JPS5981623A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPS5981623A
JPS5981623A JP57190822A JP19082282A JPS5981623A JP S5981623 A JPS5981623 A JP S5981623A JP 57190822 A JP57190822 A JP 57190822A JP 19082282 A JP19082282 A JP 19082282A JP S5981623 A JPS5981623 A JP S5981623A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
crystal display
light
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57190822A
Other languages
Japanese (ja)
Inventor
Masaaki Kitajima
雅明 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57190822A priority Critical patent/JPS5981623A/en
Publication of JPS5981623A publication Critical patent/JPS5981623A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)

Abstract

PURPOSE:To obtain a liquid crystal display device capable of being enhanced in brightness and contrast even through low voltage drive by rendering the direction of incident light rectangular to that of the absorption axis of a dichroic dye, when this axis direction is parallel to one of substrate surfaces. CONSTITUTION:A transparent electrode 11 made of In2O3, SnO2, or their mixture, and an orienting film 12 are formed on a transparent substrate 10 made of glass or plastics. A transparent electrode 14 and an orienting film 13 are formed on the other transparent substrate 15, and a reflective plate 16 is formed on the reverse side of the substrate 15. 18 is a liquid crystal layer incorporating a dichroic dye, and 17 is a sealant. The orienting films 12, 13 is formed on the substrates 10, 15 are rubbed in the directions from (a) to (c) on the substrate 10 and reversely from (c) to (a) on the substrate 15. As a result, the liquid crystal molecules 19 incline by about 2-4 deg. on the interface between the liquid crystal layers and the orienting films 12, 13 of both substrates 10, 15, but the molecules 19 are aligned in the rubbing direction almost in parallel to both substrate, 10, 15.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、液晶表示装置に係わシ、特に二色性色素が混
入されたゲスト・ホスト型液晶表示装置4に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a liquid crystal display device, and particularly to a guest-host type liquid crystal display device 4 in which a dichroic dye is mixed.

〔従来技術〕[Prior art]

コレステリツクーネマヂツク相転移液晶、ネマチンク1
夜品等に二色性色素を添加したゲスト・ホスト液晶(f
′i、カラー表示が可能で視角依存性が少ない等の特徴
がある。
Cholesteric phase change liquid crystal, nematic 1
Guest-host liquid crystal (f
'i, color display is possible and viewing angle dependence is small.

第1図は、ネマチック液晶に二色性色素を添加した従来
の液晶表示素子の断面図を示したものである。透明基板
2及び6に透明電極3を形成し、さらに配向、膜4を形
成する。また、両透明基板は、スペーサ5で8〜10μ
m8度のギャップで対峙さぜでこの間に液晶8を封入す
る。
FIG. 1 shows a cross-sectional view of a conventional liquid crystal display element in which a dichroic dye is added to a nematic liquid crystal. Transparent electrodes 3 are formed on transparent substrates 2 and 6, and further alignment and film 4 are formed. In addition, both transparent substrates have a spacer 5 of 8 to 10 μm.
They face each other with a gap of m8 degrees, and a liquid crystal 8 is sealed between them.

とこで、反射型液晶表示装置の場合透明基板6に反射板
7を取り付けるとともに他方の透明基板Iに偏光板1を
取り伺ける。
In the case of a reflective liquid crystal display device, the reflective plate 7 is attached to the transparent substrate 6, and the polarizing plate 1 can be attached to the other transparent substrate I.

前記した液晶表示素子を第2図に示す如く光源9で照明
して駆動電圧と反射光の明るさBの関係を求めると例え
ば、第3図の様になる。
When the above-mentioned liquid crystal display element is illuminated with the light source 9 as shown in FIG. 2 and the relationship between the driving voltage and the brightness B of the reflected light is determined, the result will be as shown in FIG. 3, for example.

従来の表示法では、駆動電圧に対する明るさJ3の変化
が緩慢で駆動電圧を高くしないとコントラスト比を大き
くすることができず、特に階調表示を行う装置への適用
が困難であった。
In the conventional display method, the brightness J3 changes slowly with respect to the drive voltage, and the contrast ratio cannot be increased unless the drive voltage is increased, making it particularly difficult to apply to devices that perform gradation display.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、液晶表示素子の照明条件を最適化して
、低駕圧駆動でも明るさ及びコントラストを大きくでき
る表示装置を提供するにある。
An object of the present invention is to provide a display device that can increase brightness and contrast even when driven at low pressure by optimizing the illumination conditions of a liquid crystal display element.

〔発明の概要〕[Summary of the invention]

本発明は、ゲスト・ホスト型液晶表示素子の光学特性が
照明方向に顕著に依存することを実験で確認し、二色性
色素の吸収軸が基板とほぼ平行であるとき、二色性色素
の吸収軸方向とほぼ1月旦方向に光を入射し、表示素子
の明るさ、コントラストを向上させたものである。
The present invention has experimentally confirmed that the optical properties of guest-host type liquid crystal display devices significantly depend on the illumination direction. The brightness and contrast of the display element are improved by making light incident in the direction of the absorption axis and approximately in the same direction.

本発明の第2の特徴とするところは、さらに、反射板の
傾斜面を二色性色素の吸収軸方向とほぼ平行とすること
にある。
A second feature of the present invention is that the inclined surface of the reflecting plate is substantially parallel to the absorption axis direction of the dichroic dye.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に基づき具体的に説明する。 Hereinafter, the present invention will be specifically explained based on Examples.

第4図は、本発明の実施例による液晶表示素子の断面図
を示したものである。ガラス、グラスチック等CD 秀
EIIJ基板10にIn、0. 、 SnO2、または
これらの混合物よりなる透明電極11及び配向膜12を
形成する。一方の透明基板15に透明電極14と配向膜
13を形成するとともに、基板の反対側に反射板16を
設ける。18は二色性色素が混入された液晶層であり、
17は封止剤である。
FIG. 4 shows a cross-sectional view of a liquid crystal display element according to an embodiment of the present invention. Glass, glass, etc. CD Hide EIIJ substrate 10 with In, 0. , SnO2, or a mixture thereof, a transparent electrode 11 and an alignment film 12 are formed. A transparent electrode 14 and an alignment film 13 are formed on one transparent substrate 15, and a reflecting plate 16 is provided on the opposite side of the substrate. 18 is a liquid crystal layer mixed with dichroic dye;
17 is a sealant.

この時、透明基板10の側を光の入射側とするっなお、
液晶層18の厚さは8μm前後である。
At this time, the side of the transparent substrate 10 is set as the light incident side.
The thickness of the liquid crystal layer 18 is approximately 8 μm.

第5図は、透明基板10及び15に形成した配向膜のラ
ビング方向を示したもので、透明基板10ではaからC
方向に、透明基板15では逆にCからa方向にラビング
する。
FIG. 5 shows the rubbing direction of the alignment films formed on the transparent substrates 10 and 15. For the transparent substrate 10, from a to C.
On the other hand, the transparent substrate 15 is rubbed in the direction C to a.

この結果、液晶分子の配列状態を模式的に示すと第6図
の様になる。側基板の配向膜と液晶層との境界面で液晶
分子19は、2〜4°程度傾斜するが、基板10.15
と略平行にラビング方向に配列する。ここに用いる液晶
は、メルク社のZL11132などがある。また、配向
膜は絶縁性の良い篩分子有機!吻をスピンナーで塗布す
ること等で得られる。
As a result, the alignment state of the liquid crystal molecules is schematically shown in FIG. 6. At the interface between the alignment film of the side substrate and the liquid crystal layer, the liquid crystal molecules 19 are tilted by about 2 to 4 degrees, but the substrate 10.15
are arranged in the rubbing direction substantially parallel to the . The liquid crystal used here includes Merck's ZL11132. In addition, the alignment film is an organic sieve with good insulation properties! It can be obtained by applying the proboscis with a spinner, etc.

なお、液晶分子を第6図と四球に配回δせる手段として
S tO2の斜方蒸着がある。前記した液晶には、黒色
色素等を1〜4wt%程度添加する。この結果、色素分
子は、液晶分子の規1■11力を受け、液晶分子とほぼ
同一方向に配列する。本実施列に用いる色素は、第7図
(a)に示す如く色素分子20の長軸方向に振動する光
が入射された時に最も吸収が大きくなり、逆に′MJ、
7図Cb)に示す叩く短軸方向に振動する元が入射され
た時に最も吸収が小さくなるものであり、色素分子の長
軸方向と吸収1助方向が一致している。
Note that oblique evaporation of StO2 is used as a means for distributing the liquid crystal molecules in a four-sphere arrangement δ as shown in FIG. Approximately 1 to 4 wt % of a black pigment or the like is added to the liquid crystal described above. As a result, the dye molecules receive the normal forces of the liquid crystal molecules and are aligned in substantially the same direction as the liquid crystal molecules. As shown in FIG. 7(a), the dye used in this example has the largest absorption when the light vibrating in the long axis direction of the dye molecule 20 is incident;
When an element vibrating in the short axis direction shown in Figure 7Cb) is incident, the absorption is the smallest, and the long axis direction of the dye molecule and the minor absorption direction coincide.

木兄間者が、第6図に示した液晶表示素子の゛厄気光学
特性を第8図に示す条件で測定したところ以下に述べる
結果を得た。
When Mr. Kienma measured the optical characteristics of the liquid crystal display element shown in FIG. 6 under the conditions shown in FIG. 8, he obtained the results described below.

なお、透明基板15には、反射板16を取p付け、また
、基板10に対し斜め(角度θ)方向から光源21及び
偏光板22でイ<すられた直線面光を素子に投射した。
Note that a reflective plate 16 was attached to the transparent substrate 15, and linear surface light, which was deflected by a light source 21 and a polarizing plate 22, was projected onto the element from an oblique (angle θ) direction with respect to the substrate 10.

ここ−乙偏光板−22の透過軸方間はラビング方向とほ
ぼ平行Vこする。光の入射方向と駆動電圧を印加しない
ときの二色性色素の吸収軸方回(ラビング方向)との角
度ψは、第5図しこ示したa側音Oとし、時計廻シ方向
にとった。
Here, the transmission axis of the polarizing plate 22 is rubbed almost parallel to the rubbing direction. The angle ψ between the incident direction of light and the direction of absorption axis (rubbing direction) of the dichroic dye when no driving voltage is applied is the a-side tone O shown in Figure 5, and is taken in the clockwise direction. Ta.

腟だ、反射光の測定点100(観察者の位置)は1(I
]J簡のゆがみが最も少なく、かつ、入射光の正反射も
少ない、基板の垂直方向にする。
The measurement point 100 of the reflected light (observer's position) is 1 (I
] Direction perpendicular to the substrate, where the distortion of the J strip is the least and the specular reflection of the incident light is also minimal.

第9図は、θ−30°附近おける駆動電圧Vrmsと反
射光の明るさの関係をプロットしたものである。また、
第10図は、コントラスト比CR及び明るさBRと角度
ψとの関係をプロットしたもの乙 でめる。第10図(a)はθ−10°、第10図(b)
はθ3午 一80°、第10図(C)はθ=30°の場合を示す。
FIG. 9 is a plot of the relationship between the drive voltage Vrms and the brightness of reflected light around θ-30°. Also,
FIG. 10 is a plot of the relationship between contrast ratio CR, brightness BR, and angle ψ. Figure 10(a) is θ-10°, Figure 10(b)
shows the case where θ3 is 80°, and FIG. 10(C) shows the case where θ=30°.

ここで: e)−17トラスト比は、V=3vrmsと
V=0における明るさの比である。
where: e) -17 Trust ratio is the ratio of brightness at V=3vrms and V=0.

この結果、ψ=90°又は270°とすると明るさは、
3Vrms附近の低電圧で飽オロし、又コントラスト比
は、ψ=90°又は270°附近で最大となることが明
らかである。
As a result, if ψ=90° or 270°, the brightness is
It is clear that saturation occurs at a low voltage around 3 Vrms, and the contrast ratio becomes maximum around ψ=90° or 270°.

次に、反射板の実施例について説明する。前述したθ及
びψを一定とすると、液晶表示素子をより明るくするに
は、素子の垂直方向への反射光を大きくする必要がある
Next, examples of the reflector will be described. Assuming that the aforementioned θ and ψ are constant, in order to make the liquid crystal display element brighter, it is necessary to increase the amount of light reflected in the vertical direction of the element.

第11図は、反射板16の平面図であシ、X−Yの断面
図を示すと第12図の様になる1、傾斜面の傾斜角を反
射板の底辺に対しθ/2とすると、底辺の垂線のθ方向
から入射する光の大部分は、垂線方向に反射さ扛る。な
お、θは第8図で説明したθに11ぼ等しいものとする
FIG. 11 is a plan view of the reflector 16, and the X-Y cross-sectional view is as shown in FIG. , most of the light incident from the θ direction of the perpendicular to the base is reflected in the perpendicular direction. It is assumed that θ is approximately 11 equal to θ explained in FIG.

前記した反射板1Gの反射特性ケ第13図に示す様な方
法で測定すると第14図となり、ψ−90°及び270
°で反射光も最も大きくなる。
When the reflection characteristics of the reflector plate 1G described above are measured by the method shown in FIG. 13, they are shown in FIG.
The reflected light is also greatest at °.

第15図は、液晶表示素子の透明基板10及び15と反
射板16との組合わせを示したものでめる。これは、反
射板の傾斜面と駆動電圧全印加しないときの二色性色素
の吸収軸方向とをほぼ平行にするようにしたものである
。このとき、ψ=90°またはψ=270°とすると、
最も反射光が大きくなり、液晶表示素子の明るさが最大
となる。
FIG. 15 shows a combination of transparent substrates 10 and 15 and a reflecting plate 16 of a liquid crystal display element. This is done so that the inclined surface of the reflection plate and the absorption axis direction of the dichroic dye when the full drive voltage is not applied are approximately parallel to each other. At this time, if ψ=90° or ψ=270°,
The reflected light becomes the largest, and the brightness of the liquid crystal display element becomes the maximum.

第16図は、前記した知見から反射型ゲスト・ホスト液
晶表示装置の具体例を示したものである。
FIG. 16 shows a specific example of a reflective guest-host liquid crystal display device based on the above-mentioned knowledge.

観察者23は、基板のほぼ垂直方向から幌祭する。さら
に、角度θは透明基板10の正反射成分をほぼ無視でき
る値に設定するが、θ−10〜40°附近が好ましい。
The observer 23 views the substrate from a direction substantially perpendicular to the substrate. Furthermore, the angle θ is set to a value that allows the specular reflection component of the transparent substrate 10 to be almost ignored, but is preferably around θ-10 to 40°.

反射板16の傾斜面は駆動IE圧を印加していないとき
の二色性色素の吸収軸方向(ラビング方向)と平rテで
ある。
The inclined surface of the reflection plate 16 is parallel to the absorption axis direction (rubbing direction) of the dichroic dye when no driving IE pressure is applied.

第16図(a) &J2、ψ=90°方向に光源21と
偏光板22を設置したものであり、第16図(b) r
i、ψ=270°方向に光源2工と偏光板22紮設置し
たものである。
Fig. 16(a) &J2, a light source 21 and a polarizing plate 22 are installed in the ψ=90° direction, and Fig. 16(b) r
Two light sources and two polarizing plates are installed in the i, ψ=270° direction.

第16図(C)は、表示面の明るさのバラツキを少なく
するために2方向から照明したもので、ψ=90°方向
に光源24と偏光板25、ψ=270°方回に光源21
と偏光板22′f:設置したものである。
In FIG. 16(C), the display surface is illuminated from two directions in order to reduce variations in brightness. The light source 24 and the polarizing plate 25 are in the ψ=90° direction, and the light source 21 is in the ψ=270° direction.
and polarizing plate 22'f: installed.

いずれの実施例でも駆動電圧の無印加時に観察者23へ
の光が最少となるように1114光板22及び25の偏
光軸の方向を調整する。
In either embodiment, the directions of the polarization axes of the 1114 light plates 22 and 25 are adjusted so that the light directed to the observer 23 is minimized when no driving voltage is applied.

第17図は、本発明による液晶表示装置の具体例を示し
たものである。ここでは、液晶表示素子の照明法を第1
.1図(C)を取シ上げて説明する。
FIG. 17 shows a specific example of a liquid crystal display device according to the present invention. Here, the illumination method for liquid crystal display elements will be described as the first method.
.. An explanation will be given by taking FIG. 1(C) as an example.

外光遮断壁34は、タングステンランプ等の光源35及
び36以外の光が液晶表示素子37に入射するのを防止
する。漏れ光遮断璧38及び39ぽ光源35及び36の
光が偏光板40及び41以外の部分を通過することを防
止するとともに、内面に反射壁を設は光源の光を有効に
利用するような構造とする。また、光源35及び36は
、ψ−90°及び2700、θ〜30°に設置する。
The external light blocking wall 34 prevents light other than light sources 35 and 36 such as tungsten lamps from entering the liquid crystal display element 37 . A structure that prevents the light from the leakage light blocking walls 38 and 39 from passing through parts other than the polarizing plates 40 and 41, and effectively utilizes the light from the light sources by providing a reflective wall on the inner surface. shall be. Further, the light sources 35 and 36 are installed at ψ-90° and 2700°, and at θ˜30°.

ここで、ψ、θは基板上の測定点の位置によって決まる
が、本実施例では、表示部のほぼ中心点を測定点として
いる。光源の種類及び距離によっては、基板上の一部で
はψが異なる場合がめるが、その場合、表示部の主要部
分でのψを考慮すれば良い。なお、液晶表示素子の観察
者43は、観移窓42全通して液晶表示素子37を目視
する。
Here, ψ and θ are determined by the position of the measurement point on the substrate, but in this embodiment, the measurement point is approximately at the center of the display section. Depending on the type and distance of the light source, ψ may be different in a part of the substrate, but in that case, ψ in the main part of the display section may be taken into consideration. Note that the observer 43 of the liquid crystal display element visually observes the liquid crystal display element 37 through the viewing window 42 .

本実施例に於いて、ψ=90°及び270°なので、明
るく、かつコントラストが良い光示装置となる。
In this embodiment, since ψ=90° and 270°, the optical display device is bright and has good contrast.

さらに、それぞれ反対方向から光を入射させているので
表示面の明るさのバラツキが少ない。
Furthermore, since the light is incident from opposite directions, there is little variation in the brightness of the display surface.

第18図は、他の実施例を示したものでわる。FIG. 18 shows another embodiment.

集光レンズ42及び43を光源35及び36の前に配置
したことで光源からの光を効率良く液晶表示菓子37に
照射することができよシ明るい表示が可能となる。
By arranging the condensing lenses 42 and 43 in front of the light sources 35 and 36, the light from the light sources can be efficiently irradiated onto the liquid crystal display confectionery 37, allowing a bright display.

まン′こ、従来は、入射時と反射時との2回光が偏光板
を通過したが、第17図、第18図の実施例Cは、偏光
板の通過は入射時のみであるので、偏光板、通過による
光の減衰ぐよ、従来よシ少なく、十分な明るさが得られ
る。
In the past, light passed through the polarizing plate twice, once when it was incident and once when it was reflected, but in Embodiment C shown in Figures 17 and 18, the light passes through the polarizing plate only when it is incident. There is less attenuation of light due to passing through a polarizing plate than with conventional methods, and sufficient brightness can be obtained.

第19図は、前記した実施例と同様の効果が得られる液
晶表示素子の構造図を示し7′jものである。
FIG. 19 shows a structural diagram of a liquid crystal display element that can obtain effects similar to those of the above-described embodiment.

すなわら、反射基板を基板27と反射電極26及び配向
膜13でIre成したものである。この場合、反射電極
26は、透明電極11の対向電極とな9、両電極間の電
at差で反射光の明るさが変化する。
That is, the reflective substrate is made up of the substrate 27, the reflective electrode 26, and the alignment film 13. In this case, the reflective electrode 26 is an electrode opposite to the transparent electrode 11, and the brightness of the reflected light changes depending on the difference in electric potential between the two electrodes.

なお、基板27は、透明基板又は不透明基板いずれでも
良い。
Note that the substrate 27 may be either a transparent substrate or an opaque substrate.

また、液晶表示素子の他の実施列として第20図に示す
様な公知のアクティブ・マトリクス構成とすることもで
きる。すなわち、水平走査回路28、垂直走置回路29
及びスイッチングトランジスタ30、ストレージキャパ
シタ31全単結晶シリコン基板上に形成し、さらに前記
基板と透明電極33を有する透明基板とを対峙させて液
晶画素32を形成して画像を表示させるものである。
Further, as another implementation array of liquid crystal display elements, a known active matrix configuration as shown in FIG. 20 may be used. That is, the horizontal scanning circuit 28 and the vertical scanning circuit 29
A switching transistor 30 and a storage capacitor 31 are formed on an all-single-crystal silicon substrate, and the substrate and a transparent substrate having a transparent electrode 33 are made to face each other to form a liquid crystal pixel 32 to display an image.

なお、水平走査回路28、垂直走査回路29、スイッチ
ングトランジスタ30は、公知のTF’Tで構成するこ
とも可能である。
Note that the horizontal scanning circuit 28, the vertical scanning circuit 29, and the switching transistor 30 can also be configured with a known TF'T.

また、本発明は、二色性色素が混入されたコンステリツ
ク−ネマチック相転移液晶、スメクチック液晶等の公知
の液晶にも適用できる。
Further, the present invention can also be applied to known liquid crystals such as constellic-nematic phase change liquid crystals and smectic liquid crystals in which dichroic dyes are mixed.

以上述べた本発明の実施例に於いては、基板表面の配向
膜を平行配向処理を行なうネガ型の液晶表示菓子を例に
とって説明したが、これに限らず液晶分子及び二色性色
素分子を垂直配向させておき、電圧印加時に液晶分子と
二色性色素分子とが基板に対してほぼ平イjとなる、い
わゆるポジ型の液晶表示菓子にも本発明は適用できめ。
In the embodiments of the present invention described above, explanation has been given by taking as an example a negative type liquid crystal display confectionery in which the alignment film on the surface of the substrate is subjected to parallel alignment treatment, but the invention is not limited to this. The present invention can also be applied to so-called positive type liquid crystal display confectionery in which the liquid crystal molecules and dichroic dye molecules are vertically aligned and become substantially flat with respect to the substrate when a voltage is applied.

さらに、二色性色素としては、本実施例のようfx巳素
分子の長軸方向と吸収軸方向が一致しているポジ型に限
定されず、色素分子の短軸方向と吸収軸方向が一致して
いるネガ型でも良い。即ち、液晶、二色性色素の種類に
は、関係なく、二色性色素の吸収軸方向が基板とほぼ平
行であるときの、二色性色素の吸収軸方向と、光の入射
方向及び反射板の傾斜面とを考慮すればよい。
Furthermore, the dichroic dye is not limited to the positive type, in which the long axis direction of the fx molecule and the absorption axis direction are aligned, as in this example, but also the dichroic dye, in which the short axis direction and the absorption axis direction of the dye molecule are aligned. It is also possible to use a negative type. In other words, regardless of the type of liquid crystal or dichroic dye, when the absorption axis direction of the dichroic dye is approximately parallel to the substrate, the absorption axis direction of the dichroic dye, the incident direction of light, and the reflection It is sufficient to consider the slope of the plate.

また、本実力亀例では、偏光板40及び41ケよ、光源
35及び36に取υ付けたが、従来例の様に、基板に直
接取り付けても本発明は適用できる。
Further, in this practical example, the polarizing plates 40 and 41 are attached to the light sources 35 and 36, but the present invention can also be applied even if they are attached directly to the substrate as in the conventional example.

さらに、本発明は覗察者の観察方向には何ら限定されな
いが、本実施例の様に、基板のほぼ垂線方向から観察す
ると、画面のゆがみが最も少なくなるので好ましい。
Further, although the present invention is not limited to the observation direction of the viewer, it is preferable to observe from a direction substantially perpendicular to the substrate, as in this embodiment, because the distortion of the screen is minimized.

また、第1の発明は反射板の有無にも限定されず、透過
型の液晶表示装置にも適用できる。
Furthermore, the first invention is not limited to the presence or absence of a reflective plate, and can also be applied to a transmissive liquid crystal display device.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光の照射方向と二色性色素の1案収軸
方向を特定の関係にしたことで、低電圧駆動でも明るく
コントラストの商い表示装置を得ることができる。
According to the present invention, by setting a specific relationship between the light irradiation direction and the direction of the dichroic dye's absorption axis, it is possible to obtain a bright display device with high contrast even when driven at a low voltage.

さらに、反射板の傾斜面と二色性色素の吸収軸方向を特
定の関係にしたことで、さらに明るい表示装置を得るこ
とができる。
Furthermore, by setting a specific relationship between the inclined surface of the reflector and the direction of the absorption axis of the dichroic dye, an even brighter display device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の液晶表示素子の断面図、第2図は従来の
液晶表示素子の照明法を示す図、第3図は液晶の電気)
°0学特性、第4図は本発明による液晶表示素子の一実
施例の断面図、第5図は液晶配向膜のラビング方向を示
す図、第6図は液晶分子の配列状態図、第7図は色素の
吸収特性を説明する図、第8図は液晶表示素子の照明条
件を示す斜視図、第9図は駆#電圧対明るさ特性図、第
10図は角度ψに対するコントラスト特性図、第11図
は本発明の一実施例に用いる反射板の平+l]1図、第
12図は第11図の断面図、第13図は第11図の反射
板の照明条件を示す斜視図、第14図は第11図の反射
板の光学特性図、第15図Cよ本発明の一実施例の立体
展開図、第16図は本発明による液晶表示素子の照明方
法を示す斜視図、第17図、第18図は本発明の具体的
な装置の構成図、第19図、第20図は本発明に用いら
れる液晶表示素子の他の実施例を示す図である。 2,6,10.15・・・透明基板、3,11.14・
・・透明電極、4,12.13・・・配向膜、7,16
・・・反射板、9,21,24,35.36・・・光源
、]、、22,25,40.41・・・偏光板、42゜
43・・・集光レンズ、34・・・外光遮断壁、38゜
39・・・漏れ光遮断壁、37・・・液晶光示素子。 第 1図 ′l 第2図 浴3z 第+図 先入射 第S口 n ↓ 第9 図 ・駆動電圧vrmi 第 10 図 (0L) y(ン 第 10口 (−e−) 軍 10 図 (C) 第 11 7 B 審120 虻′ 第14−121 1) (’/= 27F ) % 15 図 第16 口 第trt  図 第 19  図
Figure 1 is a cross-sectional view of a conventional liquid crystal display element, Figure 2 is a diagram showing the illumination method of a conventional liquid crystal display element, and Figure 3 is a diagram showing the electricity of the liquid crystal.
4 is a cross-sectional view of an embodiment of the liquid crystal display element according to the present invention, FIG. 5 is a diagram showing the rubbing direction of the liquid crystal alignment film, FIG. 6 is a diagram of the arrangement state of liquid crystal molecules, and FIG. The figure is a diagram explaining the absorption characteristics of dyes, Figure 8 is a perspective view showing the illumination conditions of a liquid crystal display element, Figure 9 is a diagram of drive voltage vs. brightness characteristics, Figure 10 is a diagram of contrast characteristics versus angle ψ, FIG. 11 is a plan view of a reflector used in an embodiment of the present invention; FIG. 12 is a sectional view of FIG. 11; FIG. 13 is a perspective view showing illumination conditions of the reflector of FIG. 14 is an optical characteristic diagram of the reflector shown in FIG. 11, FIG. 15C is a three-dimensional developed view of an embodiment of the present invention, and FIG. 16 is a perspective view showing the method of illuminating a liquid crystal display element according to the present invention. 17 and 18 are block diagrams of a specific device of the present invention, and FIGS. 19 and 20 are diagrams showing other embodiments of the liquid crystal display element used in the present invention. 2,6,10.15...transparent substrate, 3,11.14.
...Transparent electrode, 4,12.13...Alignment film, 7,16
...Reflector, 9,21,24,35.36...Light source,], 22,25,40.41...Polarizing plate, 42°43...Condensing lens, 34... External light blocking wall, 38° 39... Leakage light blocking wall, 37... Liquid crystal display element. Fig. 1 'l Fig. 2 Bath 3z No. + Fig. forward entrance S port n ↓ Fig. 9 - Drive voltage vrmi Fig. 10 (0L) y(n 10th port (-e-) Army 10 Fig. (C) 117B Trial 120 Ant' 14-121 1) ('/=27F) % 15 Figure 16 Figure 19

Claims (1)

【特許請求の範囲】 ■、対向面に電極がそれぞれ設けられる一方の基板と他
方の基板との間に二色性色素が混入された液晶が保持さ
れる液晶表示素子と、上記一方の基板に対して斜めに光
を入射する照明手段とを具備する液晶表示装置に於いて
、二色性色素の吸収軸方向が上記一方の基板面とな?!
は平行であるとき、上記光の入射方向が上記二色性色素
の吸収軸方向とほぼ垂直方向であることを特徴とする液
晶表示装置。 2、対向面に電極がそれぞれ設けられる一方の基板と他
方の基板との間に二色性色素が混入された液晶が保持さ
れる液晶表示素子と、上記他方の基板に隣接する反射板
と、上記一方の基板に対して斜めに光を入射、#−る照
明手段とを具備する液晶表示装置に於いて、二色性色素
の吸収軸方向が上記一方の基板面とほぼ平行であるとき
、上記光の入射方向が上記二色性色素の吸収軸方向とほ
ぼ垂直方向であり、かつ上記反射板の傾斜面が上記二色
性色素の吸収軸方向とほぼ平行であることを特徴とする
液晶表示装置。 3、特許請求の範囲第1項または第2項に於いて、上記
光は直線偏光であることを特徴とする液晶表示装置。 4、特許請求の範囲第3項に於いて、上記照明手段は偏
光板を具備することを特徴とする液晶表示装置。 5、特許請求の範囲第1項または第2項に於いて、上記
照明手段は複数方向の光を入射することを特徴とする液
晶表示装置。 6、特許請求の範囲第1項または第2項に於いて、上記
一方の基板の垂直方向から観察することを特徴とする液
晶表示装置。
[Scope of Claims] (1) A liquid crystal display element in which liquid crystal mixed with a dichroic dye is held between one substrate and the other substrate, each having electrodes on opposing surfaces; On the other hand, in a liquid crystal display device equipped with an illumination means that allows light to enter obliquely, the direction of the absorption axis of the dichroic dye is the surface of one of the substrates. !
are parallel to each other, the incident direction of the light is substantially perpendicular to the absorption axis direction of the dichroic dye. 2. A liquid crystal display element in which liquid crystal mixed with a dichroic dye is held between one substrate and the other substrate, each having electrodes on opposing surfaces, and a reflective plate adjacent to the other substrate; In the liquid crystal display device comprising an illumination means for diagonally incident light onto the one substrate, when the absorption axis direction of the dichroic dye is substantially parallel to the surface of the one substrate, A liquid crystal characterized in that the incident direction of the light is substantially perpendicular to the absorption axis direction of the dichroic dye, and the inclined surface of the reflecting plate is substantially parallel to the absorption axis direction of the dichroic dye. Display device. 3. A liquid crystal display device according to claim 1 or 2, wherein the light is linearly polarized light. 4. A liquid crystal display device according to claim 3, wherein the illumination means includes a polarizing plate. 5. A liquid crystal display device according to claim 1 or 2, wherein the illumination means receives light from a plurality of directions. 6. A liquid crystal display device according to claim 1 or 2, characterized in that the display is viewed from a direction perpendicular to the one substrate.
JP57190822A 1982-11-01 1982-11-01 Liquid crystal display device Pending JPS5981623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57190822A JPS5981623A (en) 1982-11-01 1982-11-01 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57190822A JPS5981623A (en) 1982-11-01 1982-11-01 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS5981623A true JPS5981623A (en) 1984-05-11

Family

ID=16264331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57190822A Pending JPS5981623A (en) 1982-11-01 1982-11-01 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS5981623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522649A (en) * 2001-06-05 2004-07-29 ボルボ ラストワグナー アーベー Automotive gear shift lever

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522649A (en) * 2001-06-05 2004-07-29 ボルボ ラストワグナー アーベー Automotive gear shift lever
JP4738731B2 (en) * 2001-06-05 2011-08-03 ボルボ ラストワグナー アーベー Automotive gear shift lever

Similar Documents

Publication Publication Date Title
US5107356A (en) Liquid crystal display device with birefringent films
EP0448124A2 (en) Optical modulation device and display apparatus
KR100348359B1 (en) Liquid Crystal Display
JPH07318940A (en) Liquid crystal display device
KR101169401B1 (en) Vertically aligned nematic mode liquid crystal display having large tilt angles and high contrast
KR20000075086A (en) Reflection type TFT LCD having improved retardation film
JP2643835B2 (en) Liquid crystal display device and driving method thereof
KR20010064974A (en) Method for fabricating a liquid crystal cell
JPH11202784A (en) Reflection type display device
US4721366A (en) Illumination of a liquid crystal display
JP2814783B2 (en) Liquid crystal display
JPH11337922A (en) Liquid crystal display device
JPS5981623A (en) Liquid crystal display device
KR100357359B1 (en) Liquid crystal display device using a birefringent film
WO2004095119A1 (en) Liquid crystal display unit, and display unit provided with it
JPH0519249A (en) Liquid crystal display device
JPH11202785A (en) Reflection type display device
JP3052864B2 (en) Liquid crystal display
JP2550681B2 (en) Liquid crystal display element
JP3289370B2 (en) Color liquid crystal display
JPS59142586A (en) Liquid crystal display
JP2607380B2 (en) Liquid crystal cell
JPH10104617A (en) Liquid crystal image display device
JPH06317792A (en) Color liquid crystal display device
JPH10104611A (en) Liquid crystal image display device