JPS5982167A - Production of spiral steel pipe - Google Patents

Production of spiral steel pipe

Info

Publication number
JPS5982167A
JPS5982167A JP19206582A JP19206582A JPS5982167A JP S5982167 A JPS5982167 A JP S5982167A JP 19206582 A JP19206582 A JP 19206582A JP 19206582 A JP19206582 A JP 19206582A JP S5982167 A JPS5982167 A JP S5982167A
Authority
JP
Japan
Prior art keywords
molten metal
magnetic field
pipe
welding
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19206582A
Other languages
Japanese (ja)
Inventor
Nobumi Hiromoto
悦己 広本
Koichi Wada
宏一 和田
Shinji Nakagawa
中川 新二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryomei Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Ryomei Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryomei Engineering Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Ryomei Engineering Co Ltd
Priority to JP19206582A priority Critical patent/JPS5982167A/en
Publication of JPS5982167A publication Critical patent/JPS5982167A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/032Seam welding; Backing means; Inserts for three-dimensional seams
    • B23K9/0325Seam welding; Backing means; Inserts for three-dimensional seams helicoidal seams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To obtain an intact weld zone having a uniform bead shape by providing a coil near the weld zone to generate a shifting magnetic field, and applying the thrust in the direction opposite from the outflow direction of a molten metal on said metal that flows downward as a pipe inclines in its position according to its rotation. CONSTITUTION:A welding position 15 where a steel hoop 7 and a spiral pipe 14' contact with each other is internally welded by a welding torch and a shifting magnetic field heading toward the rotating direction (b) of the pipe is generated from a magnetic field coil L attached near a molten metal 22. As a result, the thrust in a direction F is acted on the molten metal 22 moving diagonally upward according to the rotation of the pipe and the outflow of the metal 22 going to flow downward by its own weight is prevented by such thrust. An electromagnetic stirring effect by the shifting magnetic field is generated in the metal 22 in this stage. The formation of a recess in the weld bead of the spiral steel pipe is thus averted and the intact weld zone is obtd.

Description

【発明の詳細な説明】 しくはスパイラル状溶接部のビード形状を改善すること
を目的としたスパイラル鋼管の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a spiral steel pipe, which is intended to improve the bead shape of a spiral welded portion.

第1図および第2図に現行のスパイラル管製造設備の概
略を示す。ライン工程を簡単に述べると次の通りである
。巻戻し機1にセノトされたコイル状の帯状鋼材2はピ
ンチロール3により巻戻され,平面矯正装置4にて巻き
ぐせが矯正され,切断および板継ぎ溶接装置5にて,そ
の先端6をすでにラインに入っていた帯状調料7の後端
8とが溶接された後,板の両側端の端面9,10の内面
開先加工装置を経たものが。
Figures 1 and 2 show an outline of current spiral pipe manufacturing equipment. A brief description of the line process is as follows. The coiled steel strip 2 that has been cenotted by the unwinding machine 1 is rewound by the pinch rolls 3, the curling curls are corrected by the plane straightening device 4, and the tip 6 is already cut by the cutting and plate welding device 5. After the rear end 8 of the strip material 7 that had entered the line was welded, the end surfaces 9 and 10 on both sides of the plate were passed through an inner beveling device.

主駆動装置11にてスパイラル管成形装置12へ送られ
る。ここで帯状鋼材7は内外面成形ローラ13により,
その軸線が前記ラインと所定の角度で交る円筒状,すな
わちピノチアングルαを持つスパイラル管部1 4’に
成形され,スノくイラル形状板側面の接合部15で先ず
内面溶接装置16により内面溶接される。このようにし
て成形加工されたスパイラル管部14′は,外面開先加
工装置l7を経て,外面溶接装置18により溶接され,
スパイラル鋼管14として生産される。
It is sent to a spiral tube forming device 12 by a main drive device 11 . Here, the strip steel material 7 is formed by forming rollers 13 on the inner and outer surfaces.
It is formed into a cylindrical spiral tube part 14' whose axis intersects the above-mentioned line at a predetermined angle, that is, a spiral tube part 14' having a pinotti angle α, and is first internally welded by an internal welding device 16 at a joint 15 on the side surface of the spiral shaped plate. Ru. The spiral tube portion 14' formed in this way is passed through the outer surface beveling device 17, and then welded by the outer surface welding device 18.
It is produced as a spiral steel pipe 14.

この七きの溶接工程を詳述すると、第3図に示すように
、矢印aで示す方向に供給される帯状鋼材7はスパイラ
ル状に巻き伺られ、スパイラル管状に成形され、管部1
4′となった部分の端面と帯状鋼材7との接合箇所15
が内面溶接トーチ16により、内面溶接される。これに
より板厚の約半分すなわち内面側が溶接された後。
To explain this seven-step welding process in detail, as shown in FIG.
Joint location 15 between the end face of the portion 4′ and the steel strip 7
are internally welded by an internal welding torch 16. After this, about half of the plate thickness, that is, the inner side, is welded.

該管部14°は矢印すの方向に回転しながら矢印Oの方
向に押し出されていくが、外面溶接は管の頂上部刊近に
て内面溶接と同じ下向姿勢にて外面溶接トーチ18にょ
シ行なわれスパイラル鋼管14となる。
The pipe portion 14° is pushed out in the direction of arrow O while rotating in the direction of arrow S. For external welding, the external welding torch 18 is moved near the top of the pipe in the same downward position as for internal welding. A spiral steel pipe 14 is obtained.

しかしながらこのような方法にて製管されたスパイラル
鋼管14は、第6図に示すように内面溶接ビードhの形
状が一般の平板下向溶接に比べ劣化するが、この原因は
次のように考えられる。
However, in the spiral steel pipe 14 manufactured by this method, the shape of the inner weld bead h is deteriorated compared to the general downward welding of a flat plate, as shown in Fig. 6.The reason for this is thought to be as follows. It will be done.

内面溶接は第4図に示すように矢印a方向に供給された
帯状鋼材7と成形管部141の接合部15となる管底部
21で行なわれるが、その時のビード形成状況は第5図
に示すようになる。
As shown in FIG. 4, inner welding is performed at the tube bottom 21, which forms the joint 15 between the steel strip 7 fed in the direction of arrow a and the formed tube 141, and the bead formation situation at that time is shown in FIG. It becomes like this.

すなわち溶接部は1・−チ】6が静止しているために、
常に底部では下向姿勢となっているが。
In other words, since the welding part 1.-chi]6 is stationary,
It is always in a downward position at the bottom.

被溶接物つ寸り上記管部14’および帯状調料7は矢印
a、bの方向に移動しているため、溶接された部分はそ
の直後には傾斜姿勢となる。つまり溶接トーチ16によ
って溶接される箇所は管底部21で下向姿勢で溶接され
ているが、アーク熱によって溶融された溶融金属22は
管部14’の矢印す方向への回転運動に伴い、斜め上方
に移動するため、それが完全に凝固し、溶接金属を形成
する位置は溶接位置21よりも左」ニガにずれ、傾斜姿
勢にて凝固が進行する。このため凝固前の溶融金属22
は溶融金属自身の自重により前方(図面右下方)に流れ
るカが働く。
Since the pipe portion 14' and the strip-shaped preparation 7 are moving in the directions of arrows a and b, the welded portion assumes an inclined position immediately after that. In other words, the part to be welded by the welding torch 16 is welded in a downward position at the tube bottom 21, but the molten metal 22 melted by the arc heat moves diagonally as the tube section 14' rotates in the direction of the arrow. As it moves upward, it completely solidifies, and the position where weld metal is formed is shifted to the left of the welding position 21, and solidification progresses in an inclined position. Therefore, the molten metal 22 before solidification
The force of the molten metal flowing forward (toward the lower right of the drawing) is exerted by its own weight.

ビードh側面はビード中央部よりも溶融金属22の凝固
速度が速いために、比較的すみやかに凝固が進行し、従
ってビード左右両端部は中央部に比べ先に凝固するが、
ビード中央のまだ完全に凝固していない状態の残存溶融
金属は上述したように前方に流出し、完全に凝固が終了
した時点では第6図に示すように中央部の溶融金属の前
方への流れによる体積減少分だけ中央が深く凹んだ異常
なビードとなる。このようなど−ド形成機構が定常的に
継続する結果、スパイラル鋼管では内面ビード中央部が
凹んだ状態となる。
Since the solidification rate of the molten metal 22 is faster on the sides of the bead h than on the center of the bead, solidification progresses relatively quickly, and therefore both the left and right ends of the bead solidify earlier than the center.
The remaining molten metal in the center of the bead that has not yet completely solidified will flow forward as described above, and when complete solidification is completed, the molten metal in the center will flow forward as shown in Figure 6. The bead becomes an abnormal bead with a deep depression in the center due to the volume reduction caused by this. As a result of this constant continuation of the throat forming mechanism, the spiral steel pipe has a concave center portion of the inner bead.

このようなど−ド中央部の凹んだ溶接部の形成を阻止す
るためには、上述したような理由から溶融金属22の凝
固過程を水平位置で行なうようにすれば良いことがわか
る。そこで従来はり第7図に示すように溶接トーチ16
を管の接合部15の最底部21より帯調料7の移動方向
の前方すなわち供給側に若干ずらして溶接施工をするケ
ースがみられるが、その移動距離Sは狭隘な管内面の寸
法形状に制約され、たかだか20〜30謳であり、前述
の欠点を完全に防止するまでには至っていない。オたさ
らに距離Sを大きくすると、第8図に示すように成形管
部14”と帯状鋼板7との接合点工5が不一致となるだ
め内面溶接は困難となる。
In order to prevent the formation of such a concave weld at the center of the dome, it is understood that the solidification process of the molten metal 22 should be carried out in a horizontal position for the reasons described above. Therefore, in the conventional beam, a welding torch 16 as shown in FIG.
There are cases where welding is performed by slightly shifting the band preparation 7 from the bottom 21 of the pipe joint 15 toward the front in the direction of movement of the band preparation 7, that is, toward the supply side, but the movement distance S is limited by the dimensions and shape of the narrow inner surface of the pipe. However, there are only 20 to 30 songs at most, and the above-mentioned drawbacks have not been completely eliminated. If the distance S is further increased, as shown in FIG. 8, the joining points 5 between the formed pipe portion 14'' and the strip steel plate 7 will not match, making internal welding difficult.

本発明は上述のような従来方法の欠点を排除するために
、帯状鋼材をスパイラル管状に巻き付は回転させながら
管状となった部分の側端に帯状銅相の側端を溶接するに
あたり、溶接部近傍に管の回転方向に向う移動磁界を生
ずるコイルを付設し、溶融金属が管の回転に伴ない斜め
上方向に移動することによって溶融金属自身の自重によ
り流れ落ちる方向とは逆方向に、電磁誘導による保持力
を与えながら溶接することを特徴とするスパイラル鋼管
溶接方法を提供する。
In order to eliminate the drawbacks of the conventional methods as described above, the present invention involves winding a steel strip material into a spiral tube shape and welding the side edges of the strip copper phase to the side edges of the tubular portion while rotating. A coil that generates a moving magnetic field in the direction of rotation of the tube is attached near the tube, and as the molten metal moves diagonally upward as the tube rotates, an electromagnetic field is generated in the opposite direction to the direction in which the molten metal flows down due to its own weight. Provided is a spiral steel pipe welding method characterized by welding while applying a holding force by induction.

本発明方法では、上記のように、溶接部近傍にコイルを
付設することによって、移動磁界を生じさせ、溶融金属
が管の回転に伴なう傾斜姿勢により流出する方向とは、
逆方向に推力を与えて、溶融金属の流出を緩和させ、ス
パイラル鋼管の溶接ビードにおける凹み形成を回避し。
In the method of the present invention, as described above, a moving magnetic field is generated by attaching a coil near the welding part, and the direction in which the molten metal flows out due to the tilted posture accompanying the rotation of the tube is
Applying thrust in the opposite direction to alleviate the outflow of molten metal and avoid the formation of dents in the weld bead of spiral steel pipes.

健全な溶接部を作ることができる。A sound weld can be created.

本発明におけるスパイラル鋼管溶接部のビード形状改善
方法の一実施例を第9図〜第10図について説明する。
An embodiment of the method for improving the bead shape of a welded portion of a spiral steel pipe according to the present invention will be described with reference to FIGS. 9 and 10.

まず第9図において、帯板鋼材7とスパイラル管部14
”i)−チ16による溶接により生じる溶融金属22の
ごく近傍に移動磁界コイルしを付設する。このコイルL
に移動磁界を発生させるために、低周波電流の三相交流
電源を接続する。こうして移動磁界コイルとアークによ
り溶接された溶融金属との間でリニアモータを形成する
のであるが、この場合、−次側が前記コイルLであり、
二次側が溶融金属22となる。
First, in FIG. 9, the steel strip 7 and the spiral pipe portion 14 are
"i) A moving magnetic field coil is attached in close proximity to the molten metal 22 produced by welding by the -chi 16. This coil L
Connect a three-phase AC power supply with low frequency current to generate a moving magnetic field. In this way, a linear motor is formed between the moving magnetic field coil and the molten metal welded by the arc, but in this case, the next side is the coil L,
The secondary side becomes molten metal 22.

このようにして、前記コイルLに三相交流電源を接続し
て移動磁界を発生させると、アーク溶接により生じた溶
融金属22に矢印F方向に示す推力が作用するために、
前述したように溶融金属22が管の回転運動に伴ない斜
め上方に移動し、溶融金属自身の自重により前方に流れ
る力を阻止することができる。
In this way, when a three-phase AC power source is connected to the coil L to generate a moving magnetic field, a thrust shown in the direction of arrow F acts on the molten metal 22 generated by arc welding, so that
As described above, the molten metal 22 moves obliquely upward as the tube rotates, and the force of the molten metal 22 flowing forward can be blocked by its own weight.

この溶融金属に生ずる推力Fの発生原理は。What is the principle behind the thrust F generated in this molten metal?

前記磁界コイルLの磁力線により溶融金属22にうず電
流を発生させ、コイルの長手方向に直角な電流成分が、
推力F発生に寄与するもので。
An eddy current is generated in the molten metal 22 by the magnetic field lines of the magnetic field coil L, and a current component perpendicular to the longitudinal direction of the coil is
It contributes to the generation of thrust F.

従来の電磁樋あるいは電磁ポンプの原理と同一である。The principle is the same as that of a conventional electromagnetic gutter or electromagnetic pump.

さらに溶融金属Mに作用する推力Fは。Furthermore, the thrust force F acting on the molten metal M is.

前述したように溶融金属Mが前方(下方)に流れようと
する力を阻止するのみならず、溶融金属Mの攪拌作用も
及ぼし、溶融金属の不純物の偏析防止ならびに結晶粒の
微細化がはかられ。
As mentioned above, it not only prevents the force that causes the molten metal M to flow forward (downward), but also exerts a stirring action on the molten metal M, preventing segregation of impurities in the molten metal and refining crystal grains. Re.

溶接金属の機械的性質の向上にも有効に作用する。It also effectively works to improve the mechanical properties of weld metal.

次にこの状態を第9図の断面を示す第10A図〜第10
D図について説明する。
Next, this state is shown in Figures 10A to 10, which show the cross section of Figure 9.
Diagram D will be explained.

第10図Aに示すA−A’断面は溶接点すなわちこの部
分では溶融金属Mの表面は、アーク力により深く凹んで
いるが、アーク熱により被溶接材が溶融される一方で凝
固の進行はない。
The AA' cross section shown in Figure 10A is the welding point, that is, the surface of the molten metal M is deeply depressed by the arc force, but while the welded material is melted by the arc heat, solidification does not progress. do not have.

第10図Bに示すB−B’断面は溶接点の後方位置を示
しているが、ここでは凝固が進行しようとしている所で
ある。しかしいまだ完全に凝固が進行していないために
溶融金属Mは充満している状態で、この状態を溶融金属
が完全に凝固する寸で維持するために、すでに磁界コイ
ルしによる移動磁界な生じさせ溶融金属Mに推力Fを与
えている。
The BB' cross section shown in FIG. 10B shows the rear position of the welding point, where solidification is about to proceed. However, since the solidification has not yet progressed completely, the molten metal M is in a full state, and in order to maintain this state at a point where the molten metal is completely solidified, a moving magnetic field is already generated by the magnetic field coil. A thrust force F is applied to the molten metal M.

第10図Cに示すO−0’断面は溶融金属Mがこの付近
から最終凝固に至るまで、最もビード表面形状に影響を
及ぼす領域である。すなわち時間の経過とともに、B−
B’断面状況からさらに後方に進んで、溶融金属M周辺
の未溶融母材と接している界面から徐々に凝固しはじめ
る。
The O-0' cross section shown in FIG. 10C is the region where the molten metal M influences the bead surface shape the most from this vicinity until final solidification. In other words, over time, B-
Proceeding further backward from the state of cross section B', the molten metal M gradually begins to solidify from the interface where it is in contact with the unmolten base material around it.

溶融金属M[母材に接した部分から凝固され。Molten metal M [solidifies from the part in contact with the base metal.

凝固層が形成される。この時2表面近傍の溶融金属も凝
固しはじめるため、その溶融金属の中央部がいくら流動
性を保有していても、端部がいわゆる固定された状態と
なるため、その断面内に充満する溶融金属量によってそ
のビードh表面形状が決る。
A coagulated layer is formed. At this time, the molten metal near the 2nd surface also begins to solidify, so no matter how fluid the molten metal is in the center, the edges become fixed, so the molten metal that fills the cross section The surface shape of the bead h is determined by the amount of metal.

したがって、この付近が大きな傾斜角を有していれば、
溶融金属Mの自重により溶接線下り方向への流れが働く
ようになり、ビード表面形状に影響を及ぼす。すなわち
従来の方法では。
Therefore, if this area has a large inclination angle,
The weight of the molten metal M causes a flow in the downward direction of the weld line, which affects the bead surface shape. That is, in the conventional method.

前述したように低い方へ流れ出し充満量が不足する。こ
の結果ビード表面に大きな凹みが生ずるが2本発明方法
では、磁界コイルしによる移動磁界を生じさせ、溶融金
属Mが流出する方向どけ逆方向に推力Fを与えているた
めに、成形管部の回転に伴なう傾斜が存在しても、この
よう・な現象は緩和され、やや盛り上ったいわゆる通常
のビード形状となる。
As mentioned above, it flows to the lower side and the filling amount becomes insufficient. As a result, a large dent occurs on the bead surface.2 However, in the method of the present invention, a moving magnetic field is generated by a magnetic field coil, and a thrust force F is applied in the opposite direction to the direction in which the molten metal M flows out. Even if there is an inclination due to rotation, this phenomenon is alleviated and a so-called normal bead shape with a slight bulge is formed.

溶融金属Mに作用せしめる磁界コイルしによる適正な推
力Fの制御方法は、該コイルしに流す電流値の調節、溶
融金属MとコイルLとの間隔の調節、あるいはコイルL
に流す電流の周波数の調節などによって行なう。
An appropriate method for controlling the thrust force F by the magnetic field coil acting on the molten metal M is to adjust the current value flowing through the coil, adjust the distance between the molten metal M and the coil L, or adjust the distance between the molten metal M and the coil L.
This is done by adjusting the frequency of the current flowing through the

第1O図りに示すD−DI断面は完全に凝固したビード
形状りを示している。従来の方法では。
The D-DI cross section shown in the first O diagram shows a completely solidified bead shape. In the traditional way.

溶融金属がビード中央付近に残存していて傾斜pcより
流出したビード形状となるが1本発明方法では、リニア
モータの原理により強制的に溶融金属が流下しないよう
に溶融金属が流出する方向どは逆の推力Fを与えている
ために、従来法のように溶融金属Mの流れもなく、ビー
ド形状り表面は良好な状態が保たれた捷まで凝固する。
The molten metal remains near the center of the bead, resulting in a bead shape that flows out from the inclined PC. However, in the method of the present invention, the direction in which the molten metal flows out is determined so that the molten metal is not forced to flow down due to the principle of a linear motor. Since the opposite thrust force F is applied, there is no flow of the molten metal M unlike in the conventional method, and the bead-shaped surface solidifies to the point where it remains in good condition.

なお本発明は内面溶接についてのみ記述しているが、管
の頂上で溶接する外面溶接にも適用できるのは当然であ
る。
Although the present invention is described only for internal welding, it is of course applicable to external welding in which welding is performed at the top of a pipe.

以上のように本発明方法では、溶接部近傍にコイルを付
設することによって、移動磁界を生じさせ、溶融金属が
管の回転に伴なう傾斜姿勢により流出する方向とは逆方
向に推力を与えて。
As described above, in the method of the present invention, a moving magnetic field is generated by attaching a coil near the welding part, and a thrust is applied in the opposite direction to the direction in which the molten metal flows out due to the tilted posture caused by the rotation of the pipe. hand.

浴融金属の流出を緩和させ、スパイラル鋼管の溶接ビー
ドを改善することができる。したカニって従来のように
、内面溶接位置全帯状鋼板の移動方向の前方に若干ずら
して溶接施工する必要もない。
It is possible to alleviate the outflow of bath molten metal and improve the weld bead of spiral steel pipes. With this method, there is no need to perform welding by shifting the entire inner welding position slightly forward in the direction of movement of the strip steel plate, as was the case in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はスノくイラル鋼管製】告装置の正
面図および平面図、第3図および第4図は従来のスパイ
ラル鋼管の溶接工程の要領を示す斜視図および側面図、
第5図は第4図の部分拡大図、第6図は同上の溶接ヒ゛
−1・゛の説明図。 第7図および第8図はビード形状改善対策の説明図、第
9図は本発明の製造方法における浴接工程の一実施例の
要領図、第10図A、B、O。 D、は夫々第9図のA −A’、  LL −13’、
  O−0’、  I)−1)”断面図である。 7:帯状鋼4d’、14’:スパイラル鋼管部。 22:溶融金属、L:コイル。
Figures 1 and 2 are a front view and a plan view of a device made of Sunokuiral steel pipes, Figures 3 and 4 are a perspective view and a side view showing the outline of a conventional welding process for spiral steel pipes,
FIG. 5 is a partially enlarged view of FIG. 4, and FIG. 6 is an explanatory diagram of the welding hole 1. 7 and 8 are explanatory diagrams of measures for improving bead shape, FIG. 9 is a schematic diagram of an embodiment of the bath welding process in the manufacturing method of the present invention, and FIGS. 10A, B, and O. D are A-A', LL-13', and LL-13' in FIG. 9, respectively.
7: Steel strip 4d', 14': Spiral steel pipe section. 22: Molten metal, L: Coil.

Claims (1)

【特許請求の範囲】 帯状鋼材をスパイラル管状に巻き付は回転させながら管
状となった部分の側端に帯状鋼材の側端を溶接するにあ
たり、溶接部近傍に管の回転方向に向う移動磁界を生ず
るコイルを付設し。 溶融金属が管の回転に伴ない斜め」二方向に移動するこ
とによって溶融金属自身の自重により流れ落ちる方向と
は逆方向に、電磁誘導による保持力を与えながら溶接す
ることを特徴とするスパイラル鋼管製造方法。
[Claims] When winding a steel strip into a spiral tube shape and welding the side end of the steel strip to the side end of the tubular portion while rotating, a moving magnetic field directed in the direction of rotation of the tube is applied near the welded portion. Attach the resulting coil. Spiral steel pipe manufacturing characterized by welding while applying a holding force by electromagnetic induction in the opposite direction to the direction in which the molten metal moves diagonally in two directions as the pipe rotates and flows down due to its own weight. Method.
JP19206582A 1982-11-01 1982-11-01 Production of spiral steel pipe Pending JPS5982167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19206582A JPS5982167A (en) 1982-11-01 1982-11-01 Production of spiral steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19206582A JPS5982167A (en) 1982-11-01 1982-11-01 Production of spiral steel pipe

Publications (1)

Publication Number Publication Date
JPS5982167A true JPS5982167A (en) 1984-05-12

Family

ID=16285036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19206582A Pending JPS5982167A (en) 1982-11-01 1982-11-01 Production of spiral steel pipe

Country Status (1)

Country Link
JP (1) JPS5982167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166374A (en) * 1983-03-11 1984-09-19 Nippon Steel Corp Method for improving shape of weld bead of spiral steel tube
CN102848058A (en) * 2011-06-30 2013-01-02 宝山钢铁股份有限公司 Method and device for refining weld joint structures by using pulsed magnet fields in welding process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166374A (en) * 1983-03-11 1984-09-19 Nippon Steel Corp Method for improving shape of weld bead of spiral steel tube
CN102848058A (en) * 2011-06-30 2013-01-02 宝山钢铁股份有限公司 Method and device for refining weld joint structures by using pulsed magnet fields in welding process
CN102848058B (en) * 2011-06-30 2015-10-28 宝山钢铁股份有限公司 The method and apparatus of pulsed magnetic field refinement seam organization is used in welding process

Similar Documents

Publication Publication Date Title
JPS607578B2 (en) Pipe manufacturing and welding method for thick-walled steel pipes
CN102151959B (en) High-speed welding production process and device for thin-walled steel tubes
US4237362A (en) Method of producing hardfaced plate
JPS5982167A (en) Production of spiral steel pipe
JPS6339346B2 (en)
US4186864A (en) Method for producing a welded joint
US3131284A (en) Non-consumable electrode arc welding of tubing
US3739134A (en) Process for tack welding and finishing spiral weld pipe
US4645893A (en) Method for manufacturing spiral-welded steel pipe
JP4224196B2 (en) Multi-electrode submerged arc welding method with excellent weld bead shape
JP2003001454A (en) Lap fillet welding method for metallic plates to each other
JP3297176B2 (en) Vertical narrow groove welding method
JPS61126971A (en) Tig welding method of pipe material
JPS5823576A (en) Welding method for spiral steel pipe
JPS6132094B2 (en)
JPH07290242A (en) Vertical down narrow groove welding method
JPS6348627B2 (en)
JPH0753317B2 (en) Heat input control method for high frequency electric resistance welding combined with laser beam
JPH09295138A (en) Manufacture of spiral steel tube
JPS583778A (en) Arc welding method
JPS6021180A (en) Welding method with high quality and high efficiency in production of spiral steel pipe
JPH07204863A (en) Manufacture of resistance welded tube
JPS6316224B2 (en)
JP2002079376A (en) Welding equipment for manufacturing pipe
JPS5927784A (en) Tig penetration welding method in all attitude by electrode having specially shaped forward end