
、また、後者はインフィン配置の三色管となる。
In FIG. 3, inside a sealed cylindrical vacuum envelope (1), there are arranged a plurality of electron gun sections (4) and corresponding acceleration [poles θυ and cylindrical structure 0 frames]. At the same time, a high voltage pole is arranged at the rear end of the structure (6). In this case, the combination of the electron gun section (4), the accelerating electric current They are provided at three locations at 120 degree intervals inside the vacuum envelope (1), or in each of three horizontal divisions inside the vacuum envelope (1). The former is a delta configuration, and the latter is an infin configuration trichromatic tube.

また、構体(功に対向する真空外囲器(1)の内面には
、各構体(6)に各別に対応するように、赤、緑、青な
どの互に異なる発光色を呈する螢光膜α荀が塗着される
In addition, on the inner surface of the vacuum envelope (1) facing the body structure, there is a fluorescent film that emits different colors such as red, green, and blue so as to correspond to each body structure (6). Alpha is painted.

この場合において、筒状の構体(6)は、電子銃部(4
)の陰極(7)から所定の拡がシ角をもって発生された
非収束電子ビーム0Φの外周部分をトリミングして、こ
の構体(イ)から出る非収束電子ビームQ[相]が、こ
の構体(6)に対応する螢光膜Hのみを刺激し、この螢
光膜Q優に隣接する他の螢光膜Q4を刺激しないように
するのに役立たせる必要がある。筒状の構体UJにこの
ような作用を奏させるためには、次の条件が必要となる
In this case, the cylindrical structure (6) has an electron gun section (4
) is generated with a predetermined divergence angle from the cathode (7) of the structure (A). It is necessary to stimulate only the fluorescent film H corresponding to 6) and to avoid stimulating the other fluorescent film Q4 adjacent to this fluorescent film Q. In order for the cylindrical structure UJ to exhibit such an effect, the following conditions are required.

すなわち、構体(ロ)の内径をd、構体(ロ)の開口端
からこの構体(1枠に対応する螢光膜α荀までの距離を
41螢光膜(14)の最大径をDl、隣接する螢光膜Q
C04)相互間の距離をDI、非収束ビームaりの拡が
シ角を0としたとき、 であることが必要であシ、望ましくは、である。
That is, the inner diameter of the structure (b) is d, the distance from the open end of the structure (b) to the phosphor film α corresponding to this structure (one frame) is 41, the maximum diameter of the phosphor film (14) is Dl, and the distance between Fluorescent film Q
C04) When the distance between them is DI, and the angle of divergence of the non-convergent beams a is 0, it is necessary, and preferably, that the following is true.

このように構成された光源用陰極線管においては、非集
束電子ビームQlが所定の拡がυ角で上記電子銃部(4
)から発射された場合、その非集束電子ビーム0時は筒
状構体aカの内径に応じてその外周部分のビームがトリ
ミングされるため、真空外囲器(1)の内面に塗布され
ている所定の螢光膜0荀以外の隣接する他の螢光膜Q→
を刺激するものが無くなる。
In the light source cathode ray tube configured in this way, the unfocused electron beam Ql is spread at a predetermined angle υ and the electron gun section (4
), the unfocused electron beam is applied to the inner surface of the vacuum envelope (1) because the beam at its outer periphery is trimmed according to the inner diameter of the cylindrical structure (a) at zero time. Adjacent other fluorescent films Q other than the predetermined fluorescent film 0→
There will be nothing to stimulate you.

すなわち、上記筒状構体(6)の開口端と所定の螢光面
までの距離lを上記の範囲内に納めることによシ所定の
螢光面θ→よシ効率よく光エネルギが取υ出され、しか
も、非集束電子ビーム0りによる他色発光、混色等の現
象が皆無となる。したがって、このような陰極線管にお
ける螢光膜Q4)を、第5図(a)あるいは同図中)の
ように、デルタ配置あるいはインツイン配置として、複
数の陰極線管を従来のもの(第2図参照)と同一ピッチ
で配列させた場合には、−個の陰極線管によって従来の
ものにおける三個の陰極線管に相当する色調が得られる
の離lの範囲を規定したが、筒状構体(Llの内径住あ
るいは非集束電子ビームの拡がヤ角θの範囲を規定して
も、これらは相対的な関係にあるために同一の効果が得
られることはWiでもない。
That is, by keeping the distance l between the opening end of the cylindrical structure (6) and the predetermined fluorescent surface within the above range, light energy can be efficiently extracted from the predetermined fluorescent surface θ. Moreover, phenomena such as emission of other colors and color mixing due to the non-focusing electron beam are completely eliminated. Therefore, the phosphor film Q4) in such a cathode ray tube is arranged in a delta arrangement or an in-twin arrangement as shown in FIG. In the case of arranging the tubes at the same pitch as in the case of cylindrical structure (Ll Even if the inner diameter of the electron beam or the spread of the unfocused electron beam defines the range of the angle θ, the same effect cannot be obtained because these are in a relative relationship.

なお、通常、電子ビームの)す(ング用筒状構体として
は金属類が使用されるが、この発明においては、上記筒
状構体(6)は金属類は勿論、金属類以外のセフミック
々どの磁器類でも良い。また、筒状構体(6)における
螢光膜θ→側に位置する開口端の形状を、丸形四角形(
長方形、正方形)、扇形などの対向する螢光膜0荀の形
状に対して相似形にすることによυ、上述した他色発光
および混色防止効果が一層助長される。
Note that metals are normally used as the cylindrical structure for electron beam cooling, but in the present invention, the cylindrical structure (6) can be made of not only metals but also Cefmic and other materials other than metals. Porcelain may also be used.Also, the shape of the opening end located on the fluorescent film θ→ side of the cylindrical structure (6) is rounded or rectangular (
By making the fluorescent film similar in shape to the shape of the opposing fluorescent film, such as a rectangle, a square, or a fan shape, the above-mentioned effects of emitting light of other colors and preventing color mixture are further promoted.

以上のように、この発明によれば、−個の光源用陰極線
管によって複数の発色が得られ、しかも、その場合に、
筒状の構体によって非収束電子ビー人の外周部分がトリ
ミングされて、同一の電子銃部から出た非収束電子ビー
ムが一つの螢光膜のみに照射されることになるため、混
色や他色発光などが確実に防止される。そのため、正確
なビームランディングが得られ、かつ、従来のものに比
べても、その視認距離が大幅に減ぜられる。
As described above, according to the present invention, a plurality of colors can be obtained using - number of light source cathode ray tubes, and in that case,
The outer periphery of the non-focused electron beam is trimmed by the cylindrical structure, and the non-focused electron beams emitted from the same electron gun irradiate only one phosphor film, resulting in color mixing and other colors. Light emission etc. are reliably prevented. Therefore, accurate beam landing can be obtained, and the viewing distance can be significantly reduced compared to conventional beam landing systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光源用陰極線管の構造図、第2図は従来
の光源用陰極線管を多数並べて構成した図、第3図はこ
の発明の実施例による光源用陰極線管の構造図、第4図
匹)および同図(至)はこの発明の実施例による光源用
陰極線管を多数並べて構成した図である。 (1)・・・真空外囲器、(4)・・・電子銃部、(7
)・・・電子銃部の#極、QO)・・・非収束電子ビー
ム、(6)・・・構体、α荀・・・螢光膜、d・・・構
体の内径、!・・・構体から螢光膜までの距離、DI・
・・螢光膜の最大径、D、・・・隣接する螢光膜相互間
の距離、θ・・・非収束電子ビームの拡がシ角。 なお、図中、同一符号は同一もしくは相当部分を示す。 代理人 葛野信−(外1名)
FIG. 1 is a structural diagram of a conventional cathode ray tube for a light source, FIG. 2 is a diagram illustrating a structure in which a large number of conventional cathode ray tubes for a light source are arranged side by side, and FIG. 3 is a structural diagram of a cathode ray tube for a light source according to an embodiment of the present invention. Figures 4 and 4 are diagrams in which a large number of light source cathode ray tubes according to embodiments of the present invention are arranged side by side. (1)...Vacuum envelope, (4)...Electron gun section, (7
)...# pole of the electron gun section, QO)...non-convergent electron beam, (6)...structure, α...fluorescent film, d...inner diameter of the structure,! ...Distance from the structure to the fluorescent film, DI.
...Maximum diameter of the fluorescent film, D, ...Distance between adjacent fluorescent films, θ...Angle at which the non-convergent electron beam spreads. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Shin Kuzuno (1 other person)

Claims (3)

【特許請求の範囲】[Claims] (1)真空外囲器の内部に、非収束電子ビームを所定の
拡がシ角で発生させる複数の電子銃部を設けるとともに
、これらの電子銃部の陰極から到来する電子ビームに対
応する各位置に、電子ビームのトリミング作用をもつ筒
状の構体を設け、との構体に対向する真空外囲器の内面
に赤、緑、青などの発光色を呈する螢光膜をTo着させ
た光源用陰極線管において、構体の内径をα、構体から
螢光膜までの距離を11螢光膜の最大径をDl、隣接す
る螢光膜相互間の距離をD11非収東軍子ビームの拡が
p角をθとしたとき、 であることを特徴とする光源用陰極線管。
(1) Inside the vacuum envelope, a plurality of electron gun sections are provided that generate non-convergent electron beams at a predetermined divergence angle, and each electron gun section corresponding to the electron beam arriving from the cathode of these electron gun sections is provided. A light source is provided with a cylindrical structure having an electron beam trimming function at the position, and a fluorescent film emitting red, green, blue, etc. is coated on the inner surface of the vacuum envelope facing the structure. For cathode ray tubes, the inner diameter of the structure is α, the distance from the structure to the phosphor film is 11, the maximum diameter of the phosphor film is Dl, and the distance between adjacent phosphor films is D11. A cathode ray tube for a light source, characterized in that, where p angle is θ, the following is true.
(2)筒状の構体がセフミックなどの磁器により構成さ
れている特許請求の範囲第1項記載の光源用陰極線管。
(2) A cathode ray tube for a light source according to claim 1, wherein the cylindrical structure is made of porcelain such as Cefmic.
(3)筒状の構体における螢光模似に位置する開口端の
形状が、この開口端に対向する螢光膜の形状に対して相
似形である特許請求の範囲第1項または第2項記載の光
源用陰極線管。
(3) Claim 1 or 2, wherein the shape of the opening end located in the fluorescent imitation of the cylindrical structure is similar to the shape of the fluorescent film facing the opening end. Cathode ray tube for light source as described.
JP11594082A 1982-07-02 1982-07-02 Cathode-ray tube for light source Pending JPS598258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11594082A JPS598258A (en) 1982-07-02 1982-07-02 Cathode-ray tube for light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11594082A JPS598258A (en) 1982-07-02 1982-07-02 Cathode-ray tube for light source

Publications (1)

Publication Number Publication Date
JPS598258A true JPS598258A (en) 1984-01-17

Family

ID=14674940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11594082A Pending JPS598258A (en) 1982-07-02 1982-07-02 Cathode-ray tube for light source

Country Status (1)

Country Link
JP (1) JPS598258A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124779U (en) * 1984-07-20 1986-02-14 富士通株式会社 Large display panel device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124779U (en) * 1984-07-20 1986-02-14 富士通株式会社 Large display panel device

Similar Documents

Publication Publication Date Title
US4763187B1 (en) Method of forming images on a flat video screen
JPS598258A (en) Cathode-ray tube for light source
US4336480A (en) Cathode ray tube
KR890002134B1 (en) Cathode-ray lamp
JPS6313186B2 (en)
JPS6329946B2 (en)
JPS58212048A (en) Multi-color display-type light source crt
JPS6353667B2 (en)
JPS6311675B2 (en)
JPS6313185B2 (en)
US4623821A (en) Color image display device
JPS6028138A (en) Cathode-ray tube for multi-colored display type light source
JPS58223253A (en) Cathode-ray tube for light source
RU2216123C2 (en) Combined projection facility
JPS58158855A (en) Cathode ray tube for light source
JPH0223869B2 (en)
JPS6357910B2 (en)
JPH0139632B2 (en)
JPS6017852A (en) Crt for light source
JPS6014745A (en) Cathode ray tube for light source
JPS6039759A (en) Crt for light source
JPS60143561A (en) Cathode-ray tube for light source
JPS60143562A (en) Cathode-ray tube for light source
JPS5951454A (en) Light source lamp
JPS58133753A (en) Cathode-ray tube for display light source