JPS598115A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPS598115A
JPS598115A JP11885182A JP11885182A JPS598115A JP S598115 A JPS598115 A JP S598115A JP 11885182 A JP11885182 A JP 11885182A JP 11885182 A JP11885182 A JP 11885182A JP S598115 A JPS598115 A JP S598115A
Authority
JP
Japan
Prior art keywords
magnetic head
shaped
parts
adjacent
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11885182A
Other languages
Japanese (ja)
Other versions
JPH0416844B2 (en
Inventor
Yoshitaka Katayama
片山 義啓
Taketoshi Yonezawa
米沢 武敏
Toshimi Kanamaru
金丸 敏美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11885182A priority Critical patent/JPS598115A/en
Publication of JPS598115A publication Critical patent/JPS598115A/en
Publication of JPH0416844B2 publication Critical patent/JPH0416844B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1272Assembling or shaping of elements

Abstract

PURPOSE:To improve the productivity and the yield of a magnetic head, by providing cantilever-shaped parts, which face each other and are adjacent to each other, in plane plate-shaped magnetic materials which should become a head core and subjecting facing parts of these cantilever-shaped parts to laser welding. CONSTITUTION:Cantilever-shaped parts 13a and 13b which face each other and are adjacent to each other are formed in parts of two adjacent plane plate- shaped magnetic materials 15a and 15b, and facing parts of these cantilever- shaped parts 13a and 13b are subjected to laser welding, thereby forming a magnetic head. When the same process as the glass joining process of a ferrite head is used to mold glass near a front gap face 10, the front gap is stabilized for a long time. In this case, since no thermal residual stress is generated in the junction part due to laser welding, the junction of mold glass to the front gap face 10 is not affected by laser welding. Thus, good welding where cracks or the like are not generated is performed, and the productivity and the reliability of the magnetic head are improved considerably.

Description

【発明の詳細な説明】 本発明は磁気ヘッドに関する・ 近年、ビデオテープの磁気的特性の向上に伴ない、ビデ
オヘッドも従来のフェライトから更に飽和磁束密度の高
いセンダストヘッドの出現が望まれている。
[Detailed Description of the Invention] The present invention relates to a magnetic head. In recent years, as the magnetic properties of video tapes have improved, it has been desired that Sendust heads with even higher saturation magnetic flux density appear in video heads instead of conventional ferrite. .

しかるに、センダストは、フェライトとは異な多金属で
あるが故に、一対のコア状のセンダストのガラスによる
接合では、接合強度が不充分で、ワイヤソー等の軽微な
切断力しか作用しない切断法では200μm程度の厚さ
のチップ状の切断は可能なものの、チップ切断後の超音
波洗浄、あるいはパーツフィーダーによる振動等で、コ
アの接合が簡単に破壊される等、実用上の大きな問題を
有している。
However, since sendust is a polymetal different from ferrite, bonding a pair of core-shaped sendust with glass does not have sufficient bonding strength, and cutting methods that apply only a slight cutting force, such as a wire saw, cut the bonding strength to about 200 μm. Although it is possible to cut chips into chips with a thickness of .

一方、一対のコア・状のセンタストの接合に、銀ロウに
よる接合法も用いられてきた。この方法は、ヒテオヘッ
ドの場合、例えば一対のコア状のセンダストのバックギ
ャップ対向面間に、厚さ数μm程度の銀ロウ箔を挾み、
十の後、フロントギャップ面のトラック合せを行ない、
次に銀ロウ箔が両側のセンダスト・コアによ匂強く挾ま
れるように、一対のセンダスト・コアを互いに押圧させ
た状態で、高温真空中において銀ロウ箔を溶かしてセン
タスト・コア内に拡散させ、一対のセンダスト・コアの
接合を行なうものである。この方法では、実用上は充分
な接合強度が得られるものの、厚さ数μmの銀ロウ箔を
、しわがよらないようにバックギャップ対向面間に挾む
作用には、作業者の多大の注意力と神経の酷使が伴ない
、またこのような作業は自動化が極めて困難であシ、す
こぶる生産性の低いものであった。更に、一対のセンダ
スト・コアに押圧力が働いた状態で銀ロウを溶かす上記
の方法においては、押圧力に対して溶けた銀ロウが潤滑
剤的な作用を及ぼし、一対のセンダスト・コアは、互い
に清って相対的な位置がずれてしまい、トラック合わせ
の精度が損なわれ、組立精度上の歩留りが低下するとい
う大きな問題があった。また、銀ロウ接合の行なわれる
バックギャップ面では、センダストへの銀ロウの拡散が
生じてお9、混入元素に対して極めて敏感に磁気的特性
が劣化するセンダストであるが故に、バックギャップ面
近傍で磁気抵抗が大きくなってしまう、という問題があ
った。
On the other hand, a joining method using silver solder has also been used to join a pair of core-shaped centasts. In the case of a hiteo head, for example, a silver solder foil with a thickness of several micrometers is sandwiched between the back gap opposing surfaces of a pair of core-shaped sendust,
After 10, perform track alignment of the front gap surface,
Next, with the pair of sendust cores pressed against each other so that the silver wax foil is firmly sandwiched between the sendust cores on both sides, the silver wax foil is melted in a high-temperature vacuum and diffused into the sendust core. This is to join a pair of sendust cores. Although this method can provide sufficient bonding strength for practical purposes, the operator must be very careful in sandwiching the silver solder foil, which is several micrometers thick, between the back gap facing surfaces to prevent it from wrinkling. This work required a lot of force and nerves, and was extremely difficult to automate, resulting in extremely low productivity. Furthermore, in the above method of melting the silver solder while a pressing force is applied to the pair of sendust cores, the melted silver solder acts like a lubricant against the pressing force, and the pair of sendust cores There was a major problem in that the relative positions of the two components would shift, impairing the precision of track alignment and lowering the yield in terms of assembly precision. In addition, at the back gap surface where silver solder bonding is performed, silver solder diffuses into the sendust9, and since sendust is extremely sensitive to mixed elements and its magnetic properties deteriorate, the area near the back gap surface is The problem was that the magnetic resistance would increase.

そこで最近では、レーザによるセンダストの接合も試み
られているが、レーザ溶接による接合も、量産レベルで
の実用化は困難であった。その理由は、センダストがス
テンレス等に比べると脆いためで、レーザ溶接における
急冷却時の熱応力に耐えることができず、溶接部にクラ
ックを生じてしまうためである。これを第1図及び第2
図によって詳しく説明する。第1図において、(1a)
 (xb)は巻線窓を形成する巻線溝(2a) (2b
)が形成されたセンダストから成るコアであり、(3)
はバックギャップ面、(4)はフロントギャップ面であ
る。コア(1a) (lb) Id、フロントギャップ
部に設けられたトラック部が正しく突き合わされた状態
で、溶接治具の部材(5a) (5b)により互いに押
圧し合うように保持されている。(5)はレーザ光で、
ノ<ツクギャップ部の接合部な矢印(イ)方向にスキャ
ンされ、コア(la) (lb)を溶接する。第2図は
レーザ溶接が行なわれた後のコアの断面図であ!0 、
 (B)はレーザ光(5)によるセンダストの溶融凝固
部、(6)は溶融凝固部(B)と母材との境界である。
Recently, attempts have been made to join sendust using a laser, but it has also been difficult to put joining by laser welding into practical use at a mass production level. The reason for this is that sendust is more brittle than stainless steel, etc., and cannot withstand the thermal stress during rapid cooling during laser welding, resulting in cracks in the weld. This is shown in Figures 1 and 2.
This will be explained in detail using figures. In Figure 1, (1a)
(xb) is a winding groove (2a) forming a winding window (2b
) is the core made of sendust formed, and (3)
is the back gap surface, and (4) is the front gap surface. The cores (1a) (lb) Id and the track portions provided in the front gap portions are held in a state where they are properly abutted against each other and pressed against each other by the members (5a) and (5b) of the welding jig. (5) is a laser beam,
The joint of the gap is scanned in the direction of arrow (a) and the core (la) (lb) is welded. Figure 2 is a cross-sectional view of the core after laser welding! 0,
(B) is the melted and solidified part of sendust caused by the laser beam (5), and (6) is the boundary between the melted and solidified part (B) and the base material.

さて第2図において、溶融凝固部(E3)は、レーザ光
(、A)が通過した後、急激な冷却と共に体積が収縮し
、境界(6)の近傍において大きな熱応力を発生する。
Now, in FIG. 2, after the laser beam (, A) passes through the molten solidified part (E3), the volume contracts with rapid cooling, and a large thermal stress is generated in the vicinity of the boundary (6).

センダストは、そもそもステンレス等に比べると脆いた
め、この熱応力に耐えきれず、境界(6)の近傍におい
て大きなりラックを生じ、そのため良好な溶接が得られ
ず、溶接強度も極めて弱いものでしかない。このため、
従来、レーザによるセンダスト・コアの溶接は、センダ
スト・コアを700℃前後に加熱して、相対温度差を少
なくして行なわれてお9、量産性が悪かった〇 本発明は上記従来の欠点を解消するもので、生産性よく
かつ歩留りよく製造できる磁気ヘッドを提供することを
目的とする。
Since sendust is inherently brittle compared to stainless steel, etc., it cannot withstand this thermal stress, causing a large rack near the boundary (6), making it difficult to obtain good welding and resulting in extremely weak welding strength. do not have. For this reason,
Conventionally, laser welding of sendust cores was carried out by heating the sendust core to around 700°C to reduce the relative temperature difference9, which resulted in poor mass production. The present invention overcomes the above-mentioned drawbacks of the conventional method. It is an object of the present invention to provide a magnetic head that can be manufactured with high productivity and high yield.

上記目的を達成するため、本発明の磁気ヘッドは、少な
くとも一組の相隣接する平板状磁性材が互いに溶接され
た、複数の平板状磁性材から成る磁気ヘッドにおいて、
互いに溶接される前記平板状磁性材に、互いに対向隣接
する片持ち状の梁形状部を設け、この梁形状部の対向部
分をレーザ溶接した構成である。
In order to achieve the above object, a magnetic head of the present invention includes a plurality of flat magnetic materials in which at least one set of adjacent flat magnetic materials are welded to each other.
The flat magnetic materials to be welded together are provided with mutually opposing and adjacent cantilevered beam-shaped parts, and the opposing parts of the beam-shaped parts are laser welded.

以下、本発明の一実施例について、図面に基づいて説明
する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.

第3図において、(7a) (7b)はセンダストから
成るコア、(8a) (sb)は巻線窓を形成する巻線
溝、(9)はバックギャップ面、OQはフロントギャッ
プ面である。  −−m−−−−コア(7aX7bンの
一面には、コア(7a) (7b)の対向隣接面の近傍
に幅0,2 IIIの溝(lla) (Ilb)が長手
方向に沿って形成されていると共に、幅Q、31+11
の多数の溝(12a)(12b)が長手方向適当間隔お
きに幅方向に沿って形成されている。これら溝(Ha)
 (11b)(r2a) (1zb)は深さが約Q、3
 mmで、これらの溝(lla) (llb) (12
a)(12b)によシ、互いに対向隣接する多数対の片
持ち状の梁形状部(13a) (13b)が形成されて
いる。
In FIG. 3, (7a) and (7b) are cores made of sendust, (8a) and (sb) are winding grooves forming winding windows, (9) is a back gap surface, and OQ is a front gap surface. --m---- On one surface of the core (7aX7b), a groove (lla) (Ilb) with a width of 0.2 III is formed along the longitudinal direction near the opposing adjacent surfaces of the core (7a) (7b). and width Q, 31+11
A large number of grooves (12a) (12b) are formed along the width direction at appropriate intervals in the longitudinal direction. These grooves (Ha)
(11b) (r2a) (1zb) has a depth of approximately Q, 3
In mm, these grooves (lla) (llb) (12
In a) (12b), a large number of pairs of cantilevered beam-shaped portions (13a) (13b) are formed which are adjacent to each other and opposite to each other.

フロントギャップ面(+1においては、各々の梁形状部
(13a) (13b)に対応する位置にトラック(図
には現われていない)が形成され、互いに突き合わされ
ている。前記梁形状部D3a) (tab)の寸法は、
通常の浴接に用いられるレーザビーム径が数百μmのオ
ーダであることを考慮して、そのビーム径程度%、L<
はそれ以下となるように、コア長手方向及び幅方向共に
0.15 myttである。なおコア(7a)(7b)
は図外の治具によυ押圧されて互いに突合されている。
At the front gap surface (+1), tracks (not shown in the figure) are formed at positions corresponding to each of the beam-shaped portions (13a) (13b) and are butted against each other. The beam-shaped portion D3a) ( The dimensions of tab) are
Considering that the diameter of the laser beam used for normal bath contact is on the order of several hundred μm, the beam diameter %, L<
is 0.15 mytt in both the longitudinal direction and the width direction of the core so that it is less than that. In addition, core (7a) (7b)
are pressed against each other by a jig not shown.

さて、かかる状態において、対向隣接する6対の梁形状
部(13a) (]ab)を、第1図と同じ方向からの
レーザ光でスポットa接していく。この場合、微細な構
造の梁形状部(13a) (13b)において、高品質
で再現性の良い溶接を得るには、微細加工に適したYA
Gレーザを用いるのがよく、更にレーザ照射エネルギを
正確にかつ再現性よく設定できるパルス励起のYAGレ
ーザを用いるのがよい。
Now, in this state, the six pairs of opposing and adjacent beam-shaped parts (13a) (]ab) are brought into contact with spot a of laser light from the same direction as in FIG. In this case, in order to obtain high-quality welding with good reproducibility in the beam-shaped parts (13a) (13b) with a fine structure, it is necessary to use YA suitable for fine processing.
It is preferable to use a G laser, and it is further preferable to use a pulse-excited YAG laser, which allows the laser irradiation energy to be set accurately and with good reproducibility.

本実施例においても、パルス励起YAGレーザを用いて
、パルス幅8fFIIIl!1c11パルスのエネルギ
約IJのレーザパルスを、デフォーカス0龍で各梁形状
部(13a) (tab)に1パルス照射してスポット
溶接をしている。
In this example as well, a pulse excitation YAG laser is used with a pulse width of 8 fFIII! Spot welding is performed by irradiating each beam shaped portion (13a) (tab) with one pulse of a 1c11 pulse of laser pulse having an energy of about IJ with zero defocus.

第4図はスポット溶接により梁形状部(13a)(13
b)に生じる溶融凝固部を示す拡大断面図である。梁形
状部(13a) (13b)は上記の如く微小な形状で
あるため、熱容量が小さく、レーザ照射を受けると梁形
状部(13a) (13b)の先端部分は、はとんど全
体的に一様に溶融状態となる。この後、溶融部は冷却過
程に入るが、コア(7a) (7b)内への熱伝導は、
第2図を用いて説明した従来の場合に比べて熱伝導抵抗
が大きいので、ゆるやかに矢印(ロ)方向に梁形状部(
13a) (13b)内をほぼ一様に行なわれ、この冷
却過程における梁形状部(13a) (tab)内の等
泥面は、はとんど平面に近くなり、事実、溶融凝固部の
境界線CI4はほぼ水平な直線状となる。
Figure 4 shows beam-shaped parts (13a) (13) by spot welding.
It is an enlarged sectional view showing the melt solidification part which occurs in b). Since the beam-shaped portions (13a) (13b) have a minute shape as described above, their heat capacity is small, and when exposed to laser irradiation, the tips of the beam-shaped portions (13a) (13b) almost completely collapse. It becomes uniformly molten. After this, the molten part enters the cooling process, but the heat conduction into the core (7a) (7b) is
Since the thermal conduction resistance is higher than in the conventional case explained using Fig. 2, the beam-shaped portion (
13a) (13b), and during this cooling process, the uniform surface in the beam-shaped part (13a) (tab) becomes almost a plane, and in fact, the boundary between the melted and solidified parts Line CI4 becomes a substantially horizontal straight line.

したがってこの冷却過程における溶融凝固部の熱収縮は
矢印(ハ)方向に生じるが、梁形状部(taaXtab
)は矢印(ハ)方向の収縮に対しては全くの自由状態で
あるため、何ら熱応力は発生せず、従ってクラックのな
い良好な溶接が得られる。
Therefore, the thermal contraction of the molten solidified part during this cooling process occurs in the direction of the arrow (c), but the beam-shaped part (taaXtab
) is completely free from shrinkage in the direction of arrow (c), so no thermal stress is generated, and therefore good welding without cracks can be obtained.

このようにして、6対の梁形状部(13a) (13b
)をすべてスポット溶接し、しかる後に溝(12a)(
1zb>部分で切断してQ、j 5 mlN厚さのヘッ
ドチップを得る。
In this way, six pairs of beam-shaped parts (13a) (13b
) are all spot welded, and then grooves (12a) (
1zb> to obtain a head chip with a thickness of Q, j 5 mlN.

このとき、外径50朋、回転数3000Orpm 、厚
さ0.25nの外周切断機によ多切断を行なったが、溶
接部は何らの損傷を受けることがなかった。もちろん、
超音波洗浄等では全く問題は生じなかった。
At this time, multiple cuts were made using a peripheral cutter having an outer diameter of 50 mm, a rotational speed of 3000 rpm, and a thickness of 0.25 nm, but the welded portion did not suffer any damage. of course,
No problems occurred with ultrasonic cleaning.

かくして得られたヘッドチップを第5図に示す。The head chip thus obtained is shown in FIG.

このように、磁気ヘッドの構造としては、2枚の相隣接
する平板状磁性材(15a) (lsb)の一部に、互
いに対向隣接する梁形状部(13a) (13b)が形
成され、この梁形状部(13a) (13b)の対向部
分をレーザ溶接した構造になっている。なお、フロント
ギャップ1fiQO近傍に、フェライトヘッドのガラス
接合工程と同じ工程を用いてガラスをモールドしてもよ
く、このようにすればフロントギャッフノ長期安定化を
図ることができ、実用上太いに有効である0この場合、
ガラスの接合強度の弱さは、すでに梁形状部(13a)
 (tab)の溶接で充分な強度を得ているので問題な
く、また上記のようにレーザ溶接による接合部には熱残
留応力が発生していないので、フロントギャップ面(1
1のモールドガラスの接合が、レーザ溶接の影響を受け
ることは全くない。
As described above, the structure of the magnetic head is such that mutually opposing and adjacent beam-shaped portions (13a) (13b) are formed in part of two adjacent flat magnetic materials (15a) (lsb). It has a structure in which opposing parts of the beam-shaped parts (13a) and (13b) are laser welded. Incidentally, glass may be molded near the front gap 1fiQO using the same process as the glass bonding process of the ferrite head.In this way, the front gap can be stabilized for a long period of time, which is very effective in practice. 0 in this case,
The weak bonding strength of the glass is already due to the beam shape part (13a)
There is no problem because sufficient strength is obtained by welding the front gap surface (tab), and as mentioned above, there is no thermal residual stress in the laser welded joint.
The bonding of the molded glasses in No. 1 is not affected by laser welding at all.

第6図は別の実施例を示してお9、切欠き(16a)(
16b)K対応する溝が形成されたセンダストから成る
コアを、フェライトの場合と同様にガラス接合した後、
ワイヤソーで切断して所定の寸法形状のチップaηを得
、その後、レーザ光(qによシ、対向隣接する梁形状部
(18a) (18b)の対向面を浴接したものである
。熱応力の点では第1の実施例に比べてかなり不利なよ
うに考えられるが、溶接部が微小な梁形状となされてい
るので、従来のものと比べるとレーザ溶接後の溶接部の
冷却速度がゆるやかであるので、やけυクラックは生じ
ず、良好な溶接が行なわれる。また梁形状部(18aX
1sb)は、溶接後の冷却過程において矢印に)(ホ)
方向に収縮しようとし、それによって発生する熱応力は
平板状磁性材(19a) (19b)を互いに引きつけ
るように作用するので、フロントギャップ及びバックギ
ャップを強固に形成するという犬なる効果をもたらす。
FIG. 6 shows another embodiment, in which the notch (16a) (
16b) After glass-bonding a core made of Sendust with K-corresponding grooves formed in it in the same way as in the case of ferrite,
A chip aη having a predetermined size and shape is obtained by cutting with a wire saw, and then a laser beam (q) is used to bathe the opposing surfaces of the opposing and adjacent beam-shaped portions (18a) and (18b).Thermal stress Although it seems to be quite disadvantageous compared to the first embodiment in terms of this, since the welded part has a minute beam shape, the cooling rate of the welded part after laser welding is slower than in the conventional method. Therefore, burn cracks do not occur and good welding is performed.Also, the beam shape part (18aX
1sb) is indicated by the arrow in the cooling process after welding) (e)
The magnetic material tends to contract in this direction, and the thermal stress generated thereby acts to attract the flat magnetic materials (19a) and (19b) to each other, which has the effect of strongly forming a front gap and a back gap.

またこの実施例では、磁気ヘッドが固定されるペース−
にチップθカを、梁形状部(18a)(18b)の溶接
と同時に溶接することが可能となる。
In addition, in this embodiment, the pace on which the magnetic head is fixed is
It becomes possible to weld the tip θ at the same time as welding the beam-shaped portions (18a) and (18b).

第7図はさらに別の実施例を示しており、この実施例で
は、磁気ヘッドは薄板から成る平板状磁性材シυを複数
個積層したもので、各平板状磁性材@0の梁形状部(2
)は隣接するtのどうしが互いにレーザ光により溶接さ
れて全体が一体に固定されている。第1及び第2の実施
例においては、梁形状部(13M) (13b) Sる
いは(18a) (18b)の対向面はバックギャップ
面(9)の一部を構成していたが、この実施例では、平
板状磁性材シυの平板面の一部となっている。
FIG. 7 shows yet another embodiment. In this embodiment, the magnetic head is made by laminating a plurality of flat magnetic material sheets υ made of thin plates, and the beam-shaped portion of each flat magnetic material @0 is stacked. (2
), adjacent t's are welded to each other by laser light and the whole is fixed as one body. In the first and second embodiments, the opposing surfaces of the beam-shaped portions (13M) (13b) S or (18a) (18b) constituted a part of the back gap surface (9). In the embodiment, it is a part of the flat surface of the flat magnetic material υ.

なお平板状磁性材(15a) (15b)、(tea)
 (1sb)、ではないが、センダストのように脆い材
質の場合に特に犬なる効果を発揮する。
Note that the flat magnetic material (15a) (15b), (tea)
(1sb), but it is particularly effective when using brittle materials such as sendust.

以上説明したように、本発明にかかる磁気ヘッドによれ
ば、梁形状部をレーザ溶接することによp1クラックの
発生等のない良好な溶接を行なえ、したがって生産性及
び信頼性を大幅に向上し得る。
As explained above, according to the magnetic head according to the present invention, by laser welding the beam-shaped portion, it is possible to perform good welding without generation of P1 cracks, and therefore productivity and reliability can be greatly improved. obtain.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気ヘッドの製造方法を説明する斜視図
、第2図は従来の磁気ヘッドのレーザ溶接による溶融凝
固部を説明する断面図、第3図〜第5図は本発明の一実
施例を示し、第3図は磁気ヘッドの製造方法を説明する
斜視図、第4図はレーザ溶接による溶融凝固部な説明す
る断面図、第5図は磁気ヘッドの斜視図、笹6図及びj
g7図はそれぞれ別の実施例における磁気ヘッドの斜視
図である。 (9)・・・バックギャップ面、aO・・・フロントギ
ャップ面、(taa)(13b)(tea)(tab)
 tn−・・梁形状部、(15a)(15b) (19
a) (19b) (2L=平板状磁性材、(財)・・
・ペース第1図 第2図 第5図 第4図
FIG. 1 is a perspective view illustrating a conventional method of manufacturing a magnetic head, FIG. 2 is a sectional view illustrating a molten and solidified portion of a conventional magnetic head formed by laser welding, and FIGS. 3 is a perspective view illustrating the manufacturing method of the magnetic head, FIG. 4 is a sectional view illustrating the melted and solidified part by laser welding, and FIG. 5 is a perspective view of the magnetic head, and j
Figure g7 is a perspective view of a magnetic head in another embodiment. (9)... Back gap surface, aO... Front gap surface, (taa) (13b) (tea) (tab)
tn--Beam shaped part, (15a) (15b) (19
a) (19b) (2L = flat magnetic material, Foundation)...
・Pace Figure 1 Figure 2 Figure 5 Figure 4

Claims (1)

【特許請求の範囲】 1、 少なくとも一組の相隣接する平板状磁性材が互い
に溶接された、複数の平板状磁性材から成る磁気ヘッド
において、互いに溶接される前記平板状磁性材に、互い
に対向隣接する片持ち状の梁形状部を設け、この梁形状
部の対向部分をレーザ溶接した磁気ヘッド。 2、平板状磁性材の材質はセンダストである特許請求の
範囲第1項記載の磁気ヘッド。 3、梁形状部は、磁気ヘッドが固定されるペースに溶接
される特許請求の範囲第1項記載の磁気ヘッド。 4、 バックギャップ部と、所定の幅を有するトラック
部が形成されたフロントギャップ部とを備え、梁形状部
の相対向面はバックギャップ面の一部を形成し、前記フ
ロントギャップ部にはガラスがモールドされた特許請求
の範囲第1項記載の磁気ヘッド。 5、平板状磁性材は薄板でかつ複数個が積層されておル
、互いに隣接する各々の平板状磁性材が梁形状部の溶接
によシ互いに固着されている特許請求の範囲第1項記載
の磁気ヘッド。
[Scope of Claims] 1. In a magnetic head composed of a plurality of flat magnetic materials in which at least one set of adjacent flat magnetic materials are welded to each other, the flat magnetic materials to be welded to each other are A magnetic head in which adjacent cantilevered beam-shaped parts are provided, and opposing parts of the beam-shaped parts are laser welded. 2. The magnetic head according to claim 1, wherein the material of the flat magnetic material is Sendust. 3. The magnetic head according to claim 1, wherein the beam-shaped portion is welded to the pace to which the magnetic head is fixed. 4. A back gap part and a front gap part in which a track part having a predetermined width is formed, the opposing surfaces of the beam-shaped part form a part of the back gap surface, and the front gap part is provided with glass. The magnetic head according to claim 1, wherein the magnetic head is molded. 5. The flat magnetic material is a thin plate, and a plurality of the flat magnetic materials are laminated, and the adjacent flat magnetic materials are fixed to each other by welding the beam-shaped portions, as described in claim 1. magnetic head.
JP11885182A 1982-07-07 1982-07-07 Magnetic head Granted JPS598115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11885182A JPS598115A (en) 1982-07-07 1982-07-07 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11885182A JPS598115A (en) 1982-07-07 1982-07-07 Magnetic head

Publications (2)

Publication Number Publication Date
JPS598115A true JPS598115A (en) 1984-01-17
JPH0416844B2 JPH0416844B2 (en) 1992-03-25

Family

ID=14746705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11885182A Granted JPS598115A (en) 1982-07-07 1982-07-07 Magnetic head

Country Status (1)

Country Link
JP (1) JPS598115A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325808A (en) * 1986-06-30 1988-02-03 グルンデヒ・エ.エム.ファウ・エレクトロ−メハニッシエ・フエルズフスアンスタルト・マックス・グルンデイヒ・ホレント・シュテイフトウング・ウント・コオ−・カ−ゲ− Magnetic head and manufacture thereof
FR2622335A1 (en) * 1987-10-27 1989-04-28 Thomson Csf MAGNETIC RECORDING HEAD READING AND METHOD OF MAKING

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320312A (en) * 1976-08-10 1978-02-24 Toshiba Corp Production of magnetic core

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320312A (en) * 1976-08-10 1978-02-24 Toshiba Corp Production of magnetic core

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325808A (en) * 1986-06-30 1988-02-03 グルンデヒ・エ.エム.ファウ・エレクトロ−メハニッシエ・フエルズフスアンスタルト・マックス・グルンデイヒ・ホレント・シュテイフトウング・ウント・コオ−・カ−ゲ− Magnetic head and manufacture thereof
FR2622335A1 (en) * 1987-10-27 1989-04-28 Thomson Csf MAGNETIC RECORDING HEAD READING AND METHOD OF MAKING
WO1989004037A1 (en) * 1987-10-27 1989-05-05 Thomson-Csf Magnetic recording/reproducing head and process for making it.
JPH02501962A (en) * 1987-10-27 1990-06-28 トムソン‐セーエスエフ Recording/reproducing magnetic head and its manufacturing method
US5404260A (en) * 1987-10-27 1995-04-04 Thomson-Csf Magnetic recording/playback head

Also Published As

Publication number Publication date
JPH0416844B2 (en) 1992-03-25

Similar Documents

Publication Publication Date Title
EP3705223A1 (en) Welding structure for metal member and welding method
JPS598115A (en) Magnetic head
JPS63203286A (en) Piercing welding method for t-shaped joint
JPH0247002B2 (en)
JP2544849B2 (en) Honeycomb panel and method for manufacturing honeycomb panel
JP2020040106A (en) Different material joining method
JPS58185022A (en) Production of magnetic head
JP3145244B2 (en) Manufacturing method of honeycomb panel
JPS63167406A (en) Manufacture of magnetic head
JPS6238781A (en) Joining method with high density heat source beam
JPS60150212A (en) Magnetic head core
JPS62192903A (en) Production of magnetic head
JPS59160821A (en) Manufacture of magnetic head
JPS63228406A (en) Combination magnetic head and its manufacture
JPH02130705A (en) Magnetic head
JPS5992175A (en) Manufacture of pillar material having pillar and beam joint part
KR880000395B1 (en) Magnetic head comprising two spot-welded metal plate
JPS6226085B2 (en)
JPS6226087B2 (en)
JP2507686B2 (en) Composite magnetic head core and method of manufacturing the same
JP2547808B2 (en) Method of manufacturing magnetic head chip
JPS5913317A (en) Manufacture of magnetic core
JPH01166892A (en) Two-electrode type electroslag welding method
JPS60242508A (en) Manufacture of sendust alloy magnetic head core
JPS6374102A (en) Production of magnetic head