JPS5981715A - Automatic mixing device for supply of hot water - Google Patents

Automatic mixing device for supply of hot water

Info

Publication number
JPS5981715A
JPS5981715A JP19169482A JP19169482A JPS5981715A JP S5981715 A JPS5981715 A JP S5981715A JP 19169482 A JP19169482 A JP 19169482A JP 19169482 A JP19169482 A JP 19169482A JP S5981715 A JPS5981715 A JP S5981715A
Authority
JP
Japan
Prior art keywords
hot water
temperature
heat source
source device
main heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19169482A
Other languages
Japanese (ja)
Inventor
Kazue Iibuchi
飯「淵」 和衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19169482A priority Critical patent/JPS5981715A/en
Publication of JPS5981715A publication Critical patent/JPS5981715A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • G05D23/1924Control of temperature characterised by the use of electric means characterised by the type of controller using thermal energy, the availability of which is aleatory

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To always secure a set temperature for hot water and to improve the efficiency of a hot water supply system by controlling both the supply of heat to an auxiliary heat source device and the heating capacity of said source device after detecting the hot water temperatures at a main heat source side and the hot water supply side. CONSTITUTION:A main heat source uses a heat collector A and a regenerative tank B of solar energy, and the hot water temperature of the main heat source and that of the hot water supply side are detected TS and TM, respectively. These detected temperatures are compared with a desired set hot water temperature 15 through a controller 16. Then changeover valves SV1 and SV2 are controlled together with the heating capacity H of an auxiliary heat source device 14 to feed the hot water of a desired temperature to a hot water supply path 12. If the hot water temperature of the main heat source is higher than the set level, the valves SV1 and SV2 are controlled for mixture with water F as shown solid-line arrows in the figure. While in case the hot water temperature of the main heat source is lower than the set level, the valve SV1 is controlled to heat up the hot water through the device 14 as shown by a dotted line arrow. Thus the hot water of a desired temperature is supplied to the path 12. In addition, the capacity H of the device 14 is also controlled by the controller 16 on the basis the detected TM hot water supplied.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、給湯用自動ミキシング装置、例えば太陽熱利
用の給湯システムに使用する自動ミキシング装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an automatic mixing device for hot water supply, for example, an automatic mixing device used in a hot water supply system utilizing solar heat.

〈従来技術〉 太陽熱利用の給湯システムでは集熱の状況が天候に左右
されるので、出湯温度を一定にするには、補助熱源装置
が必要となる。従来は、太陽熱利用の給湯システムに補
助熱源装置を加えて自動的に出?’A温度分一定にする
ために、自動ミキシングバルブを使って行っていた。@
1図は従来の自動ミキシングバルブを使った給湯システ
ム図、第2図は従来の自動ミキシングバルブの断面図で
ある。
<Prior Art> In hot water heating systems that utilize solar heat, the heat collection situation is affected by the weather, so an auxiliary heat source device is required to keep the hot water temperature constant. Traditionally, an auxiliary heat source device was added to a solar hot water system to automatically generate hot water. In order to keep the 'A temperature constant, an automatic mixing valve was used. @
Figure 1 is a diagram of a hot water supply system using a conventional automatic mixing valve, and Figure 2 is a sectional view of the conventional automatic mixing valve.

図中Aは集熱器、Bは蓄熱槽、Cは補助熱源装置、D、
Eは自動ミキシンクバルブ、Fは出水路である。今太陽
熱を集熱した蓄熱槽Bの湯温か自動ミキシングバルブD
t’設定した温度(通常45℃に設定している)よりも
低いときは、第2図の如く、接続口1に補助熱源装置か
らの湯が入り、接続口2に蓄熱槽Bからの湯が入ってく
るので、これらが混合して出口側の接続口3へ流れてい
く。この時出口側のセンサー4で滑合水の5温度を検知
し、設定温度より高いと外にはセンサー4が膨張するの
で、これに連結された接続口開閉用ディスク5は左方向
に移動し、補助熱源装置C側の接続口1からの湯量を少
なくする。設定温度よりも低いときはセンサー4は収縮
するので右方向へ移動し、蓄熱槽B側の接続口2がらの
湯量を少なくして出湯温度を一定に調整する。6は設定
温度調整つまみである。
In the figure, A is a heat collector, B is a heat storage tank, C is an auxiliary heat source device, D,
E is an automatic mixing valve, and F is an outlet channel. Automatic mixing valve D for hot water temperature in heat storage tank B that has just collected solar heat
t' When the temperature is lower than the set temperature (usually set at 45°C), hot water from the auxiliary heat source device enters connection port 1, and hot water from heat storage tank B enters connection port 2, as shown in Figure 2. enters, so they mix and flow to the connection port 3 on the outlet side. At this time, the sensor 4 on the outlet side detects the temperature of the sliding water, and if the temperature is higher than the set temperature, the sensor 4 expands outward, so the connecting port opening/closing disk 5 connected to it moves to the left. , reduce the amount of hot water from the connection port 1 on the auxiliary heat source device C side. When the temperature is lower than the set temperature, the sensor 4 contracts and moves to the right to reduce the amount of hot water from the connection port 2 on the heat storage tank B side and adjust the hot water temperature to a constant level. 6 is a set temperature adjustment knob.

ところが蓄熱槽Bよりの湯温が設定温度より高いときは
、湯温を水と混合する必要があり、自動ミキシングバル
ブD−個では調整できず、第1図の如くもう一個別の自
動ミキシングバルブEが必要である。さらにそのバルブ
Eは蓄熱槽Bよりの湯温が設定温度より高いときだけ動
作するように操作する必要がある。即ち、このようにし
ないと蓄熱槽Bよりの湯温か設定温度より低いとぎ、補
助熱源装置Cがらの湯と混合した後バルブEで更に水と
混合してしまうことになる。
However, when the temperature of the hot water from heat storage tank B is higher than the set temperature, it is necessary to mix the hot water temperature with water, and this cannot be adjusted with the automatic mixing valve D, so another individual automatic mixing valve is used as shown in Figure 1. E is required. Further, the valve E needs to be operated so as to operate only when the temperature of the hot water from the heat storage tank B is higher than the set temperature. That is, if this is not done, when the hot water from the heat storage tank B is lower than the set temperature, it will be mixed with the hot water from the auxiliary heat source device C and then further mixed with water at the valve E.

〈目的〉 本発明は上記の点に鑑み、蓄熱槽(主熱源側)がらの湯
温が設定温度に対して高いが低いかにかがわらず、出湯
側の湯を設定温度で出湯させ得、かつ給湯システム効率
を向上し得る給湯用自動ミキシング装置の提供を目的と
している。
<Purpose> In view of the above points, the present invention is capable of dispensing hot water at a set temperature regardless of whether the temperature of the hot water in the heat storage tank (main heat source side) is higher or lower than the set temperature, and The purpose of the present invention is to provide an automatic mixing device for hot water supply that can improve the efficiency of the hot water supply system.

〈実施例〉 以下に本考案の−・実施例を図面に基いて説明する。第
3図は本発明に係る自動ミキシング装置を使用した太陽
熱利用の給湯システム図、第4図は自動ミキシング装置
の制御装置の回路図、第5図は同制御装置のリレー回路
図、第6図は同制御装置の比較増幅器の入出力特性曲線
を示す図である。
<Embodiments> Examples of the present invention will be described below based on the drawings. Fig. 3 is a diagram of a solar hot water supply system using the automatic mixing device according to the present invention, Fig. 4 is a circuit diagram of the control device of the automatic mixing device, Fig. 5 is a relay circuit diagram of the control device, and Fig. 6 FIG. 2 is a diagram showing an input/output characteristic curve of a comparison amplifier of the same control device.

なお第3図において従来と同様な構成部品は同符号で示
す。図において、SVlは第一切換弁で、これは、蓄熱
槽B側の入湯路11と出湯路12側へ直接流れる直湯路
13aとを連通する位置と、入湯路11と補助熱源装置
14を通る補湯路13bとを連通する位置とに電動モー
タM1による弁子の開閉運動で切換可能とされている。
In FIG. 3, components similar to those of the conventional system are indicated by the same reference numerals. In the figure, SVl is the first switching valve, which has a position that communicates the hot water inlet path 11 on the heat storage tank B side with the direct hot water path 13a that flows directly to the hot water outlet path 12 side, and a position that connects the hot water inlet path 11 and the auxiliary heat source device 14. It is possible to switch to a position communicating with the auxiliary hot water passage 13b passing through by opening/closing movement of a valve by an electric motor M1.

SV2は第二切換弁で、これは電動モータM2による弁
子の開閉運動により、直湯路13aの湯と出水路Fの水
との量を調節しながら混合して出湯路12に流すよう切
換えられる。そしてこれら切換弁S■1 、SV 2は
従来公知構造のものである。そし゛C前記補湯路13b
の他端側は補助熱源装置14を介して直接出湯路12に
接続されている。なお補助熱源装置14は、例えば電気
ヒータH(ガス、石油でも可)が内蔵されたものである
。またGは制御装置で、これは、蓄熱槽B(主熱源側)
の湯温を感知する第一センサーTS(サーミスタ)と、
出湯側の湯温を感知する第二センサー7M(サーミスタ
)と、出湯温度を設定するための可変抵抗器15と、こ
れらからの信号により前記切換弁S■1、SV2を制御
するための制御器16とから構成される。前記制御器1
6には、蓄熱槽側の湯温を感知する第一センサーTSに
よる電圧と、前記可変抵抗器12による電圧の差を比較
増幅する第一比較増幅器A1と、出湯温度を感知する第
二センサー7Mによる電圧と前記可変抵抗器15による
電圧の差を比較増幅する第二比較増幅器A2及び第三比
較増幅器A3と、第一比較増幅器A1により第一切換弁
SVI及び第二切換弁SV2を制御するリレーRY1と
、第二比較増幅器により第二切換弁SV2を制御するリ
レーRY2.RY3と、第三比較増幅器A3によす調整
器】7を介して前記ヒータHの加熱能力を調整するリレ
ーRY4とか内蔵されている。
SV2 is a second switching valve, which is switched so that the hot water in the direct hot water path 13a and the water in the outlet path F are mixed and flowed into the hot water path 12 while adjusting the amounts by opening and closing movements of the valve by the electric motor M2. It will be done. These switching valves S1 and SV2 have a conventionally known structure. Soshi C said supplementary hot water path 13b
The other end side is directly connected to the hot water outlet path 12 via the auxiliary heat source device 14 . The auxiliary heat source device 14 has, for example, a built-in electric heater H (gas or oil may be used). Also, G is the control device, which is the heat storage tank B (main heat source side)
A first sensor TS (thermistor) that detects the water temperature,
A second sensor 7M (thermistor) for sensing the hot water temperature on the hot water outlet side, a variable resistor 15 for setting the hot water temperature, and a controller for controlling the switching valves S1 and SV2 based on signals from these. It consists of 16. The controller 1
6 includes a first comparison amplifier A1 that compares and amplifies the difference between the voltage from the first sensor TS that senses the hot water temperature on the heat storage tank side and the voltage from the variable resistor 12, and a second sensor 7M that senses the hot water temperature. a second comparator amplifier A2 and a third comparator amplifier A3 that compare and amplify the difference between the voltage caused by the variable resistor 15 and the voltage caused by the variable resistor 15; and a relay that controls the first switching valve SVI and the second switching valve SV2 by the first comparing amplifier A1. RY1, and a relay RY2.RY2 which controls the second switching valve SV2 by means of a second comparator amplifier. A relay RY4 is built in to adjust the heating capacity of the heater H via the regulator RY3 and the third comparison amplifier A3.

次に第3図で動作を説明すると、設定用可変抵抗器15
を調節して出湯したい所望の温度にする。
Next, to explain the operation with reference to FIG. 3, the setting variable resistor 15
Adjust the temperature to reach the desired hot water temperature.

例えば35・〜55℃の間で可変できる場合に、出湯温
度を45℃にしたい時はこの温度に対する抵抗を可変抵
抗器15で調節する。蓄熱槽Bの湯温を検知する第一セ
ンサーTSによる電圧と、可変抵抗器15による電圧の
差を比較増幅して第一切換弁SV1を駆動する。含蓄熱
槽Bの湯温が設定温度(45℃)より高い場合、第一セ
ンサーTSでこれを検知し、制御器16内の第一比較増
幅器A1を介して第一切換弁SVlを実線の矢印の如く
通し、第二切換弁SV2に流す。そのため補助熱源装置
14へは流れない。
For example, if the hot water temperature can be varied between 35.degree. and 55.degree. C. and the outlet temperature is desired to be 45.degree. C., the resistance to this temperature is adjusted by the variable resistor 15. The difference between the voltage from the first sensor TS that detects the water temperature in the heat storage tank B and the voltage from the variable resistor 15 is compared and amplified to drive the first switching valve SV1. When the water temperature in the heat-containing tank B is higher than the set temperature (45°C), the first sensor TS detects this, and the first switching valve SVl is switched to the position indicated by the solid line arrow via the first comparator amplifier A1 in the controller 16. and flow it to the second switching valve SV2. Therefore, it does not flow to the auxiliary heat source device 14.

また第二切換弁SV2には、蓄熱槽Bからの湯と出水路
Fからの水が入る。出口側の混合湯温を第二センサー1
Mで検知し、これによる電圧と可変抵抗器15による電
圧とを制御器16内の第二比較増幅器A2で比較し、第
二切換弁SV2をモータM2により弁子を開閉駆動する
のであるが、この第二比較増幅器A2はハンチング駆動
になるのを防止するため、設定値イ」近で不感帯になる
比較増幅器A2を使っている。即ち、第二比較増幅器A
2の入出力特性が第6図(b)の如く階段状の特性を持
つものである。第二センサー1Mによる検知温度が設定
温度に対して成る範囲(例えば±3°C)では第二切換
弁SV2は駆動せず、上記q範囲の上限を越えた時に、
モータM2が駆動しで弁子の開き角度を調節し、蓄熱槽
Bがらの湯よりも出水路Fからの水の方が多く流れるよ
うに働き、範囲に入ると弁子はその位置で停止してその
状態で混合する。それでも上限から範囲内に入らない時
は、モータM2が駆動を続は出水路側を全開とし、蓄熱
槽側を全閉とするよう弁子を作動し、その状態でマイク
ロスイッチ等によりモータを停止させて範囲に入るのを
待つことになる。
Further, hot water from the heat storage tank B and water from the outlet channel F enter the second switching valve SV2. The second sensor 1 measures the mixed water temperature on the outlet side.
M detects the voltage, and compares the resulting voltage with the voltage from the variable resistor 15 using the second comparator amplifier A2 in the controller 16, and drives the second switching valve SV2 to open and close using the motor M2. In order to prevent hunting drive, the second comparator amplifier A2 has a dead zone near the set value I. That is, the second comparison amplifier A
The input/output characteristics of No. 2 have step-like characteristics as shown in FIG. 6(b). The second switching valve SV2 is not driven in the range where the temperature detected by the second sensor 1M is relative to the set temperature (for example, ±3°C), and when the temperature exceeds the upper limit of the above q range,
The motor M2 is driven to adjust the opening angle of the valve so that more water flows from the outlet channel F than from the heat storage tank B, and when it enters the range, the valve stops at that position. Mix in this state. If it still does not fall within the range from the upper limit, motor M2 continues driving, operates the valve so that the outlet side is fully open and the heat storage tank side is fully closed, and in this state, the motor is stopped using a micro switch, etc. You will have to wait for it to come within range.

また設定範囲の下限より下の時は、この間蓄熱槽側が多
く流れるように働ぎ、範囲に入ると弁子はその位置で停
止してその状態で混合する。下限から範囲内に入らない
時は、そ−タM2か駆動を続け、蓄熱槽側を全開とし、
出水路側を全開とするよう弁子を作動しその状態でマイ
クロスイッチ等によりモータを停止させて範囲に入るの
を待つことになる。
Also, when the temperature is below the lower limit of the set range, the heat storage tank side works to cause more flow during this time, and when it enters the range, the valve stops at that position and mixes in that state. If it does not fall within the range from the lower limit, continue driving the motor M2, fully open the heat storage tank side,
The valve is operated to fully open the outlet side, and in that state, the motor is stopped using a microswitch, etc., and waits for the water to enter the range.

次に蓄熱槽Bの湯温が設定温度(45℃)より低い場合
、第一センサーTSがこれを検知し、第一比較増幅器A
1を介して第一切換弁Svlを破線の矢印の如く流れる
ように制御する。すなわち第二切換弁S V 2へは流
れず、補助熱源装置14へ流れる。出湯温度を第二セン
サー′FMで検知し、これによる電圧と可変抵抗器15
による電圧とを、制御器16内の第三比較増幅器A3で
比較し、補助熱源装置14の熱源能力を変える。例えば
熱源か電気温水器の場合は、印加電圧を変えて電力を変
える。第二センサー1Mによる温度が設定温度よりも低
い場合は補助熱源装置14の能力を上げ、高い場合は能
力を下げることにより、出湯湯温を設定温度にする。
Next, when the water temperature in heat storage tank B is lower than the set temperature (45°C), the first sensor TS detects this, and the first comparison amplifier A
1, the first switching valve Svl is controlled so that the flow is as shown by the broken line arrow. That is, it does not flow to the second switching valve S V 2 but flows to the auxiliary heat source device 14 . The hot water temperature is detected by the second sensor 'FM, and the resulting voltage and variable resistor 15 are
A third comparator amplifier A3 in the controller 16 compares the voltage with that of the auxiliary heat source device 14 to change the heat source capacity of the auxiliary heat source device 14. For example, in the case of a heat source or electric water heater, change the applied voltage to change the power. When the temperature measured by the second sensor 1M is lower than the set temperature, the capacity of the auxiliary heat source device 14 is increased, and when the temperature is higher than the set temperature, the capacity is lowered to bring the hot water temperature to the set temperature.

次に第4z’Ta[の制御回路図の動作を説明する。Next, the operation of the control circuit diagram of the fourth z'Ta[ will be explained.

まず設定用可変抵抗器15は出湯したい温度に調節しで
あるので、第一比較増幅器A1の入力側を見ると可変抵
抗器15による電圧と蓄熱槽Bの第一センサーTSによ
る電圧とにより出力側のリレーRY1を駆動する。介設
定温度より蓄熱槽Bの湯温が高い時、第一センサーTS
の抵抗値が小さくなるので第一比較増幅器A1に入る電
圧が高くなり、比較増幅器A1によりリレーRYIを励
磁することになる。そうするとリレーの接点RYIは第
一切換弁Svlの端子a側に印加することになり、第一
切換弁の流れは第3図の実線矢印の如く流れる。
First, the setting variable resistor 15 is used to adjust the temperature at which hot water is desired to be tapped, so looking at the input side of the first comparative amplifier A1, the output side relay RY1 is driven. When the water temperature in heat storage tank B is higher than the set temperature, the first sensor TS
Since the resistance value becomes smaller, the voltage applied to the first comparator amplifier A1 becomes higher, and the comparator amplifier A1 excites the relay RYI. Then, the relay contact RYI will be applied to the terminal a side of the first switching valve Svl, and the flow of the first switching valve will flow as shown by the solid line arrow in FIG.

またリレーRYIの接点RYI’の端子側は第5図でリ
レーRY’2.RY3を介して第二切換弁SV2に接続
している。今リレーRY1が励磁されているので接点R
Y(’は端子a側になっている。
In addition, the terminal side of contact RYI' of relay RYI is relay RY'2. It is connected to the second switching valve SV2 via RY3. Since relay RY1 is now energized, contact R
Y(' is on the terminal a side.

第一比較増幅器A1の入出力特性は第6図(、)の如く
コンパレータの特性を示すものである。出湯路12の第
二センサー1Mで温度が高いと抵抗値が小さく電圧が低
くなり、設定値より低い時は第二比較増幅器A2によl
) 17レーRY2のみ励磁する。そのため接点RY2
はONとなり、第二切換弁S V 2は端子aに印加し
モータM2が駆動して第3図で第二切換弁SV2は出水
路F側の水が多く流れるようになる。第二センサー1M
が設定値になるとリレーRY2は消磁して接点RY2は
OFFとなり、モータM2は停止して第二切換弁S■2
はその位置で停止する。
The input/output characteristics of the first comparator amplifier A1 are those of a comparator as shown in FIG. 6(,). When the temperature of the second sensor 1M of the outlet channel 12 is high, the resistance value becomes small and the voltage becomes low, and when it is lower than the set value, the second comparator amplifier A2
) Excite only the 17th relay RY2. Therefore, contact RY2
is turned ON, the second switching valve SV2 applies voltage to the terminal a, the motor M2 is driven, and as shown in FIG. 3, more water flows through the second switching valve SV2 on the outlet channel F side. Second sensor 1M
When reaches the set value, relay RY2 is demagnetized, contact RY2 is turned OFF, motor M2 is stopped, and second switching valve S■2
will stop at that position.

一方混合湯温が設定値より低いと、リレーRY3のみ励
磁し、リレーの接点RY3がONL、第二切換弁SV2
の端子l〕に印加し、モータM2が駆動して第3閃で第
二切換弁SV2は蓄熱槽側の湯が多く流れるようになる
。第二センサー1Mが設定値になるとリレーRY3は消
磁して接点RY3はOFFとなり、モータM2が停止す
るため第二切換弁S■2はその位置で停止する。第二比
較増幅器A2の入出力特性は第6図(I))の如く入力
に対して出力が変化しない不感帯があり、この範囲はリ
レーRY2.RY3とも消磁状態で第二切換弁SV2は
駆動せず、その位置を保つ。
On the other hand, when the mixed water temperature is lower than the set value, only relay RY3 is energized, relay contact RY3 is ONL, and second switching valve SV2
The motor M2 is driven, and at the third flash, the second switching valve SV2 allows more hot water from the heat storage tank side to flow. When the second sensor 1M reaches the set value, the relay RY3 is demagnetized, the contact RY3 is turned off, and the motor M2 is stopped, so the second switching valve S2 is stopped at that position. As shown in FIG. 6(I), the input/output characteristics of the second comparison amplifier A2 have a dead zone in which the output does not change with respect to the input, and this range is within the range of the relay RY2. With both RY3 and RY3 in a demagnetized state, the second switching valve SV2 is not driven and maintains its position.

また蓄熱槽Bの湯の方が設定温度よりも低い時、センサ
ーTSの抵抗値が大きくなるので第一比較増幅器A1に
入る電圧が低くリレーRYIは消磁したままで、リレー
の接点RY1は第一切換弁Svlの端子す側に印加する
ので第一切換弁の流れは第3図の破線矢印の如く流れて
、補助熱源装置14を直列に流れる。そして出湯路12
の第二センサーTMで温度が設定値より低いと抵抗値が
天外く、第三比較増幅器A3に入る電圧が大きく出力は
大きな信号となる。その前にリレーRYIは消磁したま
まなので接点RYI’は端子す側にだ#iて#’)、リ
レーRY4は励磁される。そのため第三比較増幅器A3
の出力の接点RY4はONとなっている。
Furthermore, when the hot water in the heat storage tank B is lower than the set temperature, the resistance value of the sensor TS increases, so the voltage entering the first comparator amplifier A1 is low, and the relay RYI remains demagnetized, and the relay contact RY1 becomes the first Since the voltage is applied to the terminal side of the switching valve Svl, the flow of the first switching valve flows as indicated by the broken line arrow in FIG. 3, and flows in series through the auxiliary heat source device 14. And Deyuro 12
If the temperature of the second sensor TM is lower than the set value, the resistance value will be abnormal and the voltage entering the third comparator amplifier A3 will be large, resulting in a large output signal. Before that, since the relay RYI remains demagnetized, the contact RYI' is on the terminal side (#i and #'), and the relay RY4 is energized. Therefore, the third comparator amplifier A3
The output contact RY4 is ON.

今補助熱源装置14を電気温水器とすると、発熱源であ
るヒータHに印加する電圧を調整器17を介して、出湯
温度が低い時は、印加電圧を高く、補助熱源装置14の
能力を大にして湯温な」二げるようにし、高くなれぼ印
加電圧を低くし、能力を小として出湯湯温を一定に調整
する。第三比較増幅器A3の入出力特性は第6図(c)
の如く特性を有するものである。
If the auxiliary heat source device 14 is an electric water heater, the voltage applied to the heater H, which is the heat source, is increased via the regulator 17, and when the hot water temperature is low, the applied voltage is increased to increase the capacity of the auxiliary heat source device 14. When the water temperature increases, lower the applied voltage, lower the capacity, and adjust the hot water temperature to a constant value. The input/output characteristics of the third comparison amplifier A3 are shown in Figure 6(c).
It has the following characteristics.

なお本発明は、上記実施例の如く太陽熱利用の給湯シス
テムに限るものではなく、池の熱源を利用した給湯シス
テムであってもよい。更に本発明では、補助熱源装置を
、上記実施例の如ト電気ヒータである電気温水器に限る
ものではなく、石油又はガスを熱源とする燃焼器で゛あ
ってもよい。
Note that the present invention is not limited to a hot water supply system that utilizes solar heat as in the above embodiment, but may also be a hot water supply system that utilizes a pond heat source. Further, in the present invention, the auxiliary heat source device is not limited to an electric water heater, which is an electric heater as in the above embodiment, but may be a combustor using oil or gas as a heat source.

く効果〉 以上の説明から明らかな通り、本発明は、主熱源側の湯
温を感知する第一センサーと、出湯側の湯温を感知する
第二センサーとを有する制御装置が設けられ、該制御装
置からの信号により、主熱源側の湯を、その温度が設定
温度より高いときは補助熱源装置を通すことなく出湯側
へ流し主熱源側の湯温か設定温度より低いときは補助熱
源装置を通して出湯側へ流すよう切換わる第一切換弁が
設けられ、前記主熱源側の温度が設定温度よりも高いと
きに出湯側の湯温を検知して水を混合するよう作動する
第二切換弁が設けられ、前記補助熱源装置は出湯側の温
度を検知する前記制御装置からの信号によりその加熱能
力を調整可能とされたものである。
Effect> As is clear from the above description, the present invention is provided with a control device having a first sensor that senses the hot water temperature on the main heat source side and a second sensor that senses the hot water temperature on the outlet side. Based on a signal from the control device, when the temperature of the hot water on the main heat source side is higher than the set temperature, it flows to the outlet side without passing through the auxiliary heat source device, and when the hot water temperature on the main heat source side is lower than the set temperature, it passes through the auxiliary heat source device. A first switching valve is provided that switches the water to flow to the hot water outlet side, and a second switching valve operates to detect the hot water temperature on the hot water outlet side and mix the water when the temperature on the main heat source side is higher than the set temperature. The heating capacity of the auxiliary heat source device can be adjusted by a signal from the control device that detects the temperature on the hot water outlet side.

従って本発明によると、主熱源側の湯を優先的に使用し
、補助熱源側からの湯は主熱源側の湯が設定温度より低
いときのみ使用し、そのときは水と混合しないため、出
湯温度を常に設定範囲内に保つことがで外、給湯システ
ム効率を向上することができる。
Therefore, according to the present invention, the hot water from the main heat source side is used preferentially, and the hot water from the auxiliary heat source side is used only when the hot water from the main heat source side is lower than the set temperature, and at that time it does not mix with the water. By keeping the temperature within the set range, you can improve the efficiency of your water heating system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の太陽熱利用の給湯システム図、第2図は
同自動ミキシングバルブの断面図、第3図は本発明の一
実施例を示す給湯システム図、第4図は同制御装置の制
御回路図、第5図は同制御装置の1炒−回路図、第6図
(、)(b)(c)は夫々比較増幅器A1.A2.A3
の入出力特性を示す図である。 AI、A2.A3:比較増幅器、B:蓄熱槽、F:出水
路、G:制御S置、S v3 、S V 2 :切PA
弁、TS、TM:センサー、11:入湯路、12:出湯
路、13a:直湯路、131+:補湯路、14:補助熱
源装置、16二制御器、17二調整器。 出 願 人  シャープ株式会社 代理人 中村恒久 /       /    σ 第6図 (8−ン
Figure 1 is a diagram of a conventional solar hot water supply system, Figure 2 is a sectional view of the same automatic mixing valve, Figure 3 is a diagram of a hot water supply system showing an embodiment of the present invention, and Figure 4 is a control of the same control device. FIG. 5 is a circuit diagram of the same control device, and FIGS. A2. A3
FIG. 2 is a diagram showing the input/output characteristics of AI, A2. A3: Comparative amplifier, B: Heat storage tank, F: Outlet channel, G: Control S position, S v3, S V2: Off PA
Valve, TS, TM: sensor, 11: hot water inlet path, 12: hot water outlet path, 13a: direct hot water path, 131+: auxiliary hot water path, 14: auxiliary heat source device, 16 two controllers, 17 two regulators. Applicant Sharp Co., Ltd. Agent Tsunehisa Nakamura / / σ Figure 6 (8-8)

Claims (1)

【特許請求の範囲】[Claims] 主熱源側の湯温を感知する第一センサーと、出湯側の湯
温を感知する第二センサーとを有する制御装置が設けら
れ、該制御装置からの信号により、主熱源側の湯を、そ
の温度が設定温度より高いときは補助熱源装置を通すこ
となく出湯側へ流し主熱源側の湯温が設定温度より低い
と外は補助熱源装置を通して出湯側へ流すよう切換わる
第一切換弁が設けられ、前記主熱源側の温度が設定温度
よりも高いときに出湯側の湯温を検知して水を混合する
Yう作動する第二切換弁が設けられ、前記補助熱源装置
は出湯側の温度を検知する前記制御装置からの信号によ
りその加熱能力を調整可能とされたことを特徴とする給
湯用自動ミキシング装置。
A control device is provided that has a first sensor that detects the temperature of hot water on the main heat source side and a second sensor that detects the temperature of hot water on the outlet side. When the temperature is higher than the set temperature, the hot water flows to the outlet side without passing through the auxiliary heat source device, and when the temperature of the main heat source side is lower than the set temperature, the first switching valve switches to flow the hot water to the outlet side through the auxiliary heat source device. A second switching valve is provided that operates to detect the hot water temperature on the hot water outlet side and mix water when the temperature on the main heat source side is higher than the set temperature, and the auxiliary heat source device An automatic mixing device for hot water supply, characterized in that its heating capacity can be adjusted by a signal from the control device that detects.
JP19169482A 1982-10-29 1982-10-29 Automatic mixing device for supply of hot water Pending JPS5981715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19169482A JPS5981715A (en) 1982-10-29 1982-10-29 Automatic mixing device for supply of hot water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19169482A JPS5981715A (en) 1982-10-29 1982-10-29 Automatic mixing device for supply of hot water

Publications (1)

Publication Number Publication Date
JPS5981715A true JPS5981715A (en) 1984-05-11

Family

ID=16278906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19169482A Pending JPS5981715A (en) 1982-10-29 1982-10-29 Automatic mixing device for supply of hot water

Country Status (1)

Country Link
JP (1) JPS5981715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526270U (en) * 1991-09-18 1993-04-06 日鐵建材工業株式会社 Connecting tool for both ends of steel rope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550413B2 (en) * 1973-10-11 1980-12-18
JPS5757317A (en) * 1980-09-22 1982-04-06 Omron Tateisi Electronics Co Proportional control type temperature controller
JPS5759212A (en) * 1980-08-14 1982-04-09 Grohe Armaturen Friedrich Mixture valve unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550413B2 (en) * 1973-10-11 1980-12-18
JPS5759212A (en) * 1980-08-14 1982-04-09 Grohe Armaturen Friedrich Mixture valve unit
JPS5757317A (en) * 1980-09-22 1982-04-06 Omron Tateisi Electronics Co Proportional control type temperature controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526270U (en) * 1991-09-18 1993-04-06 日鐵建材工業株式会社 Connecting tool for both ends of steel rope

Similar Documents

Publication Publication Date Title
CA1186771A (en) Temperature control apparatus for use in vehicle air conditioner
CN211372706U (en) Air conditioner temperature controller
JPH0313608B2 (en)
JPS5981715A (en) Automatic mixing device for supply of hot water
JPS6129649A (en) Heat-pump hot-water supply device
JPS62186157A (en) Defrosting control unit of air conditioner
JPH0536692B2 (en)
JPS59195048A (en) Hot water feeder
JPH01282619A (en) Temperature controller for semiconductor processor
JPS5920938B2 (en) Control method for heat exchange equipment
JP2563510B2 (en) Hot water mixing device
JPS6230668Y2 (en)
JPS61139507A (en) Air conditioning device for vehicle
JPS6071848A (en) Instantaneous hot water supplier
JPS6230682Y2 (en)
JPH05231714A (en) Fluid heating apparatus
JPS62206329A (en) Hot water supplying device
BE1004746A6 (en) Heating device.
JPH0445320A (en) Hot water heating device
JPH02213645A (en) Instantaneous hot water boiler
JPS5920583Y2 (en) Control circuit for heat pump air conditioner
JPH0823772B2 (en) Hot water mixing device
JPS6124842Y2 (en)
JPS59134451A (en) Controller for heat-collecting pump in solar heat collector
JPH02279956A (en) Heating regenration capacity control device for ice regeneration type heat source device